
RESEARCH ARTICLE

Combining molecular dynamics simulations

with small-angle X-ray and neutron scattering

data to study multi-domain proteins in

solution

Andreas Haahr LarsenID
1,2¤a, Yong Wang1, Sandro Bottaro1¤b, Sergei GrudininID

3,

Lise ArlethID
2, Kresten Lindorff-LarsenID

1*

1 Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of

Biology, University of Copenhagen, Copenhagen, Denmark, 2 X-ray and Neutron Science, Niels Bohr

Institute, University of Copenhagen, Copenhagen, Denmark, 3 Univ. Grenoble Alpes, CNRS, Inria, Grenoble

INP, LJK, Grenoble, France

¤a Current address: Structural Bioinformatics and Computational Biochemistry Unit (SBCB), Department of

Biochemistry, University of Oxford, Oxford, United Kingdom.

¤b Current address: Atomistic Simulations Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.

* lindorff@bio.ku.dk

Abstract

Many proteins contain multiple folded domains separated by flexible linkers, and the ability

to describe the structure and conformational heterogeneity of such flexible systems pushes

the limits of structural biology. Using the three-domain protein TIA-1 as an example, we here

combine coarse-grained molecular dynamics simulations with previously measured small-

angle scattering data to study the conformation of TIA-1 in solution. We show that while the

coarse-grained potential (Martini) in itself leads to too compact conformations, increasing

the strength of protein-water interactions results in ensembles that are in very good agree-

ment with experiments. We show how these ensembles can be refined further using a

Bayesian/Maximum Entropy approach, and examine the robustness to errors in the energy

function. In particular we find that as long as the initial simulation is relatively good, reweight-

ing against experiments is very robust. We also study the relative information in X-ray and

neutron scattering experiments and find that refining against the SAXS experiments leads to

improvement in the SANS data. Our results suggest a general strategy for studying the con-

formation of multi-domain proteins in solution that combines coarse-grained simulations

with small-angle X-ray scattering data that are generally most easy to obtain. These results

may in turn be used to design further small-angle neutron scattering experiments that exploit

contrast variation through 1H/2H isotope substitutions.

Author summary

Many proteins contain multiple folded domains separated by flexible linkers, and in order

to understand how such multi-domain proteins function, we need to be able to describe
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how these domains are oriented in space. We have used the three-domain protein TIA-1

as an example to combine molecular simulations with biophysical experiments to describe

the structural and dynamical properties of a multi-domain protein. We show that while

standard simulations do not lead to good agreement with the experimental data, we can

improve the agreement substantially by tuning a single parameter in the model that

describes the interaction between protein and water. We can gain further information

about the system by a more direct integration of the data, and we find that we can provide

a detailed and robust description of the relative location of the different domains in TIA-

1. The method is general and will be useful to study the relationship between structure,

dynamics and function in multi-domain proteins in other systems.

Introduction

The ability to change conformation is crucial to the function and regulation of many proteins,

and describing and quantifying protein flexibility is important when studying the function of

proteins and their complexes. Examples of such dynamics includes flexibility through a hinge

region, or the movement of domains connected by flexible linkers [1]. The extreme case is

highly entropic systems such as intrinsically disordered proteins. Many experimental methods

for studying protein structure are, however, only indirectly sensitive to structural flexibility, or

may even suppress or bias dynamical properties. In X-ray crystallography, flexible regions in

termini or loops are often removed before crystallization, as they may hinder precipitation and

formation of protein crystals. Even when left in the construct, flexible parts may not be visible

in the final refined model, resulting in models for the folded parts only. Although cryo-elec-

tron microscopy is in principle a single-molecule technique, it is in practice also difficult to

define flexible parts, as these may average out when refining 2D and 3D models.

Solution NMR and small-angle X-ray scattering (SAXS) are two widely used techniques

that can be used to study protein flexibility and dynamics in solution. Where NMR generally

contains information about the relative orientation of atoms that are close in space (with resid-

ual dipolar couplings representing a notable exception), SAXS carries information on the over-

all protein structure. Therefore, SAXS is particularly useful when the structure of the

individual domains of a multi-domain protein has been solved by high-resolution methods,

but the structure of the full-length protein and the relative orientations of the domains remain

unknown. While it may in certain cases be possible to fit the data with a single protein struc-

ture, the resulting structure may be a biased representation of a flexible protein with many dif-

ferent conformations with different occupancies.

One approach to generate such conformational ensembles is to use molecular dynamics

(MD) simulations. Despite progress in both sampling methods and molecular force fields,

such simulations may still give rise to conformational ensembles that are not in perfect agree-

ment with experimental data. In that case, however, simulations and experiments may be used

synergistically to generate and refine the description of flexible molecules. Thus, as described

by us and others, SAXS and molecular simulations can be combined to determine a structural

ensemble that represents the system, and is compatible with the information in the force field

and the experimental constraints from SAXS [2–20].

Here we apply the Bayesian/Maximum Entropy (BME) method [3] to integrate simulations

and small-angle scattering data from a flexible multi-domain protein. We used the coarse-

grained force field Martini [21] for the MD simulations to overcome sampling issues, which is

particular relevant for larger and conformationally heterogeneous systems [14]. We find that,

despite recent improvements of Martini 3 [22], the Martini force-field needs to be adjusted to
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provide a better fit to the SAXS data, and that this can be performed by changing the strength

of protein-water interactions. Moreover, we show how the BME reweighting protocol can be

used to obtain full consistency with data, both for the force field refined against data, and for

force fields that give rise to greater discrepancies with the data.

We also investigate SAXS in combination with the related technique, small-angle neutron

scattering (SANS). In particular we discuss how SANS can contribute with information to ana-

lyse the distribution of conformations of flexible proteins. Substitution of hydrogen with deu-

terium in the protein and/or solvent changes the excess scattering length density, or contrast,

in SANS with each contrast carrying different structural information. Thus, SANS measure-

ments are potentially interesting for multi-domain proteins, as they allow the investigator to

highlight individual domains by contrast variation [23]. Specifically, we extend the work from

Sonntag et al. [24] who used a combination of SAXS and contrast variation SANS data to

refine individual conformations of a multi-domain protein. Building also upon recent work by

Chen et al. [7], we here use the SAXS and SANS data to determine several ensembles of confor-

mations. We analyse each of the SANS contrasts measured by Sonntag et al. [24], and examine

what information is carried by them. We also discuss how a SANS experiment could poten-

tially be further optimized regarding choice of contrast situations, such that the information

gain can be maximized.

We have chosen the three-domain protein TIA-1 as a model system for our analyses. The

three folded domains of TIA-1, RNA recognition motifs 1, 2 and 3 (RRM1, RRM2, and

RRM3), are connected by linkers that provide a high degree of structural flexibility to the com-

plex, and high-resolutions structures exist of all domains. Both SAXS and SANS data were

measured and previously analysed by Sonntag et al. [24], who used segmental domain-wise

perdeuteration of the domains in TIA-1 and mixtures of H2O and D2O in the solvent to obtain

the different SANS contrasts. We find that while simulations with the Martini coarse-grained

force field lead to imperfect agreement with experiments, strengthening the protein-water

interactions in the Martini potential enables relatively accurate fitting of the data. An even bet-

ter agreement can be obtained by using a Bayesian/Maximum Entropy approach to fit the

experimental data, and we show that fitting ensembles to the SAXS data leads to an improved

agreement with the SANS data.

Methods

Generating the initial structure for MD simulations

Native TIA-1 has three RNA recognition motifs, RRM1, RRM2, and RRM3, connected by flex-

ible linkers and followed by a C-terminal unstructured Q-rich domain of ~100 residues. In

this study, we investigated a truncated construct of TIA-1 without the Q-rich domain [24],

and will in the following refer to this truncated construct simply as TIA-1. As starting point for

our models, we used previously determined high-resolution structures of the three folded

domains. The structure of RRM1 was determined by solution state NMR spectroscopy [24]

(PDB 5O2V), the structure of RRM2 was determined by X-ray crystallography [24] (PDB:

5O3J), and the structure of the RRM2-RRM3 complex (RRM23) was determined by solution

state NMR spectroscopy [25] (PDB: 2MJN). We added missing residues, in particular in the

linker between RRM1 and RRM23, using Modeller [26] to generate the initial model for the

MD simulations (Fig 1A).

Setting up the MD simulations

We used the coarse-grained force field Martini version 3.0.beta.4.17 [21,22] in combination

with GROMACS 5.1.4 or 2016.5 [27]. First, the structure was coarse-grained using the
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Martinize2 python script [28] (Fig 1A). An elastic network [29] was then added to the folded

domains, to make them semi-rigid. Specifically, a harmonic potential with a force constant of

500 kJ mol−1 nm−2 was applied to all backbone (BB) bead pairs with relative distance less than

0.9 nm. No elastic network was added to the flexible linkers or to contacts between the three

folded domains, so that we only applied restraints within RRM1 (residues 7–80), RRM2 (resi-

dues 95–170) and RRM3 (residues 204–270). The coarse-grained structure with the elastic net-

work was then relaxed for 3 ps, with a time step of 30 fs, using the Berendsen thermostat and

barostat, and Verlet cutoff scheme. The relaxed structure was equilibrated for 1 ns, with a time

step of 5 fs, using the velocity-rescale (v-rescale) thermostat [30], Parinnello-Rahman barostat,

and Verlet cutoff scheme.

Running the MD simulations

Production runs were initiated using the equilibrated structure and run for 10 μs with a time

step of 20 fs, using v-rescale thermostat, Parinnello-Rahman barostat, and Verlet cutoff scheme

in the NPT ensemble. Performance was 600–750 ns/day on four CPU cores. Frames were writ-

ten every ns resulting in a total of 10,000 frames in each final trajectory.

Calculating collective variables

We used PLUMED version 2.4.1 [31] to calculate the radius of gyration, Rg, along with the dis-

tances between the centres of mass of the three domains, D12, D13 and D23 respectively. Error

estimates were determined with block analysis [32].

Backmapping from coarse-grained to all-atom

As described below, we calculated SAXS and SANS data using software that takes as input all-

atom structures. Thus, we “back-mapped” from coarse-grained to all-atom using a modified

version of a backmapping algorithm for Martini [33]. The original algorithm consists of two

energy minimization runs with 500 steps followed by five simulation runs with increasing time

steps from 0.2 fs to 2 fs. As our goal was simply to calculate SAXS and SANS data from these

structures, we simplified the algorithm by leaving out the five simulation runs and limit the

number of steps in the energy minimization runs to 200, and in this way reduced the computa-

tional cost. We tested that this simplification did not affect calculated SAXS curves substan-

tially, as judged by comparison of calculated curves after the full back-mapping algorithm and

after the simplified algorithm (S1 Fig). The simplified algorithm also did not have any substan-

tial impact on the radius of gyration, Rg, as calculated from the SAXS data. Higher resolution

differences, not immediately detectable by SAXS, could however be seen when comparing the

back-mapped structures from the full and simplified back-mapping procedures. The simplifi-

cation resulted in an ~80% reduction of the computation time for the back-mapping proce-

dure. With the simplified algorithm, the calculation time for back-mapping 10,000 frames was

about 50 hours using a node with 8 cores.

Calculating SAS curves

SAXS and SANS intensity curves, I(q), where the momentum transfer q = 4π sin(θ)/λ, is given

via the wavelength λ and scattering angle 2θ, were calculated using Pepsi-SAXS 2.4 and Pepsi-

Fig 1. TIA-1 structure and experimental SAXS and SANS data. (A) All-atom model of TIA-1 and the corresponding

coarse-grained Martini model. (B) Experimental SAXS (black) and SANS data (green: 0% D2O, red: 42% D2O, blue:

70% D2O). (C) Corresponding pair distance distribution functions, p(r).

https://doi.org/10.1371/journal.pcbi.1007870.g001
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SANS 2.4 [34,35]. Resolution effects were included in the Pepsi-SANS calculations using the

uncertainty of the measured q-values. Specifically, we applied a Gaussian convolution to the

theoretical I(q) curve with a Gaussian of the form, expð� q2=2s2
qÞ, where σq is the standard

deviation taken from the forth column of the experimental SANS data. In both SAXS and

SANS, the forward scattering, I(0), was fitted along with the excluded water volume, r0, the

density of the hydration shell, Δρ, and a constant background, B. Fitting all four parameters

freely and for each conformation could lead to a drastic overfit of the data. Therefore, for each

ensemble (set of conformations and associated weights) we estimated a single set of global val-

ues for these parameters using the following algorithm:

1. Each frame was fitted individually, with the four parameters free.

2. Trajectories were reweighted using BME (see details below) using a range of θ-values from

1 to 500. This resulted in a set of weights for each value of θ: {wθ} = {wθ,1,wθ,2,. . .,wθ,N),

where N is the number of frames.

3. Weighted averaged parameter values were calculated using:

hpiw ¼
X

i

wy;i � pi;

where p is either I(0), B, r0, or Δρ, and i runs over all frames.

4. The scattering was calculated again for each frame using Pepsi-SAXS/SANS, with the

parameters fixed to the weighted average.

This resulted in a reduced χ2 for each θ:

w2

r;y ¼
1

M � 2

X

j

S � hIyðqjÞi þ B � IexpðqjÞ

sj

 !2

;

where M is the number of data points, and Iθ(qj) is the weighted average of the intensities:

hIyðqjÞi ¼
X

i

wy;i � Icalc;iðqjÞ:

The scale parameter, S, and the constant background, B, were refitted for each θ to mini-

mize w2
r;y. The set of parameters resulting in the lowest w2

r;y were selected.

While Sonntag et al. produced proteins with two different deuteration patterns for their

SANS experiments, we here focus our analyses on SANS data in which RRM1 was fully deuter-

ated and RRM23 was non-deuterated, since we found this data to be of the highest quality

[24]. Therefore, chain labels were included in the PDB with RRM1 being denoted chain A, and

RRM2 chain B and RRM3 chain C. This was necessary for subsequent calculations of theoreti-

cal SANS curves using Pepsi-SANS [34].

Tuning protein-water interaction strength in the Martini model

As described in more detail in the results section, we find that simulations using the unper-

turbed Martini force field yielded structures that were too compact and thus did not fit the

experimental SAXS and SANS data. Several atomistic force fields have likewise failed to

describe flexible and disordered proteins, but increasing the protein-water interaction strength

has in several cases been shown to improve the fit to experimental data [36–38]. Inspired by

this work and a previous modification to Martini force field v.2.2 [39] we examined whether a
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similar solution could be applied here, and thus varied (increased) the protein-water interac-

tion strength. Specifically, we adjusted the interactions between protein and water by multiply-

ing the � parameter in the Lennard-Jones potential between water beads and protein beads by

a factor λ [21] that we varied between 1.0 (unaltered) to 1.5 (50% increase of the protein-water

interaction strength). Note, Martini 3 includes “small” and “tiny” beads, along with the normal

beads, and the change was also applied to these. The value of λ that fitted best with SAXS data

was found as the value giving rise to the minimum w2
r when fitting the ensemble-average of the

scattering before reweighting. In this case, the parameters r0, or Δρ were taken as the ensemble

averages with uniform weights, and I(0) and B were fitted as free (global) parameters.

SAXS and SANS data

We used one SAXS dataset recorded on non-deuterated TIA-1 and three different SANS data-

sets with RRM1 fully deuterated (dRRM1) and RRM23 non-deuterated (hRRM23), with SANS

obtained in 0%, 42% and 70% D2O leading to different contrasts of TIA-1 in solution (Fig 1B).

All data were collected by Sonntag et al. [24] and obtained from the authors. Varying the deu-

teration of the solvent gives unique contrast situations in SANS: In 0% D2O both dRRM1 and

hRRM23 have positive contrast but with an inhomogeneous internal contrast due to the higher

excess scattering length density, Δρ, of dRRM1; in 42% D2O dRRM1 has positive contrast and

hRRM23 has approximately zero contrast; and in 70% D2O hRRM1 has a negative contrast,

and dRRM23 has a positive contrast of similar magnitude. The SAXS data and the SANS data

at 0% D2O and 42% D2O are included by Sonntag et al. [24], but the SANS data measured at

70% D2O was measured as part of the original study but not used in their analysis.

Pair distance distribution functions

We determined the pair distance distribution functions, p(r) (Fig 1C), using Bayesian Indirect

Fourier Transformation (BIFT) as implemented in BayesApp [40,41] (available via GenApp

[42]). A constant background parameter was used in the transformation, and the distributions

were allowed to take negative values. This was necessary in particular for the SANS dataset

measured in 70% D2O, as the deuterated domains have positive excess scattering length den-

sity (contrast) and the hydrogenated domains have negative excess scattering length density.

Such alternating contrasts result in negative values for the p(r) at distances typical for the dis-

tance between these domains.

Combining MD simulations and SAS data by Bayesian reweighting

As mentioned in the introduction, there are several ways to combine MD simulations with

SAS data [2–20], but we here used the Bayesian/Maximum Entropy (BME) method [3] and

the above-calculated SAXS and SANS intensities to reweight the trajectories. For details of

BME see [3] as well as code and examples online https://github.com/KULL-Centre/BME. We

refer to recent reviews for an discussion on alternative methods [5,6,43].

The first step in any reweighting approach is to run the MD simulation and compare the

average calculated intensity from all frames to the experimental data without any further

change of the MD simulations. Discrepancies between calculated scattering and data may arise

from insufficient sampling or approximate “forward models” used to calculate scattering data

from conformations. Better sampling can be achieved by coarse-graining or other sampling

enhancement strategies. Even so, it is often not feasible to achieve full convergence [44], in par-

ticular for highly conformationally heterogeneous systems. Moreover, the discrepancies may

also be caused by imperfect force fields. By reweighting of the simulated ensemble one can in

many cases obtain an ensemble that is consistent with data. In BME reweighting the fit to data
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is improved by altering the initial simulation as little as possible [3], in accordance with the

principle of maximum entropy. This is ensured by maximizing the relative entropy (the nega-

tive Kullbeck-Leibler divergence):

S wð Þ ¼ �
XN

j¼1

wj � log
wj

w0
j

 !

;

where w0
j are the initial weights and wj are the refined weights. The weights are normalized so

∑jwj = 1, and the initial weights are, in this case, uniformly distributed.

The consistency with data is ensured by minimizing χ2, defined as usual:

w2 wð Þ ¼
XM

i¼1

PN
j¼1
ðwj � Isim;j;iÞ � Iexp;i

si

 !2

;

where index i runs over the M measured data points, and index j runs over the N structures in

the simulated ensemble.

To balance the two terms, the following expression is minimized:

LðwÞ ¼ w2ðwÞ=2 � y SðwÞ;

with θ being a regularization parameter that balances the trust in data versus simulation [5]. In

the applications below we scanned θ in a range between 1 to 100,000.

The goodness of fit is assessed by the reduced χ2, defined via the number of degrees of free-

dom, conventionally estimated as the number of data points, M, minus the number of fitting

parameters, K (here, K = 4 for the four parameters involved in calculating scattering intensities

with Pepsi-SAXS or Pepsi-SANS):

w2

r ¼ w
2=ðM � KÞ:

From the relative entropy, the effective fraction of the initial structures used in the final

refined ensemble can be estimated as:

�eff ¼ expðSÞ

Expressed in a Bayesian terminology, the prior, i.e. the ensemble from the MD simulations,

is updated with the new data, to obtain the posterior, i.e. the ensemble after reweighting. As

for all Bayesian methods, the final result is affected by the quality of the prior, as well as the

data. In our case, the prior is limited by the accuracy of the force field and the completeness of

the sampling. The SAXS and SANS data are intrinsically limited by being low-resolution tech-

niques with a maximal resolution of about 10 Å. The information gain from the data moreover

depends highly on the covered q-range through the Shannon theorem and the experimental

signal-to-noise ratio [45,46]. This implies that the information content of data can be increased

by improving data quality e.g. through the counting statistics, and by including more types of

data [47], e.g. both SAXS and SANS data. A major focus in the present paper is to examine

how and under which conditions SANS can supplement SAXS in such reweighting processes.

Results

In the first part of the result section we demonstrate how BME reweighting can be used to

combine SAXS with MD simulations of flexible proteins, and in the second part we analyse

additional information gain of SANS data with different contrasts.
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Part I: Limitations and strength of determining ensembles with the BME

reweighting protocol

An MD simulation with the coarse-grained Martini model does describe

the SAXS data accurately

We used MD simulations with the Martini v. 3.0.beta.4.17 coarse-grained model to generate

an ensemble of conformations of TIA1. As starting point for our simulations, we built a model

using previously determined high-resolution structures of the folded domains (RRM1, RRM2

and RRM3). We applied harmonic restraints within these domains and allowed for full flexibil-

ity within the linkers and tails, thus assuming that the three RRMs have similar structures

when they are alone or in the the full-length protein. We based this decision on the observation

that NMR HSQC spectra of each RRM superposes well with a spectrum of a construct with all

three RRMs [25,48] and support it further by noting that e.g. the structure of RRM2 is essen-

tially the same whether in the complex of RNA (PDB ID 5O3J) or in the context of

RRM2-RRM3 (PDB: 2MJN).

We performed a 10 μs long MD simulation of TIA1, and examined the consistency between

simulation and experiments by comparing the calculated scattering intensity (averaged over all

structures in the MD trajectory) with the experimental SAXS data. From this, we observed

clear discrepancies, as evident from visual inspection of fit and residuals (Fig 2A). We found

that most of the simulated structures had Rg values below the experimentally determined value

(Fig 2C) and, that the simulation predicted that TIA-1 is mostly in a collapsed state with Rg of

around 20 Å, but with occasional expansions of the three-domain structure, resulting in spikes

in the plot of Rg values. Such a compact ensemble is clearly in disagreement with the SAXS

data. This observation indicates that the current parameterization of the Martini force field

causes too compact structures for the flexible protein TIA-1. We speculate that this may be

ascribed to the protein-protein interactions between domains of TIA-1 being too attractive, as

such protein “stickiness” has previously been observed for simulations in Martini v2.2 [39,49–

51], and Martini v.3.0.beta.3.2 [3]. We considered other reasons for the poor fits, including the

fact that we keep domains fixed with elastic networks, and limited accuracy of the calculated

SAXS data, but none of these could easily explain the large discrepancy between data and cal-

culated scattering from the unperturbed ensemble.

To improve agreement between simulation and experiment we used the BME reweighting

protocol in which the weight of each conformation in the ensemble is modified to improve

agreement. By decreasing the parameter θ (see Methods), it was possible to fit the data more

closely (lower w2
r ), but with a substantial concomitant drop of the effective fraction of frames

used (lower ϕeff) (Fig 2B). One challenge in BME is to find an appropriate value of θ [5]. This is

most easily found when the w2
r vs. ϕeff curve is convex [3]. In that case, θ is lowered as long as the

decrease in w2
r is substantial, and a value of θ is chosen, after the curve flattens out, and the

decrease in ϕeff is much greater than the decrease in w2
r . In the case of the (unmodified) Martini

force field, however, the w2
r vs ϕeff curve (Fig 2B) is almost linear. To investigate the effect of the

choice of θ, we ran the BME program using different values of θ, and monitored the fit to SAXS

data after reweighting, as well as the reweighted distribution of Rg and D13 (the distance between

domains RRM1 and RRM3), and compared with the non-reweighted distributions (Fig 2C and

2D). For θ = 5000, the fit was poor with a w2
r of above 40, and a calculated Rg value of 23.3 Å, sig-

nificantly lower than the experimentally determined value of 27.7 Å. On the other hand, ϕeff at θ
= 5000 was ~21%, so a substantial fraction of the simulation was retained in the reweighted

ensemble. At θ = 150, the fit was seemingly perfect, with a w2
r of unity, and Rg close to the experi-

mental value (Fig 2C). We here note a subtle but important point when comparing the
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simulations to the experimental SAXS data. Specifically, even for a perfect ensemble we do not

expect perfect agreement between the Rg from SAXS and the Rg calculated from the atomic

coordinates in the simulations, since the former is based on an experimental determination in

water and include the hydration shell around the protein, while the latter is calculated from the

protein structure in vacuum. Instead, all our quantitative comparisons between the simulations

and experiments are based on calculating the scattering data, I(q), from the conformational

ensembles, including modelling the contribution of the solvent layer to the scattering intensity,

enabling us to compare the simulations directly with the data rather than with derived quanti-

ties such as the Rg. Thus, after reweighting with θ = 150 the consistency with SAXS data is excel-

lent. However, ϕeff was only about 0.4%, i.e. just 40 out of the 10,000 frames effectively

contributed to the reweighted ensemble. We concluded that this value of θ was too low, and

found instead that θ around 500 was a better compromise, since the fit, as judged also by visual

inspection, was almost as good as for θ = 150, but ϕeff was increased 10-fold to ~1%. That is, a

good fit could be obtained, but substantial reweighting was necessary.

Fig 2. Results from reweighting the simulation with original force field parameters. (A) Fit to SAXS data, before (black) and after reweighting at θ = 150 (cyan), θ
= 500 (green), and θ = 5000 (purple). (B) w2

r vs. ϕeff for selection of θ. (C) Calculated Rg during the simulation, including mean value (black), experimental Rg from

SAXS (red) and mean Rg from the reweighted ensembles (green). Corresponding histograms in the right panel. (D) Calculated D13 before and after reweighting.

https://doi.org/10.1371/journal.pcbi.1007870.g002
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Altering the Martini force field by increasing the protein-water interaction

strength

To improve the fit between the ensemble from the MD simulations and SAXS, we explored a

rescaling of the protein-water interaction strength similar to what has previously been done

for all-atomic force fields [36–38] and Martini v.2.2 [39,50,51]. By changing the solvent prop-

erties towards a better solvent (i.e. increasing protein-water interactions relative to protein-

protein interactions), we stabilized structures with increased expansion and solvent accessible

surface, and thus expected these to be visited more frequently in the simulations.

We changed the protein-water interaction strength by a factor λ in the range from 1.00

(unaltered) to 1.50 (50% increase of the interaction strength) and monitored the calculated

averaged Rg from the simulations, as well as the fit of calculated intensities to the experimental

SAXS and SANS data (Fig 3). As described above, the fit to SAXS data before reweighting was

poor at λ = 1.00, as assessed by visual inspection and a w2
r of above 40. However, the fit dramat-

ically improved as λ increased, up to a value of λ = 1.06, where a very good fit was achieved

with a w2
r of 2.8 (Fig 3). When λ was increased beyond that point, the fit again worsened, and

Rg also increased to values above the SAXS-estimated Rg indicating that the protein structures

were generally too extended above λ = 1.06. In other words, the solvent became too good. We

note that the fit seemingly got worse in the first step from λ 1.00 to λ = 1.01, before improving

again. This is likely due to difficulties in converging at low λ values because of stickiness

between the domains.

Calculating the Rg in the simulation with λ = 1.06 revealed mostly expanded structures with

Rg values up to ~45 Å, but also some more collapsed forms with Rg of 20–25 Å (Fig 4). We

decided to use this simulation as a prior for further reweighting (Fig 4B), which lead to a very

good fit to SAXS data with w2
r of 1.0, and ϕeff of 83% (Fig 4B and 4C). Both the Rg (Fig 4C) and

the distance between RRM1 and RRM3 (D13; Fig 4D) changed only little due to reweighting.

Fitting the data twice

The above protocol included two fitting steps: First, we fitted λ by a grid-search to find the

value that best matched SAXS data. Second, we reweighed the trajectory weights to obtain

even better consistency with data. That is, the prior in the BME protocol [3], was not a true

prior, as the initial weights, which were input in the reweighting protocol, had already been

adjusted against data. Optimally, in a Bayesian framework, only one fitting step should be

applied to obtain consistency between simulations and a given experimental dataset. However,

the two-step fitting protocol here provided the most reliable results. We suggest that such a

two-step fitting protocol is necessary when the force fields leads to a poor initial consistency

with data, i.e. that all relevant states has not been sampled. For TIA-1, the extended states were

not sufficiently sampled with the pure Martini force field. We note that the reweighting only

changed the distributions for Rg and D13 slightly (Fig 4C and 4D), so in this case, the first fit-

ting step where λ was adjusted, was sufficient to obtain a reliable ensemble. However, it is not

generally the case that adjusting a single parameter in the force field leads to consistency with

experimental data.

Reweighting after simulating an ensemble with suboptimal force fields

In the case described here we could tune a single parameter in the force field to obtain a good

match between experiment and simulation. This was possible as the elastic network keeps the

structure of the domains rigid, so tuning of λ did not affect the structure of the domains. This

would not be the case for an all-atomic simulation, and hence one would in general have to
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Fig 3. Tuning the protein-water interaction strength of the Martini force field. We varied the protein-water

interaction strength by a factor λ, and calculated w2
r for each dataset (A-D). Vertical grey lines are the values of λ giving

the best fit to the given dataset. No vertical line is given for SANS at 42% D2O as the variation is w2
r is very small. (E)

Average Rg as calculated directly from the simulation. The horizontal red line is the value of Rg determined from the

SAXS data.

https://doi.org/10.1371/journal.pcbi.1007870.g003
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work more to balance parameters in a given force field/prior. Therefore, in the general case

one would need to be able to reweight an ensemble even if it has been performed with a force

field (prior) that leads to substantial deviations from experiments. An interesting question is

therefore, how the reweighted ensemble depends on the prior, i.e. what happens when

reweighting from an unaltered (λ = 1.0), a slightly improved (e.g. at λ = 1.04) and a close to

optimal (λ = 1.06) prior. We note that the altered force fields are improved for this specific sys-

tem only, and may perform worse for other systems.

For the suboptimal prior at λ = 1.04, the fit to SAXS data could be significantly improved by

reweighting, and we achieved a w2
r of 1.0 by reweighting to ϕeff = 56% (Fig 5). Before reweight-

ing, TIA-1 was occasionally in a collapsed state with Rg of 20–25 Å, but most of the time in

more expanded states with Rg up to ~40 Å (Fig 5C). Most structures had calculated Rg below

the experimental value, and the average value was underestimated. However, a considerable

amount of structures with larger Rg ensured that reweighting could be successfully applied.

Fig 4. Results from reweighting the simulation with the optimized force field (λ = 1.06). (A) Fit to SAXS data with adjusted force fields before (black) and after

reweighting at θ = 500 (green). (B) w2
r vs. ϕeff for selection of θ. (C) Rg calculated from structures during the simulation, including the mean value (black),

experimental Rg from SAXS (red), and mean Rg from the reweighted ensemble (green). Corresponding histograms in the right panel. (D) Calculated D13 before and

after reweighting.

https://doi.org/10.1371/journal.pcbi.1007870.g004
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The distribution for Rg shifted significantly after reweighting, but, in contrast to the distribu-

tion for Rg at λ = 1.0 (Fig 2C), there was still a large overlap between the initial and the

reweighted distributions, which was also reflected in the much higher value of ϕeff.

We directly compared the reweighted ensembles from λ = 1.0 (Fig 2), λ = 1.04 (Fig 5) and

λ = 1.06 (Fig 4), as well as additional ensembles generated with λ = 1.08 (S2 Fig) and 1.10 (S3

Fig), by examining the resulting distributions for Rg and D13 (Fig 6). Optimally, the distribu-

tions after reweighting should resemble that from reweighting of the best force field (λ = 1.06).

The reweighted distributions from the unaltered force field (λ = 1.00) differed markedly from

the rest (Fig 6). The reweighted distributions for the good and suboptimal force fields, on the

other hand, were rather consistent, showing that reweighting can be used whenever the force

field is “good enough”. An obvious question is then what “good enough” means. First, the dis-

tributions of some central parameters can be compared before and after reweighting. A large

Fig 5. Results from reweighting the simulation with underestimated protein-water interaction strength (λ = 1.04). (A) Fit to SAXS data with adjusted force field

before (black) and after reweighting at θ = 500 (green). (B) w2
r vs. ϕeff for a selection of θ. (C) Rg calculated from structures during the simulation, including the mean

value (black), experimental Rg from SAXS (red), and mean Rg from the reweighted ensemble (green). Corresponding histograms in the right panel. (D) Calculated D13

before and after reweighting.

https://doi.org/10.1371/journal.pcbi.1007870.g005
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Fig 6. Distributions of Rg (A) and D13 (B) after reweighting. Reweighted from simulations using λ = 1.00 (black), 1.04

(blue), 1.06 (green), 1.08 (brown) and 1.10 (red). Experimental Rg given in (A) as a dotted line.

https://doi.org/10.1371/journal.pcbi.1007870.g006
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overlap (Figs 4 and 5) indicates that the force field is good enough, whereas a small overlap

(Fig 2) indicates the opposite. Second, the value of ϕeff is a good indicator. For the unaltered

force field, we needed to heavily reweight the ensemble to obtain consistency with data, with a

ϕeff of about 1%. For the other force fields, ϕeff varied between 36% (λ = 1.10) and 83% (λ =

1.06). We conclude that the most reliable results could be obtained by altering the force field

before reweighting to obtain a force field that was “good enough”. However, we also note that

the ensemble obtained with the unaltered force field (λ = 1.00) was still considerably improved

by reweighting.

Part II: Information gain from the inclusion of SANS data

In the results described above we used coarse-grained simulations and SAXS data to study the

conformational ensemble of the three-domain protein TIA-1. Because SAXS experiments are

generally sensitive to the overall distribution of mass within the protein, such experiments

may not be able to distinguish, for example, fluctuations of the distance between RRM1 and

RRM2 vs. between RRM2 and RRM3. Using selective protein deuteration and SANS, scatter-

ing from specific domains can, however, be highlighted or dampened. Thus, SANS and con-

trast variation provide additional information to the SAXS data. The question is how much

extra information can be gained considering that SANS data are generally noisier than SAXS

data? In other words, how much are the final reweighted distributions altered by inclusion of

SANS data?

SANS data at different contrast situations carry different structural

information

We used data from three SANS contrasts in the present study, all measured on constructs

from segmental labelling with RRM1 deuterated and RRM23 hydrogenated. The samples were

measured in respectively 0%, 42% and 70% D2O. The sample in 0% D2O contained scattering

contributions from both RRM1 and RRM23, but with RRM1 having significantly higher excess

scattering length density. At 42% D2O, RRM23 was matched out, and the scattering signal

originated solely from the deuterated RRM1 domain. At 70% D2O, RRM1 and RRM23 had

respectively positive and negative excess scattering length densities (contrasts). This is evident

from the p(r) function (Fig 1C) with alternating sign, which can only appear if parts of the

sample have contrast with opposing signs. This contrast is generally considered attractive

because it theoretically contains important information about the internal structure of the pro-

tein. It, however, has forward scattering, I(0), close to zero and generally low scattering inten-

sity in the full q-range. This unfortunately results in a low experimental signal-to-noise ratio,

as clear from the relatively larger experimental errors (Fig 1B) and hence in less information

rich SANS data in practice.

Different optimal values of λ found with SANS than that found with SAXS

Similar to our analysis of SAXS data, we determined the fit to the SANS data for simulations

with varying values of the protein-water interaction strength (Fig 3). Interestingly, the best fit

to the SANS data at 0% D2O was at λ ~ 1.08 and for SANS at 70% D2O it was at λ� 1.08. The

SANS data at 42% D2O were fitted best with the highest tested protein-water interaction

strength of 1.50, but the fit was relatively good at all values (w2
r < 2). As SANS at 42% D2O only

“sees” the RRM1 domain, the result may indicate that this domain is slightly too compact in

the simulation. When optimizing λ against all SANS data, a value of about 1.08 was optimal,

i.e. slightly higher than the value of 1.06 found with SAXS alone. This difference from SAXS
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data may stem from difference in contrast situation, but could also be an effect of D2O being a

different solvent than H2O, such that the samples for SAXS and SANS are not structurally fully

identical. We note, however, that the agreement with the SAXS and SANS obtained with these

two different values of λ were rather similar (Fig 3).

Inclusion of SANS data had only limited effect on reweighted distributions

We proceeded to examine the information in the SANS data by reweighting the simulations.

We reweighted from the simulations with the unaltered force field (λ = 1.00), to monitor the

largest effect of the reweighting protocol. In particular, we reweighted with either the SAXS

data, with each of the SANS datasets, or with all data simultaneously and calculated the distri-

butions of Rg and D13 (Fig 7). The distributions after reweighting were almost identical when

using, respectively, SAXS alone and SANS at 0% D2O alone. Due to the contrast match-out of

the hydrogenated RRM2 and RRM3 domains, the SANS data at 42% D2O had only limited

information about the overall structure of TIA-1, and thus reweighting with this data alone

only shifted the distributions marginally. The SANS dataset at 70% will in principle contain

information about the whole complex, but due to the low signal-to-noise ratio, this

dataset alone was not sufficient to shift the distribution as much as the SAXS data or the SANS

data obtained at 0% D2O. When including all data, the final distributions reflected a mix of the

distributions obtained by using each of the datasets separately. The distribution obtained after

including all data was, however, qualitatively similar to the distribution obtained after

reweighting with SAXS data alone, albeit slightly closer to the initial distribution.

Those results indicate that, for this specific system and data, the SANS data add only limited

extra information about the distributions of Rg and D13 when high-quality SAXS data is

already available. We found that inclusion of the SANS data resulted in a slightly more conser-

vative distribution, i.e. one that is closer to the initial distribution. This was likely because fur-

ther reweighting did not improve the fit to SANS data at 70% D2O, despite improving the fit to

SAXS data and SANS data at 0% D2O. Given the similar results when reweighting against

SAXS data and SANS data measured at 0% D2O, the latter could in principle be used instead of

SAXS data. We note, however, that SAXS instruments are generally more available, have

higher flux and need less sample, so SAXS is in most cases the first method of choice. The

SANS data at 42% on the other hand probes mostly the deuterated RRM1 domain, since

RRM23 are matched out in this experiment. The results from this experiment was fully consis-

tent with what we already know from NMR on RRM1, and does not provide additional infor-

mation about the overall structure and interdomain flexibility of TIA-1. But the contrast could

potentially be highly relevant when studying e.g. how one protein changes shape under influ-

ence of other (matched-out) proteins or RNA molecules, or if the domain had actually

changed conformation. The 70% SANS contrast is particularly relevant for protein/RNA com-

plexes (the original study included also SANS data on the complex between TIA-1 and an

RNA molecule [24]), as RNA is nearly matched out in 70% D2O, and as discussed above it con-

tains, in principle, very useful information about the overall structure, but due to the low sig-

nal-to-noise ratio it only provided limited information on the overall flexibility of TIA-1.

SANS used for cross-validation and determination of θ
The SANS data can also be used to cross-validate the reweighting of SAXS data to prevent

overfitting [7], and estimate the best value of θ, which quantifies the trust in the MD simula-

tion [5]. We thus reweighted trajectories generated using λ of 1.00 and 1.06 using SAXS data,

and monitored the effect of w2
r calculated using SANS data for cross-validation (Fig 8). At λ =

1.00, the SANS data at 42% D2O fitted (as expected) equally well for all values of θ, whereas the
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fit to the two other SANS contrasts were improved along with the improvement to the fit of

SAXS data. That is, the SANS data at 0% and 70% D2O, when combined, carry rather similar

structural information as that contained in the SAXS data. Starting with the simulation that

best fits with SAXS data (λ = 1.06), however, gave a more subtle picture. The SANS at 42%

D2O was again fitted equally well for all values of θ, and this time that was also the case for

SANS data at 70% D2O. However, the agreement with the SANS data at 0% D2O worsened

slightly as the fit to SAXS data improved. This result illustrates that the SANS data contain

some structural information not captured fully by the SAXS data, though additional experi-

ments (such as SAXS measurements of the deuterated samples and in D2O) would be useful to

determine whether these small differences come from differences in sample conditions. The

additional structural information was also reflected in the different optimal values of λ found

in SANS and SAXS (Fig 3).

For λ = 1.04, the agreement with the SANS datasets improved as θ decreased until around θ
= 1000, where the fit to SANS at 0% D2O and at 70% D2O slowly worsened (S4 Fig). Not sur-

prisingly, SANS at 42% again fitted well for all value of θ. Reweighting the simulation at λ =

1.08 showed the same picture as for λ = 1.06, namely that improving the fits to the SAXS data

slightly worsened the fit to the SANS data at 0% D2O (S4 Fig).

Thus, overall our results suggest that the SANS and SAXS data provide similar information

when the initial simulations are far away from the “correct” ensemble. As the simulated

ensemble gets closer to the final ensemble obtained from fitting both λ and reweighting against

the SAXS data, then we find that the SANS data contains a small amount of extra information.

Optimal SANS contrasts

As discussed above, although the SAXS and SANS data are overall consistent, there is some

additional information to be gained from the SANS data. The 42% D2O contrast gives infor-

mation about the RRM1 domain structure, and the data appears to be relatively accurately

described by the NMR structure. The 0% and 70% D2O contrasts pointed towards higher val-

ues of λ, i.e. towards more extended structures, than the SAXS data alone. However, although

this observation suggested some orthogonal information, the SANS data only modestly altered

the final ensembles (after reweighting). This was on one side because SANS data at 0% D2O

and 70% D2O, where all domains were “visible” (i.e. not matched out), carried much of the

same information as the SAXS data, namely information about the overall structure of TIA-1.

Also, SANS data generally had lower signal-to-noise ratio and more limited q-range than

SAXS data, and thus contained less structural information [45,46].

To potentially gain more information from additional SANS contrast, it is worth discussing

the optimal SANS conditions, and what could in principle be gained from them. There are two

major points to be aware of when selecting SANS contrasts in this case. First, SAXS carries

information about the bulk contrast, i.e. where all domains add to the SAXS signal simulta-

neously (Fig 9A). An optimal SANS contrast should therefore avoid such bulk contrast situa-

tions to be complementary to the SAXS data. The second point is the signal-to-noise ratio. An

effective way to increase the signal-to-noise ratio in SANS is to minimize the incoherent back-

ground scattering from H2O in the sample. A relevant contrast situation is therefore obtained

at 100% D2O, where the signal-to-noise ratio can be improved radically, and data quality com-

parable with SAXS data can be obtained, even for challenging protein systems that are difficult

Fig 7. Distributions of Rg (A) and D13(B) after reweighting from unaltered simulation (λ = 1.00) using SAXS and

SANS data. (A) Distribution of Rg and (B) distribution of D13 after reweighting with SAXS alone (red), with SANS at 70%

D2O (black), SANS at 42% D2O (green), SANS at 70% D2O (blue) and with all SAXS and SANS data (yellow).

https://doi.org/10.1371/journal.pcbi.1007870.g007

PLOS COMPUTATIONAL BIOLOGY Combining MD simulations with SAXS and SANS to study multi-domain proteins in solution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007870 April 27, 2020 19 / 29

https://doi.org/10.1371/journal.pcbi.1007870.g007
https://doi.org/10.1371/journal.pcbi.1007870


to express in large quantities [52]. Moreover, to complement the SAXS, one out of three

domains should ideally be matched out, in order to have a contrast situation where only two

domains contribute to the total scattering (Fig 9). As in the original study, this can be obtained

by partial deuteration of one of the domains [53], and assembly by sortase [24]. In practice,

only two of these contrast are easily feasible, as the combination with RRM2 being deuterated

and RRM1 and RRM3 being hydrogenated (Fig 9C) requires two ligation steps in the sortase

protocol [24].

Fig 8. Cross-validation with SANS data. Simulations with either (A–D) λ = 1.00 or (E–H) λ = 1.06 were reweighted against SAXS data at several different values of θ.

Agreement with (A, E) SAXS data after fitting to the SAXS data (red), or cross-validated with SANS at (B, F) 0% D2O (black), (C, G) 42% D2O (green), (D, H) 70% D2O

(blue).

https://doi.org/10.1371/journal.pcbi.1007870.g008
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To investigate the possible information gained from these “optimal SANS data” in 100%

D2O and with one domain matched out, we calculated the theoretical SANS scattering of three

of the distributions in Fig 6. The chosen distributions were qualitatively similar, and came

from reweighting with SAXS data starting from simulations with respectively λ = 1.04, 1.06

and 1.08 force fields. The reweighted ensembles gave equally good fits to SAXS data, as

assessed by the w2
r close to unity. However, there were some minor differences in the underly-

ing ensembles, and the question was whether one with optimally chosen SANS contrast would

realistically be able to probe these differences. We use the notation distribution 1 (reweighted

from the simulation with λ = 1.06), distribution 2 (λ = 1.04), and distribution 3 (λ = 1.08).

As expected and per design, the theoretical SAXS data for the three distributions were very

similar, with only small differences in the residuals (Fig 9A). In the residuals, each theoretical

curve was compared to the one calculated from distribution 1, and divided by the intensity, to

obtain the relative residuals. For SANS with RRM1 matched out (Fig 9B), distribution 3 gave

slightly different scattering, and might be discriminated from the two others if very good

SANS data from a contrast with RRM1 matched out were available. Hence, this contrast is

optimal for mapping out the distribution for the distance between domain RRM2 and RRM3.

The sample with RRM2 matched out (Fig 9C) would, as mentioned above, be the most chal-

lenging sample to prepare. It did however show a significant difference between the scattering

distribution 3 and the two others. This contrast is an optimal choice for measuring the distance

Fig 9. Theoretical SAXS and SANS scattering for reweighted ensembles in Fig 6. Distribution 1 is the reweighted

ensemble from the simulation with λ = 1.06 (green), distribution 2 is from reweighted ensemble from the λ = 1.04

simulation (blue), and distribution 3 is from the λ = 1.08 simulation (brown). (A) SAXS data. (B-D) SANS calculated with

respectively RRM1, RRM2, or RRM3 matched out by perdeuteration to 69% and measured in 100% D2O. Residuals show

the relative difference to the scattering from the distribution reweighted from the simulation with λ = 1.06.

https://doi.org/10.1371/journal.pcbi.1007870.g009
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between RRM1 and RRM3, D13. In the last contrast situation, RRM3 is matched out (Fig 9D).

Here, distribution 2 could best be distinguished from the others, but the relative differences

were rather small and the experiment would have to be optimized to a great extent to make the

distinction. It is the best SANS contrast for measuring the distance between RRM1 and RRM2.

Thus, if SANS data with one or more of these contrast situations were available with a suffi-

ciently good signal-to-noise ratio, the distributions for Rg and the inter-domain distances

could have been determined more precisely, but the overall structural conclusions would not

be altered significantly. For such subtle differences to be useful in a reweighting protocol, the

forward model used to calculate the scattering from coordinates also has to be very precise. In

the present case we expect that a more detailed back-mapping protocol might be necessary

(see Methods and S1 Fig).

Discussion

Reweighting simulations with different force fields

We have shown that an ensemble for TIA-1 obtained from simulations with the latest Martini

coarse-grained force field did not match well SAXS and SANS data. We, however, were able to

obtain ensembles that fitted the data much better by strengthening the protein-water interac-

tions through an adjustment of the force field. The best fit to the SAXS data was obtained at λ
= 1.06, i.e. with about 6% increase of the protein-water interaction strength. For SANS data, a

slightly higher value for the protein-water interaction strength best fitted the data. Further

work on additional proteins is needed to assess whether such 6–8% increase of the protein-

water interaction strength is also applicable to other systems simulated with the Martini force

field. Although perhaps fortuitous, the rescaling is similar in magnitude to the adjustments

seen for some all-atom force field adjusted to simulate proteins with intrinsically disordered

regions [36–38]. For the TIA-1 system, reliable distribution for collective variables such as Rg

and D13 could be obtained from several non-perfect force fields by reweighting against experi-

ments. For these force fields (λ = 1.04−1.10), the reweighted distributions were qualitatively

the same as the reweighted distributions obtained from the best force field (λ = 1.06). This was

also reflected in the obtained values for ϕeff. For λ =1.00 (the unaltered force field), the trajec-

tory needed to be heavily reweighted to a point where ϕeff was less than 1% before a good fit

was achieved. For the force fields that proved to be “good enough”, ϕeff after reweighting to

SAXS data varied between 36% at λ = 1.10 (S2 Fig), and 83% at λ = 1.06 (Fig 4). A good force

field can be recognised by a substantial overlap between the distribution for collective variable

before and after reweighting. This was not the case for the simulation at λ = 1.00 (Fig 2), but

was the case e.g. for λ = 1.04 (Fig 5), and λ = 1.06 (Fig 4). For other systems it might be difficult

to determine what the important collective variables are, and in those cases, ϕeff may still be

utilized to assess the quality of the force field against experimental data, as it measures overlap

between prior and reweighted distribution independently of any choice of parameter.

The value of ϕeff relates to how much the force field needs to be modified so that the ensem-

ble agrees with the data. This, in turn suggests that ϕeff may quantitatively relate to the error of

the force field. Indeed, it can be shown that the relative entropy, S, is proportional to the free

energy difference between two ensembles [54]. Using this formalism and the values of ϕeff

needed to reweight the ensembles sampled at λ = 1.0, 1.04, 1.06 and 1.10 to a w2
r ¼ 1 (ϕeff =

0.4%, 56%, 86% and 36%, respectively) we find that that the force field errors are 5.5 kBT, 0.6

kBT, 0.1 kBT and 1.0 kBT, respectively. The exact interpretation of these estimates is, however,

complicated by the fact that this only says something about how wrong the force field is, as

viewed from the SAXS data, so that the force field could still be wrong even if ϕeff is high. We
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thus suggest that more systems need to be investigated to reach a general rule of thumb for

when a force field is good enough, and what values of ϕeff enable accurate reweighting.

Another important point relates to the different ways one may improve agreement with

experiments. Indeed, here we have both modified the force field (by scaling protein-water

interactions) and reweighted the ensemble sampled with a given force field. Both approaches

can be formulated from a statistical point of view based on Bayesian statistics [5,55], but differ

in whether they have the potential of being transferable to other systems. We note, however,

that when we reweight ensembles after having tuned the protein water interactions we are, in

some sense, using the data twice. As we have recently noted, further studies are needed to

examine the implications of this, and whether approaches can be developed that do so in a sin-

gle framework [5].

Information gain from SANS data on flexible proteins

We analysed the impact of the SANS data on the final distributions of TIA-1, and found that

the SANS data only had little effect on the final distributions for the parameters Rg and D13

that we focused on. We note that these conclusions might differ for other proteins or data, or

indeed for other specific questions on TIA-1. If e.g. the single domain structure was the ques-

tion of interest, then contrast highlighting single domains, such at the SANS 42% contrast,

provides valuable information that is orthogonal to the SAXS data. We suggested some SANS

contrast situations that might provide more information gain from the SANS data, i.e. more

information about the flexibility of TIA-1. Our calculations illustrated that if the differences

between alternative ensembles were subtle or indistinguishable in SAXS, then they will typi-

cally also be rather small in SANS, even at optimal contrast conditions. Therefore, the obtained

SANS data should be of comparable quality with the SAXS data. This can best be obtained if

the incoherent scattering is reduced to a minimum, i.e. with D2O based buffer, though care

should be taken to test whether the conformational ensemble is sufficiently similar in H2O and

D2O. In that case, it might be possible to obtain additional information, so distributions that

could not be discriminated by SAXS alone could be discriminated by a combining of SAXS

and SANS. Our conclusion are thus in line with previous work [47] on phospholipid nano-

discs, that showed that the amount of information gained from measuring SANS data, given a

model refined with SAXS, depends on parameters/questions of interest. In the present work

we confirm and extend this by showing that there is additional information in the investigated

SANS data, but the additional information specifically about the overall structure of TIA-1, in

terms of the distribution for Rg and the inter-domain distances, is limited. Nevertheless, we

highlight that the improvement in agreement with the SAXS data generally mirrors improve-

ment in the SANS data (Fig 3), suggesting that the SANS data may be used to cross-validate

the SAXS-based refinement [7]. NMR paramagnetic relaxation enhancement might provide

an alternative method for cross-validating transient domain-domain interactions [56].

Looking ahead, when aiming to refine an ensemble a good practical process would be first

to do the simulations, and then to collect the SAXS data. The reweighting process with SAXS

data can then be performed immediately after the SAXS data has been collected. If further dis-

criminative power is needed, which of course depends on the question in mind, the more chal-

lenging SANS experiment can be designed. In that way, it is known how good the signal-to-

noise ratio should be in the SANS experiment, and also at what q-values the most marked dif-

ferences appear, such that relevant SANS setting can be chosen.

In their original study, Sonntag et al. [24] showed that when combining SAXS and SANS

data they could determine more precise structural models of TIA-1, including in the presence

of RNA. Here we have built upon that work, focusing only on the free TIA-1, by examining

PLOS COMPUTATIONAL BIOLOGY Combining MD simulations with SAXS and SANS to study multi-domain proteins in solution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007870 April 27, 2020 23 / 29

https://doi.org/10.1371/journal.pcbi.1007870


the conformational heterogeneity of TIA-1 in solution. We have examined what information

is gained from SANS, and in particular what information that comes from each of the individ-

ual SANS contrasts. There are some important differences in the our modelling approach and

in that of Sonntag et al. [24], which are worth highlighting and may well affect the conclusions.

Firstly, we did not include data with RRM23 deuterated and RRM1 hydrogenated [24], as

there was an upturn in the data at low q, which may be due to slight aggregation, or the neu-

tron beam reflecting on the sample surface. This was handled by truncation of data by Sonntag

et al. [24]. Another important difference is that Sonntag et al. [24] searched for single struc-

tures to represent all data at all contrasts, i.e. each structure in their ensemble should fit all

data, whereas we searched for an ensemble that fitted data when integrated. In our approach

the total scattering from the reweighted ensemble fits data, whereas the scattering from indi-

vidual structures in the final ensemble do generally not fit the data. Such an ensemble view

makes it possible to investigate highly entropic systems where large structural variety is

expected [5,6,57], but requires special care to avoid overfitting. Here, we use the BME

approach for this purpose in which we balance information from the experiments with prior

information encoded in the Martini energy function.

Conclusion

We found that the latest Martini coarse-grained force field (version 3.0.beta.4.17) resulted in

structures of the flexible TIA-1 that, as judged by comparison with high-quality SAXS data,

were on average too compact. However, by increasing the protein-water interaction strength

of the force field by about 6%, we achieved a very good agreement with the SAXS data.

Reweighting the data with a Bayesian maximum entropy method further improved the fit.

In general, it cannot be expected that good agreement with data can be obtained by tuning

a single parameter in a force field. Therefore, we also investigated “suboptimal versions” of the

force fields, with 4% to 10% increase of the protein-water interaction strength. We stress that

the term “suboptimal” here and elsewhere refers to the description of the SAXS and SANS data

on TIA-1, and not the more complex problem of optimizing a transferable force field. We

compared the reweighted distributions of the radius of gyration, Rg, and the distance between

domains RRM1 and RRM3, D13 with the reweighted distribution obtained from the “optimal”

force field (with 6% increase of the protein water interaction strength). The reweighted distri-

butions were very similar despite being rather different before reweighting. This illustrated

that the BME reweighting method can be used also for suboptimal force fields. However, if the

protein-water interaction strength was not increased at all, the reweighted simulations differed

significantly from the others and the results were much less robust. In conclusion, the force

field does not have to be perfect, but has to be “good enough”, to obtain reliable results after

reweighting. Whether a given force field is “good enough” can be assessed by the overlap

between the initial and reweighted distribution for central parameters (in this case Rg and

D13), where a substantial overlap is desirable. Moreover, the effective fraction of structures

kept in the reweighted ensemble, ϕeff, should not be too small. For this particular protein sys-

tem, and these particular data, we found that the reweighted distributions were similar after

reweighting when ϕeff was 36% or above. However, more systems need to be investigated to

reach a general rule of thumb for when a force field is good enough.

Despite adding some additional information, we have shown that the structural informa-

tion gain of including SANS data in the reweighting process was limited for this system and

the available SAXS and SANS data. Inclusion of SANS data did not alter significantly the

obtained distributions of the central parameters such as Rg and D13. It might be possible to

increase the signal-to-noise ratio by decreasing the H2O content in the solvent, and thus gain
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more structural information from SANS data. However, in line with previous work [47], we

conclude that SAXS experiments should first be conducted and analysed, and then the SANS

experiment should be carefully designed to fully benefit from the challenging sample prepara-

tion that is required for such SANS experiments with some domains deuterated and some

hydrogenated.

Supporting information

S1 Fig. Test of faster back-mapping protocol. Calculated theoretical form factor P(q) = I(q)/I
(0) for a representative frame after the full back-mapping protocol (black line) and a shortened

back-mapping protocol (green). See Methods section for more details. Residuals show the rela-

tive difference.

(TIF)

S2 Fig. Results from reweighting the simulation with overestimated protein-water interac-

tion strength (λ = 1.08). (A) Fit to SAXS data with adjusted force field before (black) and after

reweighting at θ = 300 (green). (B) w2
r vs. ϕeff for selection of θ. (C) Rg calculated from struc-

tures during the simulation (black), experimental Rg from SAXS (red), and mean Rg from the

reweighted ensemble (green), with corresponding histograms in the right panel. (D) Calcu-

lated D13 before and after reweighting.

(TIF)

S3 Fig. Results from reweighting the simulation with overestimated protein-water interac-

tion strength (λ = 1.10). (A) Fit to SAXS data with adjusted force field before (black) and after

reweighting at θ = 300 (green). (B) w2
r vs. ϕeff for selection of θ. (C) Rg calculated from struc-

tures during the simulation (black), experimental Rg from SAXS (red), and mean Rg from the

reweighted ensemble (green), with corresponding histograms in the right panel. (D) Calcu-

lated D13 before and after reweighting.

(TIF)

S4 Fig. Cross-validation with SANS data. Results of SAXS reweighting (A, E; red) cross-vali-

dated with SANS at 0% D2O (B, F; black), SANS at 42% D2O (C, G; green), SANS at 70% D2O

(D, H; blue). Simulated at (A, B, C, D) λ = 1.04, and (E, F, G, H) λ = 1.08.

(TIF)
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15. Bernadó P, Mylonas E, Petoukhov M V, Blackledge M, Svergun DI. Structural characterization of flexi-

ble proteins using small-angle X-ray scattering. J Am Chem Soc. 2007; 129: 5656–5664. https://doi.org/

10.1021/ja069124n PMID: 17411046

16. Pelikan M, Hura GL, Hammel M. Structure and flexibility within proteins as identified through small

angle X-ray scattering. Gen Physiol Biophys. 2009; 29: 174–189. https://doi.org/10.4149/gpb_2009_

02_174 PMID: 19592714

17. Francis DM, Rózycki B, Koveal D, Hummer G, Page R, Peti W. Structural basis of p38 regulation by

hematopoietic tyrosine phosphatase. Nat Chem Biol. 2011; 7: 916–924. https://doi.org/10.1038/

nchembio.707 PMID: 22057126

18. Bonomi M, Camilloni C, Cavalli A, Vendruscolo M. Metainference: A Bayesian inference method for het-

erogeneous systems. Sci Adv. 2016; 2. https://doi.org/10.1126/sciadv.1501177 PMID: 26844300

19. Huang JR, Warner LR, Sanchez C, Gabel F, Madl T, Mackereth CD, et al. Transient electrostatic inter-

actions dominate the conformational equilibrium sampled by multidomain splicing factor U2AF65: A

combined NMR and SAXS study. J Am Chem Soc. 2014; 136: 7068–7076. https://doi.org/10.1021/

ja502030n PMID: 24734879

20. Delaforge E, Milles S, Bouvignies G, Bouvier D, Boivin S, Salvi N, et al. Large-Scale Conformational

Dynamics Control H5N1 Influenza Polymerase PB2 Binding to Importin α. J Am Chem Soc. 2015; 137:

15122–15134. https://doi.org/10.1021/jacs.5b07765 PMID: 26424125

21. Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink S. The MARTINI Coarse-

Grained Force Field: Extension to Proteins. 2008; 819–834.

22. Martini3beta webpage. [cited 11 Nov 2019]. Available: http://cgmartini.nl/index.php/martini3beta

23. Mahieu E, Gabel F. Biological small-angle neutron scattering: recent results and development. Acta

Cryst D. 2018; D74: 715–726. https://doi.org/10.1107/S2059798318005016 PMID: 30082507

24. Sonntag M, Jagtap PKA, Simon B, Appavou MS, Geerlof A, Stehle R, et al. Segmental, Domain-Selec-

tive Perdeuteration and Small-Angle Neutron Scattering for Structural Analysis of Multi-Domain Pro-

teins. Angew Chemie—Int Ed. 2017; 56: 9322–9325. https://doi.org/10.1002/anie.201702904 PMID:

28636238

25. Wang I, Hennig J, Kumar P, Jagtap A, Sonntag M, Valc J, et al. Structure, dynamics and RNA binding

of the multi-domain splicing factor TIA-1. Nucleic Acids Res. 2014; 42: 5949–5966. https://doi.org/10.

1093/nar/gku193 PMID: 24682828

26. Fiser A, Do RK, Sali A, Fiser A, Kinh R, Do G, et al. Modeling of loops in protein structures. Protein Sci.

2000; 9: 1753–1773. https://doi.org/10.1110/ps.9.9.1753 PMID: 11045621
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