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Abstract

Background: Sex may be an important modifier of brain health in response to risk factors. We compared brain structure and function of older 
overweight and obese women and men with type 2 diabetes mellitus.
Methods: Cross-sectional cognitive assessments and magnetic resonance images were obtained in 224 women and 95 men (mean age 69 years) 
with histories of type 2 diabetes mellitus and overweight or obesity. Prior to magnetic resonance images, participants had completed an average 
of 10 years of random assignment to either multidomain intervention targeting weight loss or a control condition of diabetes support and 
education. Total (summed gray and white) matter volumes, white matter hyperintensity volumes, and cerebral blood flow across five brain 
regions of interest were analyzed using mixed-effects models.
Results: After covariate adjustment, women, compared with men, averaged 10.9 [95% confidence interval 3.3, 18.5; ≈1%] cc greater summed 
region of interest volumes and 1.39 [0.00002, 2.78; ≈54%] cc greater summed white matter hyperintensity volumes. Sex differences could not 
be attributed to risk factor profiles or intervention response. Their magnitude did not vary significantly with respect to age, body mass index, 
intervention assignment, or APOE-ε4 genotype. Sex differences in brain magnetic resonance images outcomes did not account for the better 
levels of cognitive functioning in women than men.
Conclusions: In a large cohort of older overweight or obese adults with type 2 diabetes mellitus, differences in brain volumes and white matter disease were 
apparent between women and men, but these did not account for a lower prevalence of cognitive impairment in women compared with men in this cohort.
Trial registration: NCT00017953.
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The prevalence of cognitive impairment may differ between women 
and men depending on age and other risk factors (1,2). Type 2 dia-
betes (T2DM) and midlife obesity may account for some of this. 
These conditions independently increase risks for cognitive impair-
ment (3,4) and they disproportionately affect women more than men 
(5,6). Despite this, in the large Action for Health in Diabetes (Look 
AHEAD) cohort of overweight or obese adults with T2DM, ages 
55–87 years, the prevalence of cognitive impairment (mild cognitive 
impairment or dementia) has been reported to be markedly lower 
among women than men: adjusted odds ratio of 0.55 [95% confi-
dence interval 0.43, 0.71] (7).

A subset of this cohort underwent brain magnetic resonance 
imaging (MRI) to assess brain structure and cerebral blood flow 
(CBF). We examined whether women and men differed in brain 
volumes, white matter hyperintensity (WMH) volumes, and CBF 
and, if so, whether these aligned with differences seen for cogni-
tive impairment. T2DM is associated with impaired brain struc-
ture and function (8,9) and obesity is associated with reduced CBF 
and microvasculature damage (10,11), however it is not known 
whether sex differences in brain structure and function are evident 
among older adults with both conditions. Across other cohorts, dif-
ferences between sexes in rates of brain atrophy and the presence 
of white matter disease are inconsistent (1,12,13). Studies are more 
consistent in finding that CBF tends to be greater among women 
than men (13–15).

We also examined whether sex differences in brain structure and 
function were associated with relative imbalances in risk factors. 
Some risk factors may be more potent in one sex than the other (eg, 
APOE-ε4 in women), some may be more common in one sex than 
the other (eg, smoking in men), and some risk factors may be par-
ticular to one sex (eg, menopause) (1,16,17).

Methods

The Look AHEAD trial design and methods have been published 
(18,19). It was a multicenter, single-blinded randomized controlled 
trial that recruited 5,145 volunteers during 2001–2004 with T2DM, 
ages 45–76  years, and with body mass index (BMI) greater than 
25  kg/m2 (>27  kg/m2 if on insulin). Study protocols and consent 
forms were approved by Institutional Review Boards.

Interventions
Participants were randomly assigned to a multidomain Intensive 
Lifestyle Intervention or a Diabetes Support and Education com-
parator, which continued until 2012 (19). Intensive Lifestyle 
Intervention group and individual sessions focused on diet modi-
fication and increased physical activity to induce and maintain 
at least 7% average weight losses (20). Diabetes Support and 
Education group sessions focused on improving diet, physical ac-
tivity, and social support (21).

Brain Magnetic Resonance Imaging
Participants from three Look AHEAD clinics who had no contra-
indications and who provided separate informed consent under-
went brain MRI. Images were acquired 10–12  years from Look 
AHEAD enrollment. These clinics had originally enrolled 999 par-
ticipants. By the start of the MRI study, 77 had died (9.8% of males 
and 6.3% of females, p = .04). Of the 922 survivors, 319 (26% of 
males and 40% of females: p < .001) ultimately provided study 
MRIs for volumes; 310 (97%) MRIs met quality control standards 
for CBF assessment (22).

Standard protocols were used for brain tissue segmentation 
and region of interest (ROI) labeling for volumes and ROI-specific 
WMH volumes (23–25). CBF was assessed with multiphase 
pseudocontinuous arterial spin labeling with background suppres-
sion for labeling the endogenous blood water (26), and expressed in 
units of mL/100 g/min, which includes an adjustment for local gray 
matter voxel occupancy. Measures from five nonoverlapping ROIs 
were analyzed: frontal, occipital, parietal, and temporal lobes and 
the limbic region (ie, the frontal cingulate, parietal cingulate, insula, 
and perirhinal cortex) (22).

Cognitive Function
Cognitive assessments were performed by centrally trained and cer-
tified staff (27). Verbal learning and memory were assessed with 
the Rey Auditory Verbal Learning Test, speed of processing and 
working memory were assessed with the Digit Symbol Coding test, 
executive functions were assessed with the Modified Stroop Color 
and Word Test and the Trail Making Test-Part B, attention was as-
sessed with the Trail Making Test-Part A, and global cognitive func-
tioning was assessed with the Modified Mini-Mental Status exam. 
Administrations occurred within an average of 19  days of MRI. 
Scores were z-transformed and ordered so higher scores reflected 
better performance. A composite measure was the average z-score 
across tests (27).

Other Measures
Demography, lifestyle, and medical history were assessed by self-
report (18). Prescription medications were verified and weight and 
blood pressure were measured annually. Fasting blood specimens 
were analyzed centrally, annually for 4 years and every other year 
thereafter. For participants providing consent, TaqMan genotyping 
for the rs7412 and rs429358 single-nucleotide polymorphisms was 
used to assign APOE-ε4 allele status.

Statistical Analysis
Characteristics of women and men at their most recent assessment 
prior to MRI were compared using chi-square and t-tests. Mixed 
effects models (22,28), controlling for intraindividual correlations 
among ROIs, were used to estimate ROI-specific and summed vol-
umes and WMH volumes using linear contrasts. These models were 
also used to estimate ROI-specific and across-ROI mean CBF. The 
distributions of WMH volumes were skewed. To preserve additivity 
for summing means, we did not use data transformations to improve 
the symmetry of WMH distributions, however parallel analyses 
using offset logarithmic transformations yielded similar findings. 
Clinic site and interactions between ROIs and both intervention as-
signment and age were included as covariates in models. An inter-
action between ROIs and intracranial volume was additionally 
included as a covariate for ROI volumes: this allows relationships 
that volumes have with intracranial volume to vary among ROIs, 
which were markedly different (p < .001). Owing to an imbalance 
by sex in diastolic blood pressure, and for consistency with prior 
reports (22), most recent systolic and diastolic blood pressure were 
included as covariates in analyses of CBF. ROI volume was not in-
cluded as a covariate when analyzing CBF because it was unrelated 
(p = .98).

The risk factors that we considered as potential explanators of 
sex differences were chosen from those examined in earlier Look 
AHEAD publications (7,22,23). We additionally examined use of 
biguanides, statins, and aspirin as potential modifiers. Adding BMI 
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at the time of Look AHEAD enrollment as a covariate did not affect 
results, so it was not included.

We examined the consistency of sex-related differences across sub-
groups formed by current age, most recent BMI, APOE-ε4 carrier status, 

and intervention assignment using tests of interactions. Associations 
that measures had with cognitive function scores were assessed with 
mixed effects models. Inverse probability modeling was used to assess 
the sensitivity of findings to missing data (Supplementary Exhibit 1).

Table 1. Characteristics at the Most Proximal Assessment Prior to MRI: Mean (Standard Deviation) or N (Percent) 

Characteristic Women N = 224 Men N = 95 p-value

Age at MRI 69.0 (6.6) 69.3 (6.0) .75
Years, Look AHEAD enrollment to MRI 10.4 (0.3) 10.4 (0.5) .97
Intervention assignment    
 Diabetes Support & Education 114 (50.9%) 41 (43.2%) .21
 Intensive Lifestyle Intervention 110 (49.1%) 54 (56.8%)
Race/ethnicity   <.001
 African-American 62 (27.7%) 8 (8.4%)
 Non-Hispanic white 150 (67.0%) 83 (87.4%)
 Other, multiple 12 (5.4%) 4 (4.2%) 
Education   .002
 High school 46 (20.5%) 8 (8.4%)
 College graduate 84 (37.5%) 28 (29.5%)
 Post college 86 (38.4%) 57 (60.0%)
 Other 8 (3.6%) 2 (2.1%)
Alcohol intake at baseline, miss = 85   <.001
 None 90 (58.4%) 24 (30.0%)
 <1 drink per day 55 (35.7%) 43 (53.8%)
 ≤2 drinks per day 9 (5.8%) 13 (16.2%)
 Mean drinks/wk over follow-up 1.4 (2.2) 3.9 (4.4) <.001
BMI, kg/m2

 Most recent assessment 33.6 (5.8) 32.7 (4.2) .18
 Percent change from baseline −6.7 (9.4) −4.1 (8.5) .02
Blood pressure, mmHg
 Systolic
  Most recent assessment 130.0 (18.7) 128.4 (16.9) .48
  Change from baseline 1.2 (19.9) −2.2 (18.2) .15
 Diastolic
  Most recent assessment 66.3 (9.5) 69.5 (7.6) .004
  Change from baseline −5.5 (8.4) −1.6 (9.6) <.001
Current medication use
 Insulin 13.8% 9.4% .31
 Biguanides 59.2% 56.5% .67
 Statins 48.6% 59.8% .07
 Aspirin 36.8% 46.1% .14
 Antihypertensive medications 83.4% 88.4% .25
Duration of diabetes, miss = 3   .76
 <5 years 47.1% 48.9%
 ≥5 years 51.1% 51.1%
HbA1c, %
 Most recent assessment 7.47 (1.55) 7.10 (1.28) .047
 Change from baseline 0.15 (1.52) −0.15 (1.20) .08
 Most recent assessment < 6.5% 15.2% 21.8% .19
APOE-ε4, alleles, miss = 38
 None 144 (73.1%) 66 (78.6%) .33*
 1 51 (25.9%) 18 (21.4%)
 2 2 (1.0%) 0 (0.0%)
Years from menopause to MRI, miss = 22
 0–9 11 (5.4%) NA  
 10–19 75 (37.1%)
 20+ 116 (57.4%)
Postmenopausal hormone therapy
 Never 104 (46%) NA  
 Ever 120 (54%)

MRI = magnetic resonance images.
*Carriers versus noncarriers.
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Results

Table 1 describes sex differences in factors known or suspected to be 
related to brain MRI outcomes. Compared with men, women were 
more likely to be African American, have less formal education, and 
consume less alcohol. Women and men had similar BMIs, however 
women had lost a significantly greater percentage of BMI during the 
trial. Compared with men, they had lower diastolic blood pressures 
and greater declines in diastolic blood pressure since baseline, and 
slightly higher HbA1c levels, but similar durations of diabetes.

Table 2 lists results from mixed effects models assessing sex 
differences in summed ROI-specific volumes, WMH volumes, and 
mean and ROI-specific CBF. Women had a relatively greater mean 
(standard error, [95% confidence interval]) difference in summed 
volumes across the five ROIs of 10.9 (3.9, [3.3, 18.5]) cc (ie, about 
1%). Their frontal and parietal lobe volumes were larger (95% per-
cent confidence intervals for sex differences excluded zero). The 
mean difference in summed WMH volumes between women and 
men was 1.39 (0.71, [0.00002, 2.78]) cc (ie, about 54%), with con-
fidence intervals excluding zero for the same two lobes. Mean CBF 
across ROIs was slightly greater among women than men, however 
the 95% confidence interval for its overall difference did not exclude 
zero: 2.44 (1.57, [−0.64, 5.50]) mL/100 g/min.

Overall, estimated sex differences from models fitted with in-
verse probability weighting (Supplementary Exhibit 2) were similar 
to those without weighting.

Figures 1A–C portray the cumulative distributions of covariate-
adjusted summed ROI and WMH volumes and mean CBF by sex. 
The distributions of summed ROI volumes and mean CBF for women 
were shifted toward greater values throughout most of the range.

Additional covariate adjustment for education, race/ethnicity, 
most recent and change in diastolic blood pressure, baseline and 
on-trial alcohol intake, most recent HbA1c, and change in BMI from 
baseline (sex differences in Table 1) did not materially affect results, 
as portrayed in Supplementary Exhibit 2. The confidence intervals 
for mean differences in summed ROI volumes and WMH volumes 
with additional covariate adjustment continued to exclude zero: 
mean 14.7 (5.0, [4.9, 24.7]) and mean 1.41 (0.71, [0.02, 2.81]), re-
spectively; See Supplementary Exhibit 3). The confidence interval for 
CBF did not: mean 2.24 (1.65, [−1.01, 5.48]).

We examined whether sex differences in MRI outcomes varied by 
age and most recent BMI (with cut points 70 years and 35 kg/m2), inter-
vention assignment, and APOE-ε4 status (carrier vs noncarrier) using 
tests of interactions (Supplementary Exhibit 4). None reached nominal 
statistical significance (all p ≥ 0.08), however power was limited.

Table 3 portrays sex differences in cognitive function test scores, 
without and with adjustment for the MRI outcomes. Women tended 
to outperform men on the Rey Auditory Verbal Learning Test imme-
diate and delayed memory tests and in composite cognitive function. 
Covariate adjustment for all MRI outcomes did not materially at-
tenuate differences between sexes seen for any cognitive test without 

Table 2. Mean Covariate-Adjusted ROI Volume, WMH Volume, and CBF by Sex

Region Volumes (cc)† Mean (SE) Mean Difference: Women Minus Men

 Women Men Mean (SE) 95% CI

Sum over ROIs 900.8 (1.8) 890.0 (3.0) 10.9 (3.9) [3.3, 18.5]*
Frontal lobe 363.0 (1.1) 356.4 (1.9) 6.6 (2.4) [1.8, 11.4]*
Limbic region 34.4 (0.2) 34.8 (0.3) −0.5 (0.4) [−1.2, 0.3]
Occipital lobe 120.3 (0.4) 119.9 (0.8) 0.3 (1.0) [−1.6, 2.2]
Parietal lobe 177.8 (0.6) 172.3 (1.1) 5.5 (1.3) [2.8, 8.1]*
Temporal lobe 205.2 (0.5) 206.3 (0.9) −1.0 (1.1) [−3.3, 1.2]

Region WMH volumes (cc)‡ Mean (SE) Mean Difference: Women Minus Men

 Women Men Mean (SE) 95% CI

Sum over ROIs 3.97 (0.39) 2.58 (0.59) 1.39 (0.71) [0.00002, 2.78]*
Frontal lobe 1.82 (0.17) 1.14 (0.26) 0.69 (0.31) [0.06, 1.30]*
Limbic region 0.023 (0.009) 0.022 (0.009) 0.001 (0.001) [−0.000, 0.002]
Occipital lobe 0.30 (0.02) 0.33 (0.04) −0.03 (0.04) [−0.12, 0.06]
Parietal lobe 0.93 (0.12) 0.47 (0.18) 0.46 (0.22) [0.03, 0.89]*
Temporal lobe 0.87 (0.10) 0.60 (0.16) 0.28 (0.19) [−0.09, 0.64]

Region CBF (mL/100 g/min)§ Mean (SE) Mean Difference: Women Minus Men

 Women Men Mean (SE) 95% CI

Overall mean 51.10 (0.85) 48.65 (1.30) 2.44 (1.57) [−0.64, 5.50]
Frontal lobe 47.69 (0.96) 45.73 (1.46) 1.96 (1.77) [−1.43, 5.44]
Limbic region 54.17 (1.00) 53.48 (1.52) 0.70 (1.84) [−2.92, 4.32]
Occipital lobe 56.30 (1.08) 50.69 (1.65) 5.63 (1.99) [1.71, 9.55]*
Parietal lobe 50.26 (1.06) 47.88 (1.61) 2.37 (1.95) [−1.46, 6.21]
Temporal lobe 46.67 (0.89) 45.10 (1.35) 1.57 (1.64) [−1.66, 4.80]

Notes: Interactions between sex and ROIs: volume (p < .001), WMH volume (p = .050), CBF (p = .005). CBF = cerebral blood flow, ROI = regions of interest, 
WMH = white matter hyperintensity.

*Confidence interval excludes 0.
†Adjustment for clinic and interactions of ROIs with intracranial volume, intervention assignment, and age.
‡Adjustment for clinic, ROI volumes, and interactions of ROIs with age and intervention assignment.
§Adjustment for clinic, systolic and diastolic blood pressures, and interactions of ROIs with age and intervention assignment.
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this adjustment (and confidence intervals indicating relatively better 
performance for women on the Modified Mini-Mental State Exam 
and Digit Symbol Coding tests now excluded zero). In models 
including all three MRI outcomes as predictors, summed ROI vol-
umes were positively associated with performance on the Digit 
Symbol Coding, Stroop, and Trails A and B tests and composite cog-
nitive function. Summed WMH volumes were inversely associated 
with performance on Rey delayed recall, the Digit Symbol Coding 
test, and composite cognitive function. Average CBF was inversely 
associated with the Trails-A test.

Discussion

Our analysis comparing brain MRI outcomes of older overweight 
and obese women and men with T2DM who were volunteers for a 
clinical trial of multidomain lifestyle intervention yielded three prin-
cipal findings. First, across the five ROIs we examined, women had 
relatively greater adjusted summed ROI and WMH volumes and 
slightly (but overall not significantly) greater mean CBF. Second, 
these sex differences could not be attributed to imbalances in the risk 
factors we examined and did not vary significantly by age, obesity 
level, intervention assignment, and APOE-ε4 carriage. Third, al-
though women tended to outperform men on tests of memory and 
composite cognitive function, these differences could not be attrib-
uted to differences in MRI outcomes.

Sex Differences in MRI Outcomes
There is considerable heterogeneity among studies of sex differences 
in brain volumes, with some reporting women having relatively 
smaller brain volumes (29), smaller amygdalar and hypothalamic 
ROI volumes (30), and larger hippocampal volumes (31), however 
the reasons for any differences are unclear (32). The degree to which 
T2DM and obesity may differentially affect women’s and men’s 
brain volumes is unknown. Our findings align with several past re-
ports that global CBF is consistently higher in women than in men 
(13–15), although this trend did not reach nominal levels of statis-
tical significance when averaged across the five ROIs.

Independence of Sex Differences From Risk Factor 
Imbalances and Subgrouping
Sex differences in MRI outcomes did not appear to be affected by trad-
itional risk factors such as blood pressure, obesity level, alcohol intake, 
or measures of glycemic control, nor by changes in these risk factors 
over the prior ten years. Among women, the MRI outcomes were 
not associated with years from menopause or prior use of hormone 
therapy after controlling for age. Differences did not vary significantly 
between subgroups based on age, BMI, and intervention assignment.

We were surprised that APOE-ε4 did not attenuate differences 
between women and men with respect to any of the MRI outcomes. 
Although trends did not reach statistical significance, compared with 
women, men carrying APOE-ε4 tended to have even worse ROI and 
WMH volumes and lower CBFs than seen for sex difference compari-
sons among noncarriers. APOE-ε4 in women, compared with men, 
has been shown to lead to steeper declines in cognitive function, in-
creased risks for Alzheimer’s disease, and altered brain connectivity 
(2,33,34). Among those with mild cognitive impairment, APOE-ε4 
alleles are more strongly associated with lower hippocampal vol-
umes among women compared with men (35). However, the rela-
tionship between APOE genotype and cognition may be altered 
among individuals with T2DM, for example APOE-ε2 may not be 
protective (36).

Sex Differences in Cognitive Function
Women outperformed men in tests of memory and overall composite 
cognitive function in this subset of the Look AHEAD cohort, simi-
larly as seen in the full cohort (35). This is consistent with reports 
from many studies of adults. Although overall, cognitive functions 
had modest associations with summed ROI volumes, these did not 
appear to account for sex differences in cognitive function. Perhaps 
this is because the MRI outcomes were cross-sectional and did not 
capture the dynamic and possibly indirect nature of relationships 
that brain structure and function have with cognitive function. 

Figure 1. Cumulative distribution of (A) adjusted summed brain volumes, (B) 
summed white matter hyperintensity volumes, and (C) mean cerebral blood 
flows by sex.
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However, this inability to attribute sex differences in cognitive func-
tion to differences in MRI outcomes provides some support to the 
hypothesis that the underlying mechanisms most important to the 
sex differences in cognitive function are not strongly related to the 
MRI outcomes we examined. We note, however, that we did not 
examine subregions (eg, hippocampus), measures of microstructure 
(eg, with diffusion tensor imaging), or other physiologic measures 
(eg, default mode network).

Implications of Findings
Our findings here and in our prior report of the markedly lower rate 
of cognitive impairment among Look AHEAD women compared 
with men (7) provide several insights. First, sex differences in both 
the measured MRI outcomes and cognitive impairment could not 
be attributed to differences in the profiles of the traditional risk fac-
tors that were assessed. They also were unrelated to achieved weight 
loss or assignment to the Look AHEAD multidomain intensive life-
style intervention, even though this was associated with larger brain 
volumes, smaller WMH volumes, and greater overall CBF (22,23). 
As noted earlier, although sex differences in cognitive function were 
evident, these were not attributable to MRI structural measures and 
CBF, although power may have been limited. In particular, women 
tended to outperform men cognitively, particularly on memory tasks, 
despite greater volumes of WMH. Presence of APOE-ε4 alleles ap-
peared to attenuate differences in cognitive impairment (7), but had 
no effect on sex differences in MRI outcomes.

In total, these findings suggest that the relatively better cognitive 
functioning and less cognitive impairment we observed among older 
women with T2DM may not be driven by mechanisms closely linked 
to global measures of cerebrovascular disease or brain atrophy, but 
perhaps to other protective mechanisms that may be countered by 
the APOE-ε4 genotype. APOE-ε4 disrupts brain insulin signaling, is 
associated with greater levels of neuroinflammation and gliosis, and 
alters fatty acid delivery to the brain (35). There is some evidence 
that these effects are stronger in women (2,37).

Riedel and colleagues (2) hypothesize that the APOE-ε4 posi-
tive brain is more dependent on ketone-based energy metabolism 
(to augment glucose-based metabolism), and that in women, by sup-
pressing the ketogenic system, estrogen may adversely affect brain 
function in APOE-εε4 carriers compared with noncarriers. Thus, 
the increased levels of endogenous estrogens associated with over-
weight and obesity in Look AHEAD women may have adversely 
affected the energy metabolism of APOE-ε4 carriers compared with 
non-carriers. This metabolic pathway may have acted on cognitive 
function somewhat separately from the MRI outcomes we describe.

Limitations
Differential follow-up and missing data may have biased our re-
sults: although supporting analyses do not point to any large effects, 
we cannot rule out the potential that unmeasured factors may have 
introduced biases. Analyses were not prespecified and should be 
considered exploratory: to emphasize this we primarily report con-
fidence intervals rather than results from inference, however these 
are not adjusted for multiple comparisons. Our MRI measures were 
limited to brain volumes, WMH, and CBF, and we cannot rule out 
that sex differences in subregions, microstructure, or brain networks 
could explain sex differences in cognitive performance. The sex dif-
ferences with respect to brain volumes, while statistically significant, 
were small. The cohort, as eligible volunteers for a clinical trial, may 

not represent general populations. Power was limited for assessing 
differences in MRI outcomes among some subgroups. Analyses were 
based on cross-sectional relationships.

Summary

In a cohort of overweight and obese adults with T2DM, compared 
with men, women tended to have greater levels of subclinical cere-
brovascular disease, but larger brain volumes and, perhaps, mod-
estly greater CBF. We could not account for these differences with 
traditional risk factors. These sex differences in brain structure and 
blood flow did not appear to account for the lower prevalence in of 
cognitive impairment in women compared with men in the cohort.

Supplementary Material

Supplementary data are available at The Journals of Gerontology, 
Series A: Biological Sciences and Medical Sciences online.
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