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Abstract Modulation of the ageing process by dietary
restriction (DR) across multiple taxa is well established.
While the exact mechanism through which DR acts
remains elusive, the gasotransmitter hydrogen sulphide
(H,S) may play an important role. We employed a
comparative-type approach using females from three
ILSXISS recombinant inbred mouse strains previously
reported to show differential lifespan responses follow-
ing 40% DR. Following long-term (10 months) 40%
DR, strain TejJ89—reported to show lifespan extension
under DR—exhibited elevated hepatic H,S production
relative to its strain-specific ad libitum (AL) control.
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Strain TejJ48 (no reported lifespan effect following
40% DR) exhibited significantly reduced hepatic H,S
production, while H,S production was unaffected by
DR in strain TejJ114 (shortened lifespan reported fol-
lowing 40% DR). These differences in H,S production
were reflected in highly divergent gene and protein
expression profiles of the major H,S production and
disposal enzymes across strains. Increased hepatic H,S
production in TejJ89 mice was associated with elevation
of the mitochondrial H,S-producing enzyme 3-
mercaptopyruvate sulfurtransferase (MPST). Our find-
ings further support the potential role of H,S in DR-
induced longevity and indicate the presence of
genotypic-specificity in the production and disposal of
hepatic H,S in response to 40% DR in mice.
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Introduction

Empirical evidence has existed for over a century that
dictary restriction (DR) increases lifespan and
healthspan across multiple species (Fontana and
Partridge 2015; Picca et al. 2017; Weindruch and
Walford 1988). In mice, significant strain-specific dif-
ferences in lifespan exist (Turturro et al. 1999; Yuan
et al. 2009) and genetic background may consequently
play an important but under-appreciated role in how
particular strains respond to DR (Hempenstall et al.
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2010; Ingram and de Cabo 2017; Mitchell et al. 2016;
Mulvey et al. 2014; Selman and Swindell 2018;
Swindell 2012). For example, two independent studies
have reported that recombinant inbred ILSXISS mice
show significant strain-specificity in longevity follow-
ing 40% DR (Liao et al. 2010; Rikke et al. 2010), and
phenotypic parameters linked to the ageing process,
such as in mitochondrial function and adiposity, have
been shown to differ between ILSXISS strains under
40% DR (Liao et al. 2011; Mulvey et al. 2016).

Precisely how DR facilitates its beneficial effects on
lifespan and healthspan has proved challenging to elu-
cidate, although many mechanisms have been proposed
(Fontana and Partridge 2015; Hine and Mitchell 2015;
Kennedy et al. 2007; Mair and Dillin 2008; Masoro
2005). One such putative mechanism is the
gasotransmitter hydrogen sulphide (H,S). Direct manip-
ulation of H,S levels through genetic, pharmacological
or environmental means can modulate lifespan in inver-
tebrate models (Hine and Mitchell 2015; Miller and
Roth 2007; Qabazard et al. 2013; Shaposhnikov et al.
2018; Wei and Kenyon 2016) and elevated hepatic H,S
production appears to be a conserved phenotype in long-
lived mouse models, including DR and various genetic
mutants (Hine et al. 2017; Mitchell et al. 2016). Phar-
macological elevation of H,S has also been shown to
ameliorate age-associated atherosclerosis, fibrosis, cog-
nitive decline and kidney dysfunction in rodents (Das
et al. 2018; Lee et al. 2018; Zhan et al. 2018), and
partially rescued a progeroid phenotype in Werner syn-
drome fibroblasts (Talaei et al. 2013) and senescence in
endothelial cells (Latorre et al. 2018). Furthermore, DR-
induced protection from ischemia-reperfusion injury
was abrogated in mice treated with an inhibitor of
cystathionase-y-lyase (CSE), the major hepatic H,S-
producing enzyme (Hine et al. 2015), and longevity in
mice following methionine restriction was associated
with increased H,S production and a reduction in vari-
ous senescence markers within the kidney (Wang et al.
2019). Consequently, it has been proposed that elevation
of endogenous H,S may play a prominent role in the
lifespan and healthspan effects of DR (Hine and
Mitchell 2015).

Here, we employed a comparative-type approach
(Mulvey et al. 2016) in which we determined hepatic
and kidney H,S production, and hepatic transcript and
protein levels of key enzymes involved in H,S metabo-
lism in female mice from three genetically distinct re-
combinant inbred ILSXISS strains exposed to long-term
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(10 months) 40% DR. These strains have previously
been reported to show variable lifespan responses to
40% DR ranging from life extension to life shortening
relative to strain-specific ad libitum controls (Liao et al.
2010; Rikke et al. 2010).

Methods
Animals

The ILSXISS strains TejJ89, TejJ48 and TejJ114 were
purchased from the Jackson Laboratory (Bar Harbour,
Maine, URL: http://www.informatics.jax.org) as
breeding pairs and experimental cohorts subsequently
bred at The University of Glasgow. As previously
discussed (Mulvey et al. 2016), female mice from strains
TejJ89, TejJ48 and TejJ114 showed repeatable direc-
tional effects (TejJ89 lifespan extension under dietary
restriction (DR), TejJ48 lifespan unaffected under DR,
TejJ114 lifespan shortening under DR) on lifespan fol-
lowing 40% DR across 2 independent studies, but that
no strain-specific differences in lifespan were reported
when these mice were maintained on an ad libitum (AL)
diet (Liao et al. 2010; Rikke et al. 2010). It should be
noted that several potential shortcomings to the experi-
mental design of these original studies have been raised
(Selman and Swindell 2018), not least that 40% DR may
simply be sub-optimal in TejJ48 and TejJ114, and that
lifespan extension in these strains is likely to be seen at a
higher or lower level of DR; these dose-response exper-
iments are still to be undertaken (Selman and Swindell
2018). However, for the purposes of this study, we were
interested in whether there was a relationship between
H,S production and reported lifespan following 40%
DR. Female mice were used for all experiments because
lifespan was only determined in female mice across both
original studies (Liao et al. 2010; Rikke et al. 2010). In
addition, we also examined components of the H,S
signalling network in female C57BL/6J mice that
followed a similar long-term 40% DR protocol, to fur-
ther examine potential strain-specific effects. It has pre-
viously been shown that hepatic H,S production is
increased female C57BL/6J mice under 40% DR
(Mitchell et al. 2016).

All mice were maintained from weaning onwards
at22+2 °C and on a 12L/12D cycle (lights on 0700—
1900 h) in groups of 4 mice within shoebox cages
(48 cm x 15 cm x 13 c¢m), with AL access to water
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and standard chow (CRM(P), Research Diets Ser-
vices, LBS Biotech, UK; Atwater Fuel Energy-
protein 22%, carbohydrate 69%, fat 9%). 10% DR
was introduced in a graded fashion from 10 weeks of
age and then held at 40% DR from 12 weeks on-
wards, with the food intake of the DR cohorts adjust-
ed each week relative to the average weekly AL food
intake of the appropriate age-matched and strain-
specific AL controls (Hempenstall et al. 2010;
Mulvey et al. 2016). Following 10 months of 40%
DR (13 months of age) female mice were fasted
overnight and culled using cervical dislocation under
a UK Home Office Project Licence (60/4504) and
following the “principles of laboratory animal care”
(NIH Publication No. 86-23, revised 1985). Tissues
were immediately dissected out, snap-frozen in liquid
nitrogen and stored at — 80 °C until use.

Hydrogen sulphide (H,S) production

Measurement of H,S production was performed in
liver and kidney homogenates according to a previ-
ously described protocol (Hine and Mitchell 2017).
Briefly, 100 mg of flash-frozen liver and kidney
were lysed in passive lysis buffer. Protein concen-
tration was determined by BCA assay (G Biosci-
ences, MO, USA) and 100 pg of protein lysate
was loaded into 96-well plate. A 150-uL reaction
solution containing 10 mM L-cysteine and 1 mM
pyridoxal-5'-phosphate was added to the protein ly-
sate. Filter paper that had previously been cut to the
size of the plate, soaked in 20 mM lead(Il)acetate
trihydrate for 20 min, then dried under vacuum, was
then securely attached to the plate. The assembled
plate was incubated at 37 °C for 1 h. H,S sulphide
gas produced during this time collects in the head
space between the top of the solution in the well and
the lead(Il)acetate paper, forming a brown-black
substrate on the paper. The amount of H,S present
in each sample was subsequently quantified by den-
sitometry analysis (ImageJ) of the brown-black
substrate.

RNA extraction

RNA was isolated from liver tissue by addition of
500 pL of TRIzol (Life Technologies, USA) and subse-
quently homogenised using a glass-glass homogeniser.
Samples were transferred to screw top Eppendorf tubes

and 150 pL of chloroform added. Samples were then
spun by centrifuge at 8000g and the supernatant con-
taining the RNA isolate was taken to a fresh Eppendorf.
RNA cleanup was performed according to instructions
provided in RNAeasy Mini Kit (Qiagen, Germany),
including the optional DNase digestion step.

Reverse transcriptase quantitative-PCR

First strand synthesis of cDNA was performed by incu-
bating 2 pg of RNA (quantified by spectrophotometry
using Nanodrop 1000 UV-Vis spectrophotometer,
ThermoScientific, MA, US) with 1 pg Random Primer
Mix (Invitrogen) in a total volume of 15 puL with
RNAse-free water at 70 °C for 5 min using a MJ
research PTC-200 Peltier Thermal Cycler (Biorad, CA,
US). Synthesis of cDNA was then performed by adding
10 pL of master mix (1 L Promega M-MLYV reverse
transcriptase, 2pul. Promega M-MLV 5x buffer, 5 pL
pooled 10 mM dNTPs, 0.625 uLL RNAseOUT 40 units/
puL and 1.375 pL nuclease free water) to the first stand
sample and heating to 37 °C for 1 h. Samples were then
diluted 1:1 with PCR-grade water and used directly for
RT-qPCR. RT-qPCR was performed in a 384-well PCR
plate. Each well contained 1 pl of cDNA, 0.25 uL
10 mM upper primer, 0.25 pL. 10 mM lower primer,
3.5 puL of PCR-grade water and 5 pL of QuantiFast
SYBR green PCR 2x master mix (Qiagen, UK). PCR
reaction was performed using a 7900HT Fast Real-Time
PCR System (Applied Biosystems, CA, US). PCR pro-
file was as follows: 95 °C for 5 min; 94 °C for 30 s,
60 °C for 30 s, 72 °C for 30 s for 40 cycles; 72 °C for
5 min. The endogenous control gene was 32M, which
has been previously shown to be an appropriate house-
keeping control gene for mouse dietary restriction stud-
ies (Gong et al. 2016). Gene expression was calculated
by subtracting the Ct value for 32M from the Ct value
pertaining to the gene of interest in each sample. As
such, a lower ACt indicates a higher relative gene
expression of mRNA transcripts and vice versa. Primer
sequences are provided in Table S1.

Western blotting

Protein lysate was obtained by homogenisation of
liver tissue in 1 mL of ice cold RIPA buffer (Radio
Immunoprecipitation Assay Buffer; 150 mM sodium
chloride, 1% NP-40 or Triton X-100, 0.5% sodium
deoxycholate, 0.1% sodium dodecyl sulphate,
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50 mM Tris, pH 8) containing protease and phospha-
tase inhibitors (Halt™ Protease and Phosphatase In-
hibitor Cocktail, Thermo Fisher Scientific, UK;
phenylmethylsulfonyl fluoride, Sigma Life Sciences,
Germany; Complete Mini EDTA-free protease inhib-
itor cocktail, Merck, NJ, US) using a glass-glass
homogeniser. Homogenates were kept on ice for
40 min and then spun by centrifuge at 8000g for
10 min at 4 °C. The supernatant was collected and
used as protein lysate. Protein concentration was
assessed by BCA assay (G Biosciences, MO, USA)
and 20 pg of protein was loaded per well into home-
made 4-12% bis-tris polyacrylamide gels. Precision
Plus Protein™ Dual Xtra Standards protein marker
(BioRad, CA, US) were added to a well on each gel.
Proteins were separated by electrophoresis at 90 V
for 90 min and then transferred onto nitrocellulose
membrane at 0.25 V for 1 h. Membranes were stained
with Ponceau-S (Sigma Life Sciences, Germany),
briefly washed in deionised water and the resulting
total protein stain was captured using a Chemidoc™
XRS System (BioRad, CA, US). The Ponceau-S stain
was removed by using 1xTBST (Tris-Buffered Saline
Tween?®) and the membrane was blocked with 5%
milk in 1xTBST for 40 min. The membrane was
washed 5 times with 1XTBST for 5 min under con-
stant shaking. Primary antibodies (AbCam, Cam-
bridge, UK) were added to the membrane in 5%
BSA in IxTBST. CSE (ab151769) primary antibody
was used at 1:1000 dilution; CBS (ab135626) and
MPST (ab85377) were used at 1:100. Primary anti-
bodies were allowed to incubate with the membrane
overnight at 4 °C, under constant shaking. HRP-
linked anti-rabbit antibody (#7074; Cell Signalling
Technology, London, UK) was used at 1:2000 dilu-
tion in 5% BSA in 1xTBST as the secondary anti-
body for all blots. The secondary antibody was
allowed to incubate with the membrane for 1 h, under
constant shaking. The membrane was washed 5 times
with 1XxTBST for 5 min, under constant shaking
before addition of all antibodies and before imaging.
For imaging, membranes were coated with Clarity™
Western ECL substrate (BioRad, CA, US) reagent
and left to react for approx. 3 min before an image
was developed under chemiluminescent conditions
using a ChemiDoc™XRS System. Protein signals
were quantified using densitometry software
(ImageStudio; LiCor, NE, US) and normalised to
the total protein signal of their respective lane.
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3-Mercaptopyruvate sulfurtransferase activity assay

3-Mercaptopyruvate sulfurtransferase (MPST) activ-
ity was determined in liver by measuring thiocya-
nate production capacity as described previously for
thiosulfate sulfurtransferase (TST) rhodanese activi-
ty (Morton et al. 2016), except that sodium 3-
mercaptopyruvate (3-MP) was used as a substrate
instead of sodium thiosulfate. In a 96-well plate,
20 png of protein lysate in RIPA was mixed with
10 uL 200 mM 3-MP (Santa-Cruz, UK) and taken
to 90 uL with 500 mM potassium phosphate pH 5.5
buffer. Samples were incubated at 37 °C for 2 min
before addition of 10 uL 500 mM potassium cya-
nide. A calibration curve of 50, 25, 10, 5, 2.5, 1, 0.5,
0.25 and 0.1 mM potassium thiocyanate solutions
was also prepared and exposed to the same condi-
tions as above, excluding the addition of potassium
cyanide. The reaction was allowed to occur for
5 min at 37 °C before termination by addition of
11 uL of 38% formaldehyde to all wells. Thiocya-
nate production was visualised by addition of
125 uL Fe(NO3)3/26% HNO; where an orange-
brown solution formed. Results were quantified by
measuring absorbance for 460 nm light in a spectro-
photometer (Multiscan GO Microplate Spectropho-
tometer, Thermo Scientific, MA, USA). All samples
were performed in duplicate and the average 460 nm
absorbance was calculated.

Statistical analysis

All statistical analyses were performed using SPSS®
Version 25 (IBM®, New York, USA) and Prism 6
(GraphPad Inc., La Jolla, USA) software. All data
were analysed using a general linear modelling ap-
proach with treatment (AL or DR) and genotype
(TejJ89, TejJ48 and TejJ114 (and where indicated,
C57BL/6J)) introduced as fixed factors, and a post
hoc Bonferroni test used for multiple comparisons. In
all cases, non-significant interactions (p > 0.05) with-
in the GLM analyses were removed in order to obtain
the best-fitting model, with only significant interac-
tions reported. All data were analysed by Grubbs
outlier test with alpha set to 5%. Unless otherwise
described, all results are presented as mean =+ stan-
dard error of the mean (SEM), with p < 0.05 regarded
as statistically significant. * denotes p <0.05, **
denotes p < 0.01 and *** denotes p <0.001.
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Results

Genotype-specific hepatic H,S production following
40% DR in female ILSXISS mice

Using the lead acetate method to determine H,S pro-
duction (Hine et al. 2015; Hine et al. 2017), we observed
a significant genotype effect (F'=12.243, p <0.001) but
no treatment effect (F=0.150, p=0.701) in the liver.
However, a significant genotype by treatment interac-
tion was detected (F'=13.833, p<0.001). Post hoc
analysis indicated that H,S production was significantly
elevated by 40% DR in strain TejJ89 (p =0.005), but
significantly reduced by 40% DR in strain TejJ48 (p =
0.031) relative to their strain-appropriate AL controls
(Fig. 1a, b). In addition, H,S production was signifi-
cantly elevated in strain TejJ89 relative to strains TejJ48
(p=0.022) and TejJ114 (p <0.001). This genotype ef-
fect was primarily driven by significantly elevated H,S
production in TejJ89 under 40% DR compared with all
other groups, with no differences in H,S production
detected between ILSXISS strains under AL feeding
(Fig. 1a, b). We also determined kidney H,S production
(Fig. S1). No significant treatment effect was detected
(F=1.540,p=0.0221), but a significant genotype effect
on kidney H,S production was seen (F=3.294, p=
0.047), being significantly elevated in strain TejJ89
relative to strain TejJ48 (p =0.050).

Transcript levels of H,S-production and -elimination
proteins in ILSXISS mice following 40% DR

In order to better understand the enzymatic path-
ways regulating hepatic endogenous H,S (see
Fig. 2) across different ILSXISS strains maintained
under AL or 40% DR, we determined gene expres-
sion levels of a suite of H,S-producing and -
eliminating proteins (Fig. 3a—i). Cse, Cbs and Mpst
transcript levels (Fig. 3a—c) were unaffected by both
genotype and treatment (see Table S2 for all
statistical output). However, a significant genotype
by treatment interaction effect was observed for both
Cbs (Fig. 3b, F=4.737, p=0.017) and Mpst (Fig.
3c, F=6.734, p=0.004), with lower expression in
strain TejJ89 under AL feeding relative to strain
TejJ114 under AL feeding (p=0.008 and p =0.024
for Chbs and Mpst respectively). Gotl (Fig. 3d) and
Ethel expression (Fig. 3e) differed by genotype
(F=17.185, p=0.003 and F=10.445, p<0.001 for

Gotl and Ethel respectively) but not by treatment,
with strain TejJ48 having significantly lower Got!/
and Ethel expression relative to strains TejJ89 and
TejJ114 (p <0.01, in all cases). 75t expression levels
(Fig. 3f) showed a significant genotype effect (F =
6.659, p=0.004), with reduced expression in liver
of TejJ89 mice compared with TejJ114 mice (p =
0.003), but again no treatment effect was detected. A
significant 75¢ genotype by treatment interaction was
also detected (F'=6.745, p=0.004), with AL TejJ89
mice having significantly lower 75¢ expression levels
compared with AL TejJ114 mice (»p<0.001), and
40% DR reducing Ts¢ expression in Tejl14 mice
(»p=0.007) relative to TejJ114 controls (Fig. 3f).
While no significant genotype nor treatment effect
on Suox expression was detected (Fig. 3g and
Table S2), a significant genotype by treatment inter-
action effect was observed (F'=5.694, p=0.008),
again with AL TejJ89 mice having significantly re-
duced expression relative to AL TejJ114 mice (p =
0.035), and 40% DR significantly reducing Suox
expression in Tejl14 mice relative to AL TejJ114
mice (p =0.008). Matla (Fig. 3h) did not show any
significant genotype effect (£'=1.069, p =0.356) but
was the only transcript that showed a significant
treatment effect (F=5.3183, p=0.030), being sig-
nificantly decreased by 40% DR across all ILSXISS
strains. No significant genotype or treatment effects
were detected for Bhmtl, Bhmt2 or Sahh (Figs. 3i-k,
Table S2).

Protein levels of H,S-production enzymes in ILSXISS
and C57BL/6J mice following 40% DR

Studies in C57BL/6J mice have repeatedly shown
that generation of hepatic H,S is driven primarily
through CSE and CBS, with CSE appearing to be
the predominant enzymatic source (e.g. Mani et al.
2014). We subsequently compared hepatic protein
levels of CSE, CBS and MPST in TejJ89, TejJ48
and TejJ114 mice with levels in C57BL/6J mice
under AL feeding and 40% DR. CSE protein levels
(Fig. 4a) were significantly altered by both genotype
(F=14.845, p<0.001) and treatment (#'=5.559, p=
0.024), with a significant treatment by genotype in-
teraction present (F'=5.990, p=0.002). CSE levels
were significantly higher in C57BL/6J mice relative
to all ILSXISS strains (p <0.001, in all cases), with
no differences in CSE levels observed between
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Fig. 1 Strain-specificity exists in hepatic H,S production follow-
ing 40% dietary restriction in female ILSXISS mice. a Hepatic
H,S production levels in TejJ89, TejJ48 and TejJ114 mice on AL
or 40% DR, as quantified by densitometry analysis of lead acetate
assay results. b Representative images of lead acetate precipitates

ILSXISS strains. CSE protein levels were elevated by
40% DR but only significantly so in C57BL/6J mice
(» =0.002). Hepatic CBS levels were also affected by
genotype (F'=6.451, p=0.001) but not by treatment
(F=0.037, p=0.848), with TejJ89 mice having in-
creased CBS levels relative to both TejJ114 (p =
0.002) and C57BL/6J (p=0.016) mice (Fig. 4b).
MPST levels were significantly altered by both ge-
notype (F'=12.984, p<0.001) and treatment (F'=
8.812, p=0.005), with a significant genotype by
treatment interaction effect (F'=9.848, p <0.001) al-
so observed (Fig. 4c). Hepatic MPST levels were
significantly elevated in TejJ89 mice compared with
all other genotypes (p<0.001, in all cases). The
elevated H,S levels observed in TejJ89 mice under
40% DR was associated with a significant elevation
in hepatic MPST levels relative to TejJ89 AL mice
(Fig. 4c, p<0.001), but 40% DR did not alter MPST
levels significantly in any other genotype compared
with their appropriate AL controls. We subsequently
determined hepatic MPST activity within our
ILSXISS mouse strains (Fig. S2), but no genotype
(F=0.144, p=0.707) nor treatment (F=2.755, p=
0.081) effect was observed. Our findings indicate that
significant genotype-specific differences exist in pro-
tein levels of the primary cellular H,S generating
enzymes CSE, CBS and MPST within mouse liver
(Fig. 4a—c). The increased H,S levels following 40%
DR in strain TejJ89 was associated with an increase
in MPST protein levels, but not in CSE (significantly
elevated in C57BL/6J mice under 40% DR) or CBS
levels, and that protein levels of these H,S generating
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formed in the assay; darker precipitates indicate higher hepatic
H,S production capacity. TejJ89 data in orange, TejJ48 data in
black, TejJ114 data in blue. Error bars represent SEM. *p <0.05,
##p<0.01

enzymes were unresponsive to 40% DR in strains
TejJ48 and TejJ114.

Discussion

A reduction in the intake of calories or in the intake of
macro- or micronutrients, termed here as dietary restric-
tion (DR), is currently the most widely employed ex-
perimental intervention to modulate ageing. Indeed, DR
has been shown to extend lifespan and healthspan in an
evolutionary diverse group of organisms (Fontana and
Partridge 2015; Speakman and Mitchell 2011), and has
also been shown to provide a number of beneficial
health effects in humans (Fontana et al. 2004; Fontana
et al. 2007). However, it is still not understood how DR
mechanistically elicits its beneficial effects. In addition,
a number of studies, particularly in mice, report that the
DR effect on lifespan and healthspan can vary signifi-
cantly depending on genetic background (Forster et al.
2003; Goren et al. 2004; Hempenstall et al. 2010; Liao
et al. 2010; Mitchell et al. 2016; Rikke et al. 2010;
Swindell 2012; Turturro et al. 1999). It is believed that
better understanding of the basis of this genetic variation
during DR may be important if we hope to translate
experimental findings from (typically) highly inbred
mouse models to genetically heterogenous humans
(Selman and Swindell 2018).

In this study, we investigated the potential relevance
of Hydrogen sulfide (H,S) in DR-induced lifespan by
comparing genetically distinct ILSXISS recombinant
inbred mouse strains that have been reported to show
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Fig. 2 Molecular pathways involved in the enzymatic production
of H,S from amino acid metabolism and subsequent elimination of
H,S by components of the sulphide disposal unit. Enzymes in red.
MAT 1a, methionine adenosyltransferase 1A; MT, methyl transfer-
ase; SAHH, S-adenosylhomocysteine hydrolase; BHMTI,
betaine-homocysteine S-methyltransferase 1; BHMT?2, betaine-
homocysteine S-methyltransferase 2; CBS, cystathionine-[3-
synthase; CSE, cystathionine-y-lyase; GOT1, glutamic-
oxaloacetic transaminase 1; MPST, 3-mercaptopyruvate
sulfurtransferase; SQR, sulphide:quinone oxidoreductase; TST,
thiosulfate sulfurtransferase; ETHE1, ethylmalonic
encephalopathy 1 protein; SUOX, sulfite oxidase

significant variation in their lifespan under 40% DR,
ranging from life extension to no response, through to
life shortening (Liao et al. 2010; Rikke et al. 2010). A
number of studies have now reported genetic or phar-
macological interventions that modulate H,S levels can
profoundly impact longevity in model organisms (Hine
and Mitchell 2015; Miller and Roth 2007; Qabazard

et al. 2013; Shaposhnikov et al. 2018; Wei and
Kenyon 2016) and protect against age-associated dys-
function (Latorre et al. 2018; Wang et al. 2019; Zhan
et al. 2018). In addition, increased hepatic H,S is a
conserved phenotype in long-lived genetic mouse mu-
tants (Hine et al. 2017), is increased significantly by DR
in C57BL/6J and DBA/2 mice (Hine et al. 2015;
Mitchell et al. 2016) and appears essential for mediating
the beneficial effects of DR (Hine et al. 2015). We found
that hepatic H,S was only elevated in female mice from
strain TejJ89 under long-term 40% DR; TejJ89 is the
single ILSXISS strain in our study reported to show DR-
induced longevity (Liao et al. 2010; Rikke et al. 2010).
In contrast, strain TejJ48 reported to be refractory to
40% DR (Liao et al. 2010; Rikke et al. 2010) showed
a significant reduction in hepatic H,S when exposed to
40% DR. In strain TejJ114 reported to show lifespan
shortening under 40% DR (Liao et al. 2010; Rikke et al.
2010), we observed no DR-associated difference in
hepatic H,S production relative to AL mice. However,
no treatment nor interaction effect was observed in
kidney H,S production, suggesting tissue-specificity
exists in the impact of DR on H,S production in mice,
in contrast to findings (H,S concentration) previously
reported in F344 rats under DR (Wang et al. 2016). In
addition, significant strain-specificity in H,S production
was also observed, being elevated in strain TejJ89 rela-
tive to both TejJ48 and TejJ 114 in the liver and elevated
in TejJ89 compared with TejJ48 in the kidney. Our
findings indicate that TejJ89 mice show a similar asso-
ciation between increased hepatic H,S production and
extended lifespan under DR reported in other mouse
strains such as C57BL/6] and DBA/2 (Mitchell et al.
2016). Consequently, our findings do further support the
premise that elevated hepatic H,S levels may be an
important mediator of the beneficial effects of DR
(Hine et al. 2015; Hine and Mitchell 2015).

To further investigate the potential processes under-
lying these strain-specific differences in H,S following
40% DR, we examined a suite of H,S-producing and -
degrading enzymes at the transcript and protein level
within ILSXISS mice. The predominately cytosolic en-
zymes cystathionine y-lyase (CSE or CGL) and cysta-
thionine (3-synthase (CBS) are the main sources of H,S
within cells (Carter and Morton 2016), and mice carry-
ing genetic defects in these enzymes are prone to a
number of pathologies (Hine et al. 2018). In particular,
elevated hepatic H,S following DR correlates with tran-
script and protein levels of CSE (Derous et al. 2017;
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Fig. 3 ILSXISS mouse strains
exhibit differential transcriptional
regulation of H,S-production and
elimination enzymes following
40% DR. Hepatic mRNA gene
expression (presented as Delta Ct
values, a lower Delta Ct indicates
a higher number of mRNA
transcripts for that particular

Cbs Mpst

gene) of H,S-producing (a—d),
H,S-eliminating (e—g) and
methionine to cysteine conversion
(h—k) genes in TejJ89, TejJ48 and
TejJ 114 mice under AL feeding or
40% DR. TejJ89 data in orange,
TejJ48 data in black, TejJ114 data
in blue. Error bars represent SEM.
*p<0.05, **p <0.01,

*#%p <0.001. Genotype (TejJ89,
TejJ48 or TejJ114) and Treatment
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Wang et al. 2016), and similarly CSE levels are elevated
in several long-lived mouse mutants (Hine et al. 2017).
Perhaps surprisingly, we did not observe any genotype
or treatment effects on transcript levels of Cse, Cbs or
Mpst, although several significant genotype and geno-
type by treatment interaction effects (Cbs, Mpst, Tst,
Suox) were detected, typically with TejJ89 AL mice
having significantly reduced expression compared with
TejJ114 AL mice. At the protein level, CSE was signif-
icantly elevated in C57BL/6J mice compared with all
ILSXISS strains, with 40% DR further increasing CSE
levels within the liver of C57BL/6J mice. However,
40% DR did not have any effect on hepatic CSE levels
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in ILSXISS mice. Hepatic CBS protein levels were
unaffected by 40% DR across all genotypes studied.
Given that both CSE and CBS levels were unaffected
by 40% DR in strain TejJ89 despite the DR-associated
increase in H,S production, we subsequently investigate
3-mercaptopyruvate sulfurtransferase (MPST). This is
the third H,S-producing enzyme within cells but its role
has been much less well characterised relative to both
CSE and CBS, particularly in the context of ageing and
DR. CSE and CBS primarily remain cytoplasmic under
normal physiological conditions, whereas MPST can
localise to mitochondria and exhibits a profound influ-
ence over mitochondrial-specific metabolism and H,S
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Fig. 4 40% DR significantly
increases cystathionine gamma- 0.025 1
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levels (Kimura 2014). Furthermore, while CSE and
CBS work in concert to convert homocysteine into
H,S via step-wise reactions, MPST generates H,S from
a distinct substrate, 3-mercaptopyruvate (Renga 2011;
Tao et al. 2017). We found MPST to be significantly
increased in the liver of TejJ89 mice under 40% DR,
although it was unaffected by DR in strains TejJ48,
TejJ114 or in C57BL/6J mice. Precisely why C57BL/
6J mice and TejJ89 mice appear to have distinct mech-
anistic routes (elevated CSE or elevated MPST respec-
tively) to achieve the same outcome of elevated hepatic
H,S under 40% DR still needs to be determined.

There are of course some caveats to our findings, not
least that this work is highly correlational. As discussed
elsewhere, the variation in phenotypic responses to DR
across different mouse strains is quite broad (Mitchell
etal. 2016; Selman and Swindell 2018; Swindell 2012).
We examined females and then only in three strains of
ILSXISS mice, albeit strains that represent the variety of
lifespan responses reported in the original two studies
(Liao et al. 2010; Rikke et al. 2010). We were vigilant in
our choice of strains in this comparative study, choosing
those that showed a similar direction of response across
both studies. In addition, and as discussed in detail
elsewhere (Selman and Swindell 2018), significant dif-
ferences in experimental design and husbandry practices
existed between the original studies. Consequently, a

fuller investigation of the lifespan response to DR in
ILSXISS mice and the potential relevance of H,S pro-
duction, particularly under graded levels of DR, is war-
ranted, but will be a major undertaking (Selman and
Swindell 2018). In addition, it will also be interesting to
investigate precisely how H,S production varies in dif-
ferent tissues and in different cellular locations follow-
ing DR. These approaches may be made more feasible
with the advent of novel chemical probes to determine
Hs,S in vivo (Arndt et al. 2017; Lau et al. 2019). How-
ever, irrespective of these caveats, we have shown that
endogenous H,S levels and associated signalling path-
ways differ significantly depending on genetic back-
ground in mice under both AL and DR conditions.
Our data suggest that, similar to previous reports, in-
creased H,S production and/or metabolism is a con-
served mechanism through which DR acts to increase
lifespan in mice (Hine et al. 2017; Hine and Mitchell
2015), but the precise cellular processes that regulate
H,S production and elimination under DR appear highly
strain- (and potentially tissue-) specific.
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