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Abstract

Functional RNA structures are prevalent in viral genomes, and have been shown to play roles in 

almost every aspect of their biology. However, the majority of viral RNA remains structurally 

uncharacterized. This is likely to remain true as the cost of sequencing decreases much faster than 

the cost of structural characterizations. Because of this, there is a need for rapid, inexpensive 

methods to highlight regions of viral RNA which are ideal candidates for structure-function 

analyses. The ScanFold method was developed as a single sequence alternative to traditional RNA 

structural motif pipelines, which rely heavily on well curated sequence alignments to identify 

conserved RNA structures. ScanFold focuses on identifying (based on their more stable than 

expected folding energies) the most likely functional structures encoded within a single large RNA 

sequence, while allowing predicted motifs to be tested for evidence of structural conservation later. 

Decoupling these processes can be a benefit to researchers studying viruses lacking the ideal 

phylogenetic depth to yield evidence of structural conservation. Here, we demonstrate how the 

most significant ScanFold predicted structures correspond to higher base pairing probabilities, 

SHAPE reactivities, and predict known functional structures within the ZIKV and HIV-1 genomes 

with accuracy. Best practices and examples are also shown to aid users in utilizing ScanFold for 

their own systems of interest. ScanFold is available as a Webserver or can be downloaded (https://

github.com/moss-lab/ScanFold) and run locally.

1. Introduction

The genomic era, ushered in by advancements in high-throughput sequencing (HTS) 

technologies, has been marked by an explosion of DNA and RNA sequences available to 

researchers around the world. To date, around 9000 complete viral reference genomes have 

been annotated in NCBI, with still more being assembled every year. This highlights a major 

achievement of molecular biology as well as a major challenge to overcome, as most of the 

RNA derived from (or constituting) these sequences require further characterization. 

Typically, RNA structural characterization (to identify functional RNA structure) involves a 

combination of thermodynamic, phylogenetic, and experimental analyses; a small fraction of 

which ultimately results in the identification and atomic scale characterization of functional 
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RNA motifs. Given the sheer quantity of sequences available and the costly resources 

required for detailed RNA characterization, there is a need for rapid and inexpensive 

computational methods to guide researchers to regions of interest for further experimental 

analysis.

It is well known that viral genomes encode functional RNA structures, which play roles in 

transcription [1, 2], splicing [3, 4], translation [5–7], replication [8, 9], or evading immune 

response [10–12], for example. Much of the viral RNA structural landscape, however, 

remains uncharacterized. Determining which regions of a viral genome encode potentially 

functional motifs is an ongoing challenge. Computational motif discovery pipelines (such as 

RNAz [13, 14], EvoFold [15], CMfinder [16] and GraphClust [17]) are powerful methods 

for deducing functional motifs, which can lead to the identification of functionally 

significant RNA motifs. For example, RNAz was previously used to deduce motifs in 

influenza A virus [18], which were important to viral fitness via the regulation of viral 

mRNA splicing [19]. At the heart of each method is the identification of genomic regions 

that have unusual thermodynamic stability and structural conservation. As conservation is an 

essential component of each approach, they require previously determined multiple 

sequence alignments (or multiple sequences with sufficient variations [16, 17]) to identify 

regions of interest [13–15]. Structural conservation, whereby mutations to primary sequence 

preserve secondary structure, is a powerful line of evidence for the functional significance of 

a motif (thus evolution is working to preserve base pairing [20]); additionally, such 

mutations can serve as a check on secondary structure modeling [21] or be used to improve 

structural prediction quality [22]. Several motif discovery pipelines (e.g. RNAz) also attempt 

to find evidence that a motif’s sequence has been ordered to fold into a more stable 

secondary structure—a property that can be determined by calculating the ΔG° z-score [23]; 

where more negative values suggest sequences that are more stable than expected (based on 

their sequence composition). Here, the z-score is calculated by comparing the predicted 

minimum free energy (MFE) ΔG° of a sequence to the average ΔG° of matched randomized 

sequences with the same nucleotide (or dinucleotide) content, then normalizing by the 

standard deviation of all values. Thus, the z-score measures the number of standard 

deviations more stable a sequence is vs. random.

Motif discovery pipelines that rely on sequence alignments are highly dependent on the 

alignment quality (must deduce structural homology on top of a robust sequence homology) 

and require enough variation to deduce informative consistent (point mutations that preserve 

base pairing) and compensatory mutations (double point mutations that preserve base 

pairing). In practice this is optimal when overall sequence conservation for an alignment is 

approximately 80%. This is not always achievable, either due to lack of sequences, or lack of 

variation (i.e, high conservation). An alternative to using fixed alignments is to 

simultaneously optimize both the prediction of secondary structure and the alignment, then 

use these predictions in motif discovery. Such a fold-and-align approach is implemented in 

the Multifind program [24], which can improve prediction quality for more divergent 

sequence (< 60% conservation) by using structure homology to help deduce sequence 

homology. This, however, comes at the price of increased computational expense and 

reduced speed.
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For alignment-based approaches to succeed, the alignment quality is essential. This presents 

particular challenges for the analysis of viral genomes. Sequence variation can vary greatly 

across genomes: e.g. regions encoding antigenic proteins can be hyper-variable (to escape 

host immunity) vs. structural genes, which evolve more slowly. Thus, one whole-genome 

alignment may not perform equally well for all regions. Conversely, there can be regions 

with little or no variation in sequence, which reduces or eliminates the value of phylogenetic 

sequence/structure analysis (as no informative sequence changes occur). Another issue is the 

variation in representation of sequence data. Some sequences are over-represented in 

databases: e.g. due to their importance in vaccine development, genes encoding antigenic 

proteins tend to be sequenced at a higher frequency than other genes. Similarly, some strains 

of viral genomes (e.g. pathogenic strains) may be over-represented and can bias results 

toward finding motifs that may, potentially, only be present/conserved in those strains.

In total, these limitations make finding viral motifs from genome alignments challenging. 

This was the impetus for the development of an alternative approach, where the analysis of 

RNA secondary structure is decoupled from the analysis of conservation. ScanFold was 

developed as a single-sequence, complementary approach to traditional RNA structural 

motif discovery [25]. In the ScanFold approach [25] the discovery pipeline is divided into 

two stages. In the first stage (ScanFold–Scan) individual viral genomes are analyzed using a 

sliding prediction window to predict MFE structure, energy, z-score and other useful 

structural metrics. These scans provide valuable information on regional variations in 

stability, accessibility and propensity for forming defined RNA structure. While secondary 

structures are predicted for each window, these are simply single sequence folding 

predictions, which have limited accuracy [22, 26]. Furthermore, the same nucleotides can be 

paired quite differently in each overlapping window; resulting in multiple alternative 

structural hypotheses to consider. This highlights a limitation common to all scanning 

window methods: both the structure and extent of a motif are difficult to define.

Both limitations are addressed in the second stage; here ScanFold–Fold condenses the 

results of ScanFold–Scan into an informative structural map annotated with unique local 
structures comprised of base pairs that are more stable than expected. ScanFold’s key 

strength is its ability to reduce the noise of computational approaches and point researchers 

to potentially functional structures, which are also most likely to be accurately predicted. 

These motifs can then be further analyzed for their conservation; some may be unique to the 

sequence analyzed or only conserved in closely related strains, however, in other cases 

deeply-conserved motifs can be deduced. Significantly, the phylogenetic analysis can be 

taken to whatever limit the researcher is interested in. Additionally, identified motifs can be 

compared to available experimental data (e.g. chemical mapping results) to check their 

accuracy or such results can be used directly within the scanning steps to guide prediction.

To demonstrate the overall utility of ScanFold, we compare the results of our previous work 

[25] using ScanFold to analyze the HIV-1 and ZIKV viral genomes to two of the most 

widely used single sequence techniques: RNAplfold [27] and RNAfold [28]. Both 

RNAplfold and RNAfold are capable of conducting rapid structural characterizations of 

large RNA sequences (such as viral genomes). RNAplfold utilizes a scanning window 

partition function to compute the average pairing probability for each nucleotide in a 
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genome and can be used to characterize the overall accessibility of local regions in RNA 

molecules [29–31]. RNAfold (version 2.3.3) is the underlying folding algorithm used during 

the ScanFold scanning window analysis, has been extensively benchmarked against 

experimental data, and is one of the top performing (and most widely used) RNA folding 

algorithms. Each of these programs is used to characterize the HIV-1 genome, and results 

are compared against SHAPE reactivity data. Here, we find that the most significant 

ScanFold results performs as well as these techniques and can not only home in on the 

known and conserved functional structures of HIV-1 and ZIKV [25], but also correlates with 

regions where computational predictions are more accurate.

2.1 Overview of the ScanFold pipeline

The ScanFold pipeline consists of two main scripts (available at https://github.com/moss-lab/

ScanFold): ScanFold–Scan performs the initial scanning window analysis on the input 

sequence and ScanFold–Fold compiles the results of the scan to highlight structures that 

were consistently more stable than expected throughout the scan. These two scripts are also 

combined as a single process and made accessible as a webserver at https://

mosslabtools.bb.iastate.edu/node/add/scanfold.

The scanning window analysis performed by ScanFold–Scan will divide the input sequence 

into multiple overlapping windows and calculate four folding metrics for each: (1) the 

minimum free energy (MFE) ΔG°, which predicts the secondary structure and energy of the 

most stable base pairing arrangement; (2) the ΔG° z-score, which determines if the native 

MFE ΔG° is more stable than expected by comparing it to those calculated for shuffled 

versions of the sequence (Eq. 1); (3) A p-value for the ΔG° z-score, calculated as the fraction 

of random ΔG° values more stable than random; (4) the ensemble diversity (ED), which 

suggests whether the sequence has a propensity of adopting multiple distinct secondary 

structures (high ED values) or has a propensity of adopting secondary structures which are 

structurally similar (low ED values) [32].

ΔG°z − score  = MFEnative  − MFErandom 
σ #Eq. 1

ScanFold–Fold compiles these metrics and generates a list of all stable base pairs and the 

average metrics observed for each nucleotide of the input sequence. From this list, the most 

likely arrangement is chosen for each nucleotide, until a single consensus model is built for 

the input sequence. The algorithm chooses the arrangement that appeared most often for the 

nucleotide and yielded the lowest average ΔG° z-score (Zavg; Eq. 2); this process led to the 

most accurate models of known functional structures in the HIV-1 and ZIKV genomes [25].

Zavg = Sum of ΔG°z − scores per base pair
Number of windows per base pair #Eq. 2

The resulting output can be curated to generate maps for structural inference; on the 

ScanFold webserver, results are output directly to the Integrative Genomics Viewer (IGV) 

[33] web application (Fig. 1), which depicts the most significant base pairs as arc diagrams 
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[34] and their Zavg scores (Fig. 1a and 1b) alongside the input sequence and values of 

metrics calculated for each window (Fig. 1c to 1f). Here, base pairs are color coded based on 

their Zavg scores, and panel “g” shows the predicted structural model of the highlighted 

region containing the most negative (blue) Zavg scoring base pairs, which corresponds to the 

reference structure of the VEGFA riboswitch [35].

2.2 Running ScanFold

The scanFold pipeline can be run using the scripts available on github (https://github.com/

moss-lab/ScanFold) or can be accessed as a webserver tool (https://

mosslabtools.bb.iastate.edu). This section focuses on running ScanFold as a webserver tool, 

however the main points apply to using the scripts as well. When using the webserver, the 

only requirement for running ScanFold is providing an input sequence. The ScanFold 

demonstrations that follow correspond to example data that can be run on the server. Here, 

we use a 352 nt sequence of RNA that encompasses the human VEGFA mRNA riboswitch 

(this example data can be loaded by clicking the “Load Example Data” button; Fig. S1a). 

Users can upload their own sequence by pasting a sequence directly into the text box (Fig. 

S1b) or by uploading a FASTA file (Fig. S1c); the webserver has a sequence size limit of 

20,000 nt, while the scripts do not have any size restrictions. Below the sequence submission 

options are (optional) fields where users can give their submission a name (Fig. S1d; using 

the sequence’s accession number is recommended to simplify downstream analyses when 

using genome browsers such as IGV, see the example in section 5), provide an e-mail 

address (Fig. S1e) where a notification and link will be sent when results are complete, and a 

dropdown box that sets the length of time results will be available for viewing and/or 

download (Fig. S1f; one hour, one day [default], or one week). Following these, are 

parameters which alter the way ScanFold operates and impact results in meaningful ways, 

because of this, each of these fields will be described in detail along with suggestions and 

tips.

2.2.1 Window size—The first parameter to consider when running ScanFold (or any 

scanning window analysis) is the window size (Fig. S1g). This parameter is an integer value 

which dictates the length, in nucleotides (nt), of the fragment that will undergo folding 

analysis. Lange et. al. [31] found that a window size between 100 and 150 nt is optimal for 

maximizing accuracy and detecting known cis-regulatory structures in large mRNAs; where 

larger window sizes predict erroneous long-range pairs, and smaller window sizes 

underestimated the extent of known structure motifs. Our initial comparison of window sizes 

was in agreement with these findings where a window size of 120 nt performed best at 

accurately detecting and modeling known structures in both HIV-1 and ZIKV [25].

In Figure S2 different window sizes are shown to affect the ScanFold structural maps 

generated for the VEGFA riboswitch region. Here the Translation Permissive (TP) 

conformer of the VEGFA riboswitch is detected by window size 100 nt and only partially by 

window size 150 nt, while a window size of 200 or 40 nt fails to accurately detect the known 

model. This example illustrates that a window size between 100 and 150 nt is generally best 

for identifying and modeling functional structures, but in a case dependent manner.
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Window sizes deviating from the optimal range between 100 and 150 nt do have potential 

applications. Smaller window sizes can be useful if specifically looking to identify motifs 

composed of smaller hairpins. The same is also true for larger hairpins. For example, in the 

HIV-1 genome, ScanFold was only able to detect the small terminal hairpins present in the 

large functional structured RNA, known as the Rev response element (RRE), but was unable 

to detect the basal stem, which spans > 350 nt (this was detected with a window size of 600 

nt; see section 3.3 for details). Such large stems are detectable only if they are less than or 
equal in size to the chosen window size. Because of this, it may be beneficial to run multiple 

window sizes to check if any large stems have been ordered to form. The ScanFold 

webserver can make the process of testing multiple window sizes easy, as multiple jobs can 

be run quite rapidly (when attempting to optimize multiple parameters it may be beneficial 

to use larger step sizes to speed up the process; see section 2.2.2 below).

2.2.2 Step size—The step size field (Fig. S1h) is an integer value which dictates the 

number of nucleotides the scanning window steps downstream (sometimes referred to as 

slide). The step size is the parameter most directly governing the number of windows 

generated throughout the scan (depending on the sequence length and window size; Eq. 3). 

A 1 nt step size is recommended to maximize the number of windows which cover each 

nucleotide during the scan. For a sequence length (L) of 350 nt and window length (W) of 

120 nt, a step size of 1 vs. 10 nt would result in difference of 230 vs. 23 windows 

respectively.

Number of Windows  = L − W + 1
S #Eq. 3

The benefit to using a larger step size is to decrease computational time, which could be 

beneficial for multiple reasons. For example, scanning window analyses of large genomes 

(e.g. eukaryotic genomes) typically use large step sizes to obtain results in a reasonable 

amount of time (40 nt was used for RNAz [36] and ScanFold–Scan analyses of the human 

genome [37]). However, users may also want to perform rapid preliminary scans of multiple 

small sequences. As long as the step size is a fraction of the chosen window size, ensuring 

windows overlap, low z-score regions should be detected.

In Figure S3, the impact of using multiple step sizes is shown for our example data (all other 

parameters set to default). The TP conformer of the VEGFA riboswitch was detected by all 

four step sizes shown (1, 5, 10 and 40 nt). Indeed, the structural models predicted by each 

look quite similar. However, using a larger step size results in less window coverage. This 

reduces the ScanFold algorithm’s ability to discern which base pairs led to low z-scores.

2.2.3 Randomizations—The “randomizations” field (Fig. S1i) refers to the number of 

times the native sequence will be shuffled and folded during the calculation of each 

window’s ΔG° z-score. Higher randomizations will increase the robustness of results (by 

reducing variation between results; Table S1) but can increase computational time (in a 

linear fashion; doubling randomizations will roughly double computation time). For 

example, using the ScanFold webserver to scan the HIV-1 genome with a 120 nt window 
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size, 1 nt step size, and 50 randomizations takes roughly 30 minutes and increasing 

randomizations to 500 increases computational time to roughly 5 hours.

2.2.4 Shuffle Type—The “Shuffle Type” field (Fig. S1j) refers to the type of shuffling to 

be used during calculation of the ΔG° z-score: mononucleotide (set by inputting “mono”) or 

dinucleotide (set by inputting “di”). During the calculation of the ΔG° z-score the 

randomized sequences serve as a negative control to determine if primary sequence has been 

ordered to fold more stably than expected. Generating an ideal negative control is a 

challenge: mononucleotide shuffling completely abolishes native order but disrupts 

background dinucleotide content (potentially overestimating z-score magnitude, as the 

energy model used in folding is a nearest-neighbor model); dinucleotide shuffling preserves 

this background, but requires a more complex shuffling routine (ScanFold uses Clote’s 

implementation of the Altschul and Erickson algorithm [38]). Our previous study compares 

the results of ScanFold using both mononucleotide and dinucleotide shuffling techniques: 

both perform well at detecting the known functional structures in HIV-1 and ZIKV and 

result in similar overall z-score trends across the genome (Fig. 6 of [25]) with dinucleotide 

shuffling z-scores being more positive overall and leading to slightly less base pairs being 

predicted with Zavg < −2.

2.2.5 Temperature—The “Temperature” field (Fig. S1k) allows the user to change the 

temperature, in degrees Celsius, that is used during the calculation of ΔG° folding values 

during all MFE calculations. The default temperature is 37°C, however, this may be different 

based on the organism or experimental conditions being used.

2.2.6 Competition—As described previously [25], the ScanFold pipeline determines the 

best pairs per nucleotide in the input sequence (based on the Zavg; Eq. 2). In some cases, 

during the initial analysis, a single nucleotide may be the best pairing partner for two or 
more separate partners; this is described as competition. The competition field (Fig. S1l) will 

determine whether or not ScanFold reports only the best partners among the competitors or 

reports all potential partners. If competition is turned off, all “best” pairs will be reported, 

but this will remove the “BP Average z-score” data (an example of which can be seen in 

Figure S4). This can be useful for visualizing the presence of competing structures with 

similar metrics.

2.3 ScanFold output

When a job completes on the ScanFold web server, results are depicted as comprehensive 

structural maps (described in Section 2.1 and shown in Figs. 1, S2–S4). All data depicted 

within are also available for download using links directly below the structural maps. The 

first link will allow users to download all results within a zipped folder. The contents of this 

folder are described in Table 1 (bolded entries are available as from individual download 

links as well).

The output from the ScanFold–Scan step (extension “.scan-out.tsv”) is a tab separated file, 

where each row corresponds to a window and its corresponding metrics (the MFE, z-score, 

p-value and ED metrics correspond to the “.wig” tracks available for download and depicted 
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in Fig. 1d–g). The output from ScanFold–Fold consists of the lowest Zavg base pair 

arrangements and their corresponding Zavg values (Fig. 1a and 1b) as well as log files 

detailing the pairing partners of each nucleotide in the input sequence.

3. Characterizing ScanFold results

ScanFold attempts to map the structural landscape of RNAs to highlight regions of interest, 

but was not developed to explicitly predict the global structure of large RNAs. Unlike 

thermodynamic folding algorithms (which choose base pairing patterns based on their 

contribution to the most globally stable structure), ScanFold chooses the best local 
arrangement for all nucleotides based on their ability to generate the lowest thermodynamic 

z-scores. Therefore, in regions where primary sequence contains a specific negative z-score 

generating structure, discrete structures are easily modeled (e.g. nt 150–275 in Fig 1.). In our 

original report, base pairs with Zavg scores < −2 overwhelmingly corresponded to the known 

functional RNA structures in the HIV-1 and ZIKV genomes; interpreting strong z-score 

signals in these regions was therefore relatively straight-forward. In regions with 

unremarkable z-scores (e.g. 0 > Zavg > −1), interpreting results is less clear; the modeling 

process may select base pairs from overlapping structures (e.g. nt 1–100 in Fig. 1). Possible 

interpretations for these regions (which, by their nature, are more common) were not 

previously explored. Therefore, in an attempt to aid interpretations for the entirety of 

ScanFold results, this section is dedicated to characterizing the relationship between 

ScanFold results and two of the most widely utilized RNA structural analysis methods 

utilized today: SHAPE probing and thermodynamically calculated pairing probabilities.

3.1 Arrangements of low Zavg nucleotides agree with pairing probabilities

Previous studies report a correlation between the z-score of a sequence and its Shannon 

entropy (a measure of the sum of all pairing probabilities) [39]. To determine if this 

correlation persists at a per-nucleotide level we carried out a comparison between the Zavg 

values predicted for each nucleotide of the HIV-1 and ZIKV genomes (using the results from 

[25]) to pairing probabilities predicted by RNAplfold, a program specializing in rapidly 

computing pairing probabilities for large RNA sequences [27]. Overall the correlation 

between Zavg and probabilities for HIV-1 was modest (correlation coefficient of −0.21). 

However, unlike pairing probabilities, Zavg scores do not suggest whether a nucleotide is 

paired or unpaired. Therefore, a separate analysis was carried out, which the binary paired/

unpaired states of ScanFold predictions to RNAplfold results that were transformed to define 

nucleotides as paired or unpaired based on their probability (see section 4.1)—thus allowing 

for direct comparisons between the two metrics. The paired/unpaired states of nucleotides 

predicted by each program were then compared to determine how often they match (results 

shown in Table 2). Here, it was found that RNAplfold and ScanFold’s paired/unpaired 

predictions were in agreement for 68.7% of nucleotides in HIV-1 and 80.2% of nucleotides 

in ZIKV. On average, the matches appear to have an inverse relationship to Zavg scores 

(where lower Zavg scores correspond to higher matches; Fig. S5).

When filters are applied to only consider regions where Zavg nucleotides are less than −1 and 

−2 (by default ScanFold filters results based on these cutoffs), the percentage of ScanFold 
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results that match RNAplfold increase to 77.2 and 81.4% respectively (Table 2). When 

looking at these filtered regions further, a clear trend could be observed, where lower Zavg 

filters corresponded to higher average base pair probabilities (Table 2 and Fig. 2a). The same 

trends were observed for the ZIKV genome (Fig. 2b), with match percentages of 80.3, 85.5 

and 89.1 for the full genome, Zavg < −1, and Zavg < −2 respectively (Table 2). Conversely, in 

regions where Zavg scores were greater than or equal to 0, matches were low (43.1% in HIV 

and 43.4% in ZIKV; Table 2. and Fig. 2).

Paired/unpaired states were also compared to a reference structure for the HIV-1 genome 

[40] to determine how well RNAplfold and ScanFold matched data-driven structure models 

(i.e. informed by SHAPE reactivity). RNAplfold performed best overall and was able to 

accurately predict the state of 72.7% of nucleotides, while ScanFold predicted 62.8% (Table 

2). The lower overall accuracy of ScanFold can be mostly attributed to the low accuracy for 

nucleotides with positive Zavg scores (where ScanFold accuracy was 41.4% on average). 

Conversely, the best local performance for both programs, can be seen for nucleotides with 

Zavg scores less than −2; this accounts for 1000 nt in HIV-1 (roughly 1/9th of the genome). 

Here, ScanFold performed the best, accurately predicting 85.7% of nucleotide states 

whereas, RNAplfold predicted 79.7% (Table 2).

3.2 Low Zavg nucleotides correspond to lower SHAPE reactivity

The observation that low Zavg nucleotides (Zavg < −2) corresponded to higher pairing 

probabilities and were best at predicting the paired states of nucleotides from SHAPE 

directed models, suggested a potential relationship between SHAPE reactivity and low z-

score regions. The SHAPE reactivity of a nucleotide is most directly related to its secondary 

structure; higher reactivity values relate to lower pairing probabilities and, conversely, lower 

reactivities correspond to higher pairing probabilities. Therefore, low Zavg regions may be 

characterized by a higher number of low SHAPE reactivity nucleotides, just as they are 

comprised of a greater number of high pairing probability nucleotides Fig. 2a–b.

The average and median normalized SHAPE reactivities reported for the HIV-1 genome are 

0.41 and 0.33 respectively. When SHAPE reactivity values are filtered based on their 

corresponding nucleotide’s Zavg score, a similar trend to pairing probabilities appears (Table 

2 and Fig. 2c). For the nucleotides with Zavg < −2, the mean and median SHAPE reactivity 

values drop down to 0.32 and 0.13 respectively. Interestingly, for nucleotides with positive 

Zavg scores, mean and median SHAPE reactivity values increase to 0.45 and 0.43. Again, 

these trends follow for the SHAPE reactivity values reported for ZIKV genome [41]. The 

average and median SHAPE reactivities reported for the ZIKV genome are 0.46 and 0.27 

respectively (Table 2 and Fig. 2d) and for nucleotides with Zavg < −2, the mean and median 

SHAPE reactivity values drop down to 0.36 and 0.05 respectively. Again, for nucleotides 

with positive Zavg scores, mean and median SHAPE reactivity values increase to 0.65 and 

0.54 respectively.

3.3 Low Zavg nucleotides correspond to more accurate secondary structure predictions

The observations in sections 3.1 and 3.2 indicate that low Zavg ScanFold results are 

comparable to experimental probing and accessibility calculations in the analysis of HIV-1 
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and ZIKV RNA structural propensity. These comparisons, however, did not consider the 

accuracy of secondary structures modeled by these low Zavg nucleotides. To assess the 

accuracy of ScanFold models, two scoring metrics, sensitivity (Eq. 4) and positive predictive 

value (PPV; Eq. 5), were calculated using the scorer program from the RNAstructure 

package (see section 4.3 for details). Calculated scores are compared to those using 

RNAfold models (as this is the underlying folding algorithm used by ScanFold) to 

demonstrate how ScanFold differs from single sequence folding algorithms.

PPV = True Predicted Base Pairs
Total Predicted Base Pairs #Eq. 4

Sensitivity = True Predicted Base Pairs
Total Reference Base Pairs #Eq. 5

The results of scoring can be seen in Figure 3 and Table 2. RNAfold, using a maximum base 

pair span of 600 nt (the same constraint used during the generation of the reference structure 

[40]) resulted in the best sensitivity of all tested approaches (Fig. 3a). The next best 

sensitivity was found using ScanFold with a window size of 600 nt, likely due to the 

accurate prediction of the 354 nt long hairpin (spanning nt 7245–7599 nt), which is not 

detectable by other window sizes. The other two models generated by RNAfold had the next 

best sensitivities (0.416 for unconstrained fold and 0.392 for max base pair span of 120 nt). 

For the remainder of ScanFold results, sensitivity is less than 0.30 on average; this is 

expected, as ScanFold consensus structures predict fewer base pairs with stricter average z-

score filters.

The best PPVs are seen for all ScanFold results, with Zavg <−2 structures (Table Fig. 3b and 

Table 2). This is consistent with the results from sections 3.1 and 3.2, which show that the 

paired/unpaired nature of nucleotides with Zavg < −2 are better predicted than others; the 

corresponding secondary structures tested here have the highest PPVs. Among these, 

however, the best PPVs can be seen for window sizes 100 and 120 nt, which had PPVs of 

0.795 and 0.784, respectively (window size 120 nt had the higher sensitivity—accurately 

predicting 18 more base pairs of the reference structure). Thus, the ScanFold predicted 

structures contain fewer, but more accurately predicted, base pairs (yielding lower sensitivity 

and higher PPV).

3.4 Interpreting Zavg scores

When using ScanFold with optimal parameters (i.e. step size of 1 nt and window sizes 

between 100 and 150 nt), regions with Zavg scores < −2 correspond to nucleotides with 

lower SHAPE reactivity (Fig. 2a–b) and higher base pairing probabilities (Fig. 2c–d) across 

the HIV-1 and ZIKV genomes. This suggests that regions with Zavg scores < −2 are more 

likely to be structured (based on both experimental and thermodynamic data). Importantly, 

the ScanFold generated secondary structures that correspond to these nucleotides are have 

~80% PPV for both the HIV-1 genome reference structure (Fig. 3) and the reference 

structures in the untranslated regions of ZIKV (Supplemental Table 8 of [25]).
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Zavg regions between −1 and 0 appear to contain primary sequences that form 

thermodynamically stable structures, but do not correspond to SHAPE reactivities or base 

pairing probabilities much different from the data in aggregate (Fig. 2; compare < 0 results 

to Total values). Further, the secondary structure models generated by ScanFold for these 

regions (< 0) do not appear any more accurate than RNAfold (Fig. 3; compare “No Filter” 

results to those of RNAfold).

Positive Zavg regions highlight primary sequences that do not form structures amenable to 

modelling (either experimental or thermodynamic); potentially due to dynamics, non-

canonical base pairing, or complex tertiary structures. Thus, the presence of functional RNA 

structures in these regions should not be ruled out as a possibility. Another intriguing 

possibility, that needs additional study, is that some of these regions (especially if they have 

Zavg scores > 2) may actually have been ordered to avoid forming structure, such as the case 

near ribosomal binding sites [42], musashi binding sites [43], or facilitating the formation of 

functional intermolecular interactions [44].

4. Methods

The HIV-1 genome sequence used for all analyses was taken directly from [40] and can be 

found in Supplementary Dataset 1 as well. The ZIKV genome was taken from the RefSeq 

genome with accession ID KJ776791.2.

4.1 Pairing probability analysis

RNAplfold (version 2.3.3) was used to calculate the unpaired probabilities for each 

nucleotide of the HIV-1 genome sequence (using command “rnaplfold −w 120 −u 1”). Using 

the resulting probabilities, each nucleotide was set to being paired whenever probability was 

above 50% (with this cutoff performing best at matching the paired unpaired states of the 

Watts et. al 2009 structure). In order to determine the ScanFold predicted pairing state for 

each nucleotide the “Final Partners” output file was used; this file reports the best pairing 

partner for each nucleotide along with the corresponding average MFE, z-score (Zavg), and 

ensemble diversity values (Supplementary Dataset 1; extension “final_partners.txt”). 

Importantly, the Zavg scores for each nucleotide are reported before competition has been 

filtered (competition is noted in the file, however), therefore, these values may correspond to 

a nucleotide which has actually been left unpaired in the final structural model. The results 

for competition-filtered data can be seen in Supplementary Dataset 2.

4.2 SHAPE reactivity analysis

SHAPE reactivity values for HIV-1 were taken from Data Set 2 of [40] and for ZIKV, 

SHAPE reactivities were taken from Supplementary Data 1 of [41] (labeled there as 

ZILM_SHAPE); all negative reactivity values were set to 0. When computing mean and 

median values, the first 11 and the final 31 nt of HIV-1 were ignored and for ZIKV, all 

values equal to −999 (missing data) were ignored.
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4.3 Secondary structure prediction scoring

The reference structure for all HIV-1 scores was generated from the secondary structure 

reported in [40]. The reference structure’s helix file (reported in Supplementary Data File 1 

[40]) was first converted to a dot bracket structure using the R package R4RNA and finally 

converted to a CT file (the format used in the scorer program) using the dot2ct function from 

the RNAstructure package. The CT files for ScanFold structures with window sizes 100 to 

210 were all taken directly from the supplementary data of [25], and the 600 nt window size 

results (using a step size of 1 nt, and 100 mononucleotide randomizations) were generated 

using the ScanFold webserver. RNAfold (version 2.3.3) predictions of were conducted using 

the command line version to generate dot bracket files for the global fold as well as the max 

base pair span restricted constructs (using command “−maxBPspan=” 120 or 600 nt). The 

RNAstructure program dot2ct was used to convert the resulting RNAfold structures into CT 

files. All scoring was done using RNAstructure’s scorer program (Version 6.0; using exact 

enforcement with command “scorer −e”). The scorer program calculates the positive 

predictive value (PPV) and sensitivity metrics to quantify the accuracy of predicted 

structures versus a reference structure; PPV measures the % of predicted base pairs which 

were correct (Eq. 4) and the sensitivity measures the number of base pairs in the reference 

structure which were correctly predicted (Eq. 5).

5. Example using the HIV-1 genome

5.1 Browsing ScanFold results

Using the ScanFold webserver, the HIV-1 genome sequence was scanned using default 

settings (except step size and randomizations, which were changed to 1 nt and 50 

respectively). The process was completed within 34 minutes and results were nearly 

identical to those reported originally. The information in ScanFold’s structural maps are well 

suited for genome browsers. Because of this, the ScanFold web server output is formatted to 

allow for viewing immediately on the IGV.js viewer loaded on the ScanFold results pages or 

for loading directly into the IGV desktop app (available here https://

software.broadinstitute.org/software/igv/download). To do this, we first retrieve all necessary 

files by simply using the “Download All Results” link on the ScanFold results page 

(available in Supplementary Dataset 1 as well). Next, from within an open IGV desktop app, 

the FASTA file is loaded from the results folder as a “genome” (via the “File > Load 

Genome File…” option); this FASTA file has the extension “.input.fa”. This allows one to 

then load all IGV compatible files (Table 1) directly into IGV (either by dragging files 

directly onto IGV or opening via the “File > Load From File…” option). From here, all IGV 

features are available to view and analyze results. For this example, IGV was also loaded 

with (1) the results of a RegRNA [29, 45] scan set to specifically identify known cis-

regulatory elements from Rfam [46–53] and (2) SHAPE reactivity data from Watts et. al. 

2009, which was converted to a compatible WIG format for displaying values as heatmaps. 

The RegRNA data track was generated from the tab delimited output of RegRNA using the 

script “REGRNA_to_BED_GFF3.py” which is available in Supplementary Dataset 1.

In Figure 4, an example IGV setup depicting the first ~400 nt of the HIV-1 genome is shown 

(all of the files from this example are available in Supplementary Dataset 1 if readers wish to 
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browse the entirety of results). Using this setup allows for rapid interpretations of ScanFold 

results. Attention is immediately drawn to the motifs depicted by blue arcs in the ScanFold 

“Significant BPs” track (from nt 1–100). The Zavg scores corresponding to the nucleotides of 

the first stem are highly negative (< −3) and the following motif is slightly less negative with 

the basal stem nucleotides yielding Zavg scores between −1 and −2. Inspecting the SHAPE 

reactivity track allows for an immediate visual check on the predicted base pairs; indeed 

highly reactive base pairs in this region (in red) correspond to unpaired nucleotides in their 

bulges and loops while less reactive nucleotides correspond to nucleotides predicted by 

ScanFold to be paired. The RegRNA track confirms that these structures correspond to the 

TAR hairpin and the “poly-a stem” from HIV-1 [40].

Downstream of this, the RegRNA track annotates the HIV primer binding site (PBS) region 

which corresponds to nucleotides with middling Zavg scores (mostly between −1 and 0) and 

where the base pair track lacks unusually stable structural motifs. This region, consistent 

with the results in section 3.3, does not perform well at predicting the global reference 

structure for HIV-1; this could be due to fact that 18 nucleotides of the PBS region (ñt 200) 

are evolved to bind to intermolecular nucleotides from the Lys3 tRNA (a process which 

ultimately initiates reverse transcription [54]) where the presence unusually stable structures 

may be detrimental. However, it should be noted that the small hairpin predicted at ~190 nt, 

was later found to have 3 of its 4 base pairs structurally conserved between three HIV 

related RNA genomes [55].

The following four Rfam annotations in the RegRNA track correspond to the retroviral psi 

packaging element, which consists of four stem loop structures. Only one these, however, is 

detected and modeled correctly by ScanFold: the dimerization initiation site (DIS), which 

can be seen near nt 250. The following three stem loops, which are each < 20 nt in length, 

are not detected. Instead, ScanFold predicts a somewhat more stable than expected structure 

(with Zavg nucleotides < −1) consisting of several bulges and a single tetraloop that are 

consistent with SHAPE reactivity; interestingly, this suggests this alternative structure may 

indeed form at some point during probing analysis.

5.2 Aiding downstream analyses

One benefit to the ScanFold method, over traditional scanning window analyses, is that a 

single structural model is generated for consideration. This is ideal for downstream analyses. 

The CT files generated by ScanFold (Table 1) can each be tested directly against aligned 

sequences to determine the frequency and type of base pairs which occur at each site 

throughout the alignment, as was done for proposed structural motifs in Influenza A [18]. 

The resulting base pair counts can suggest whether a structure is conserved (e.g. if most base 

pairs observed throughout the alignment are consistent with predicted structure) and provide 

further support that a predicted motif serves a functional role.

The highly negative Zavg base pairs detected by ScanFold also serve as ideal targets for 

experimental structure-function analyses. Their correlation to lower SHAPE reactivity and 

higher base pairing probabilities in ZIKV and HIV-1 suggest that their formation in other 

RNA sequences, whether functional or not, is more likely than in regions with positive Zavg 

scores. In this way, ScanFold can point researchers to areas that are well suited for 
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functional analyses, because they are more likely to be amenable to modeling. When 

planning mutational analyses, tools such as RNA2dMut [56], can be used to design 

mutations specifically targeted to disrupt the most significant ScanFold predicted structures. 

Designing mutants based on the most significant structures generated by ScanFold can allow 

researchers to rapidly design targeted analyses; as was done recently for the most significant 

results in the mRNA of the human MYC oncogene [57].

6. Conclusions

ScanFold results can aid experimental design by rapidly characterizing large RNA 

molecules. ScanFold identifies, with confidence, local motifs that are likely to be functional 

and models of their secondary structures. In this way, ScanFold can help highlight motifs 

that can serve as ideal candidates for functional analyses and present structural models to aid 

in experimental design or that provide the basis for additional structural characterizations at 

higher resolution (e.g. using NMR, crystallography, etc.).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Demonstration of ScanFold, a single sequence method for RNA structural motif 

discovery.

ScanFold is available via a user-friendly webserver or for download.

Example usages and data are provided using the HIV-1 and ZIKV genomes.

Comparisons are made to available experimental data sets from ZIKV, HIV-1, Hepatitis C 

and Dengue Virus, to indicate the robustness of the approach.

Comparisons are made to other single sequence approaches to show how ScanFold can 

complement available methods.
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Figure 1. 
Example of RNA structural map created when using the ScanFold webserver’s example 

data. The example data is a portion of the human genome (HG38) extracted from the 

RNAStructuromeDB [37] which encompasses the VEGFA riboswitch (coordinates hg38|

chr6:43,784,726..43,785,077). The sequence was run through the ScanFold webserver 

(https://mosslabtools.bb.iastate.edu/node/add/scanfold) using default settings (except step 

size, which was set to 1 nt). (a) The most significant base pairs are shown as arc diagrams. 

Here, arcs are colored based on their Zavg score (yellow for < 0, green for < −1 and blue for 

< −2). The VEGFA translation permissive structure is highlighted with a blue box. Below 

the base pair arcs is the sequence track where nucleotides are colored based on their identity 

(guanine is orange, adenine is green, cytosine is blue and uracil is grey). (b) This track 

depicts the Zavg score per nucleotide as a bar graph. Tracks (c) through (f) correspond to the 

results of ScanFold’s raw scanning window analysis, where the value of each labeled metric, 

corresponds to the first nucleotide of the window the metric was captured in. (g) This is the 

secondary structure corresponding to the blue highlighted region of the “Significant bps” 

track in track (a). The named portions of the riboswitch are labeled and colored accordingly.
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Figure 2. 
Violin and Box and Whisker plots depicting the distribution of SHAPE reactivities and base 

pairing probabilities based on the nucleotides Zavg scores. For each genome only nucleotides 

passing a Zavg filter threshold were counted in the creation of violin plots and box and 

whisker plots. (a-b) The distribution of base pairing probabilities based on Zavg scores for 

the HIV-1 (a) and ZIKV (b) genomes. (c-d) The distribution of SHAPE reactivities based on 

Zavg scores for the HIV-1 (c) and ZIKV (d) genomes. Violin plot width is proportional to the 

number of nucleotides with the corresponding SHAPE or base pairing probability. Box and 

whisker plots depict the spread of values as follows: center lines show the medians red dots 

show the mean; box limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times 

the interquartile range from the 25th and 75th percentiles, outliers are represented by dots. 

Graphs were generated using ggplots library in R. Full data can be seen in Supplementary 

Dataset 2.
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Figure 3. 
The positive predictive values and sensitivities for RNAfold and ScanFold predicted 

structures of the HIV-1 genome. The reference structure for all HIV-1 scores was generated 

from the secondary structure reported in [40]. All scoring was done using RNAstructure’s 

scorer program. Positive predictive value (PPV) measures the % of predicted base pairs 

which were correct (Eq. 4) and the sensitivity measures the number of base pairs in the 

reference structure which were correctly predicted (Eq. 5). (a-b) The sensitivity (a) and PPV 

(b) of ScanFold generated CT files from [25] and RNAfold generated structures. The CT 

files for ScanFold structures with window sizes 100 to 210 were all taken directly from the 

supplementary data of [25], and the 600 nt window size results were generated using the 

ScanFold webserver (all window sizes are labeled under the ScanFold results on the left side 

of each graph). Each ScanFold CT file corresponds to structures with nucleotides having 

Zavg scores less than the listed filter value: no filter (grey), < −1 (green) and < −2 (blue). 

RNAfold predictions of HIV-1 were conducted to generate dot bracket files for the global 
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fold (labeled “Full”) as well as the max base pair span restricted models (restricted to 120 

and 600 nt; lableled approriately). Scores for these three structures are shown on the right 

side of both (a) and (b) and colored white.
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Figure 4. 
Example of IGV setup used to browse ScanFold results. Here the first ~400 nt of the HIV-1 

genome is shown along with 9 tracks to aid in structural interpretations. The first track (in 

top to bottom order) is the RegRNA track which was generated by scanning the HIV-1 

genome using the RegRNA webserver. The next track depicts the most significant base pairs 

predicted by ScanFold as arc diagrams. Here, arcs are colored based on their Zavg score 

(yellow for < 0, green for < −1 and blue for < −2). The sequence track depicts the nucleotide 

identity using color where guanine is orange, adenine is green, cytosine is blue and uracil is 

grey. The SHAPE track shows a heatmap based on the reactivity value (legend in bottom left 

hand corner). The light blue Zavg track shows the Zavg scores of each nucleotide in the 

sequence. The following tracks are as described in Figure 1 (d–g). The range for all values is 

shown on the left hand side of each track in brackets as [low-high]. All tracks and their 

corresponding files can be found in Supplementary Dataset 1.

Andrews and Moss Page 23

Methods. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Andrews and Moss Page 24

Table 1.

Description of output files from ScanFold Webserver. There are 15 output files available in the “Download All 

Results” zip folder. Users can load 11 of these, marked “Y” in the IGV column, directly into the IGV desktop 

app (tested for versions 2.5.3 to 2.61). Bolded file extension denote files which are also available for individual 

download.

File extension IGV Description

.scan-out.tsv Raw output of ScanFold-Scan. Traditional scanning window output, showing all metrics calculated per 
window including MFE, z-score, p-value, dot-bracket structure, and centroid structure.

.mfe.wig Y

.ed.wig Y
These are “wig” format files corresponding to values from the ScanFold-Scan ouput.

.zscore.wig Y

.pvalue.wig Y

.bp Y
IGV base pair track. The “.bp” format describes the connections between nucleotides and the header 
contains information such as the color used to depict the arc. For proper loading in IGV, IGV must first be 
loaded with the “input.fa” and “.fai” files below.

.final_partners_zscore.wig Y
This is another “wig” format file which reports the Zavg values corresponding to the arrangements depicted 
in the “.bp” track above.

.input.fa Y This is the FASTA file containing the sequence which was scanned. The header is set as the “Input Name” 
set be the user (Default: UserInput).

.fai Y This is the index file for the FASTA file above, and is used by IGV.

.−1filter.ct Y

Structure model files showing base pair arrangments whose Zavg scores are less than the filter value stated 
in extension. The “CT” files are connectivity files and can be opened in programs such as VARNA, IGV, 
and RNAstructure.

.−2filter.ct Y

.nofilter.ct Y

.−2filter.dbn Y

.final_partners.txt This is output from ScanFold-Fold and list the “best” arrangments for each nucleotide sequence as well as 
the corresponding average metrics observed.

.log.txt Raw output of ScanFold-Fold. This will give the list of all base pairs predicted for each nucleotide, the 
number of windows each are observed in, and the average metrics for each.
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Table 2.

Results of SHAPE and BP probability comparisons using different Zavg filters. The percentage of paired and 

unpaired states which match between RNAplfold (PL), ScanFold (SF), and the HIV-1 genome reference 

structure reported in Watts et. al 2009 (W09) are listed per Zavg region. Following these matches are the 

average (μ) and median (M) base pairing probabilities (BP) and SHAPE reactivity (SR) values for nucleotides 

within each filtered region.

HIV-1 ZIKV

Zavg SF = PL(%) SF = W09(%) PL = W09(%) BP(μ(M)) SR(μ(M)) SF = PL(%) BP(μ(M)) SR(μ(M))

All 68.680 62.804 72.648 0.445(0.438) 0.407(0.330) 80.263 0.559(0.604) 0.467(0.269)

>=0 43.090 41.400 79.360 0.343(0.288) 0.451(0.430) 43.438 0.407(0.378) 0.656(0.549)

<0 74.321 66.565 71.168 0.468(0.473) 0.397(0.310) 82.581 0.569(0.622) 0.455(0.258)

<−1 77.205 74.903 73.054 0.502(0.522) 0.367(0.250) 85.523 0.607(0.685) 0.407(0.182)

<−2 81.400 85.700 79.700 0.560(0.620) 0.319(0.130) 89.069 0.653(0.769) 0.363(0.055)
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Table 3.

Sensitivity and positive predictive values for secondary structure models predicted for the HIV-1 genome. Here 

the reference structure is the secondary structure reported for HIV-1 genome reported by Watts et. al. (2009). 

Method names for ScanFold refer to the window size used in parentheses, and for RNAfold, the max bp span 

used is in parentheses. For scoring, the HIV-1 genome reference structure was generated using the secondary 

structure reported in Watts et. al 2009. Predicted structures from RNAfold were generated using three different 

settings: (1) the MFE fold predicted for the entire genome [RNAfold] (2) the MFE fold for a max bp span of 

120 nt [RNAfold(120nt)]and (3) an MFE fold using a max bp span of 600 nt [RNAfold(600nt)] (the setting 

used for the original modelling). The scanFold predicted structures (for windows sizes 100 to 210 nt) were 

taken directly from the supplemental CT files of Andrews et. al. 2018, here step sizes were 1 nt, 

randomizations were 50, and shuffling was mononucleotide; an additional prediction was performed using a 

window size of 600 nt directly on the webserver (step size of 1 nt and 50 randomizations). The sensitivity and 

positive predictive value (PPV) for each of the predicted secondary structures was calculated using the 

RNAstructure package’s scorer program (using exact enforcement).

PPV (HIV-1) Sensitivity (HIV-1)

Method Total Zavg < −1 Zavg < −2 Total Zavg < −1 Zavg < −2

ScanFold(100nt) 0.325 0.529 0.795 0.284 0.2 0.111

ScanFold(120nt) 0.319 0.531 0.784 0.287 0.206 0.121

ScanFold(150nt) 0.323 0.500 0.682 0.279 0.218 0.12

ScanFold(180nt) 0.322 0.474 0.602 0.292 0.23 0.114

ScanFold(210nt) 0.349 0.495 0.607 0.315 0.246 0.124

ScanFold(600nt) 0.428 0.456 0.498 0.426 0.317 0.236

RNAfold(120nt) 0.304 0.392

RNAfold(600nt) 0.361 0.493

RNAfold 0.301 0.416
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