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Abstract Executive dysfunction is the most important
predictor for loss of independence in dementia. As ex-
ecutive function involves the coordination of distributed
cerebral functions, executive function requires healthy
white matter. However, white matter is highly vulnera-
ble to cerebrovascular insults, with executive dysfunc-
tion being a core feature of vascular cognitive impair-
ment (VCI). At the same time, cerebrovascular pathol-
ogy, white matter disease, and executive dysfunction are
all increasingly recognized as features of Alzheimer
disease (AD). Recent studies have characterized the
crucial role of glial cells in the pathological changes
observed in both VCI and AD. In comorbid VCI and
AD, the glial cells of the neurovascular unit (NVU)
emerge as important therapeutic targets for the preser-
vation of white matter integrity and executive function.
Our synthesis from current research identifies dysregu-
lation of the NVU, white matter disease, and executive
dysfunction as a fundamental triad that is common to
both VCI and AD. Further study of this triad will be
critical for advancing the prevention andmanagement of
dementia.
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Introduction

White matter is well recognized to be particularly vul-
nerable to cerebrovascular injury (Black et al. 2009;
Iadecola 2013). Accordingly, white matter pathology is
commonly seen in vascular cognitive impairment (VCI)
(Kalaria 2016), most often presenting with cognitive
slowing and executive dysfunction (Filley 2005,
2016). This vulnerability has been attributed, in part,
to the nature of cerebral vascular anatomy (Markus et al.
2000; Mandell et al. 2008; Iadecola et al. 2009; Wang
et al. 2016; Lin et al. 2017). However, the active and
contributing role of glial cells in white matter vascular
injury has been demonstrated by the inhibition and
modulation of these cells in recent experimental models
(Lee et al. 2013; Hou et al. 2015; Liu et al. 2015; Qin
et al. 2017; Miyanohara et al. 2018; Manso et al. 2018;
Fowler et al. 2018). As the effector cells of CNS ho-
meostasis, glial cells present crucial targets for therapeu-
tic intervention and neuroprotection (Di Benedetto and
Rupprecht 2013; Prokop et al. 2013; Ahmed et al.
2017). This pertains to VCI as well as Alzheimer disease
(AD), as the role of both cerebrovascular and executive
dysfunction is now increasingly appreciated as common
factors of AD (Korczyn 2002; Girouard and Iadecola
2005; Kirova et al. 2015; Cloutier et al. 2015; Kalaria
2016; Guarino et al. 2019). Finally, investigation of the
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neurovascular unit (NVU) in neurodegenerative disease
has identified an important intersection between cere-
brovascular and glial pathology (Zlokovic 2011). In the
context of the most prevalent forms of dementia, AD
and VCI, emerging discoveries of the pathological and
functional correlates of white matter disease are
discussed in this review.

White matter pathology and cognitive function

The neurological sciences have historically favored the
study of gray matter, even though white matter occupies
40–50% of the adult human brain (Filley 2005). Al-
though Jean-Martin Charcot described the white matter
lesions observed in multiple sclerosis and amyotrophic
lateral sclerosis in the nineteenth century (Kumar et al.
2011), it would not be until 1965 that the notion of
cerebral disconnection as a broad white matter-centric
mechanism for cognitive impairment would be intro-
duced by Norman Geschwind (Filley 2005). Following
advances in neuroimaging, the term white matter de-
mentia was introduced as a theoretical syndrome in
1988 to expand the neuroanatomical scope of dementia
research (Filley 2016). Despite the central role of white
matter pathology in VCI (Black et al. 2009; Iadecola
2013), gray matter continues to be the research focus of
cognitive function and dysfunction. However, diffusion-
weighted magnetic resonance imaging (DW-MRI) has
recently led to great advances in characterizing micro-
structural disruptions of white matter, shedding light on
the functional correlates of white matter pathology.
Concurrently, studies have begun to identify the active
role of glial cell dysfunction in neurodegenerative dis-
ease involving white matter (Kaminsky et al. 2016;
Jäkel and Dimou 2017). The striking abundance of
white matter in the frontal lobes, the seat of integration
and coordination, underscores the importance of white
matter for higher-level domains of cognition requiring
distributed processing, including executive function
(Filley 2005). The preservation of white matter integrity,
and executive function in turn, is crucial to the preser-
vation of functional independence (Razani et al. 2007;
Johnson et al. 2007; Mlinac and Feng 2016). Therefore,
the development of clinical or radiological means to
evaluate white matter integrity and characterizing its
pathological correlates will be central to identifying
new therapeutic targets for managing and preventing
dementia.

Assessment of white matter integrity

White matter degeneration can present in the form of
volume loss, measured with neuroimaging as gross at-
rophy on postmortem studies. More subtle forms of
white matter degeneration include microstructural
changes that alter molecular diffusion characteristics as
measured by DW-MRI, including an early form of this
technique, diffusion tensor imaging (DTI) (Jones et al.
2013). DTI relies on the differential displacements of
water molecules, driven by differences in tissue ultra-
structure (Soares et al. 2013). One of the most common
metrics used in DTI is fractional anisotropy (FA), which
quantifies the average restriction of water molecule
movement within a voxel. FA measures range from 0
to 1, with low values seen in the CSF-filled ventricles
where water diffusion is unrestricted in all three dimen-
sions, and high values in myelinated white matter tracts
such as the corpus callosum, where water movement is
greatly restricted to move primarily along the direction
of the axons (Salat et al. 2005; Soares et al. 2013).

In normal aging (Gunning-Dixon and Raz 2000; Van
Petten et al. 2004; Hedden and Gabrieli 2004; Head
et al. 2004; Grieve et al. 2007; Madden et al. 2009;
Sasson et al. 2013; Fjell et al. 2016; Rabin et al. 2018)
and in many different neurodegenerative conditions
(Bozzali et al. 2001; Smith et al. 2011; Metzler-
Baddeley et al. 2014; Lin et al. 2014; Cesar et al.
2015; Alves et al. 2016; Atkinson-Clement et al.
2017), loss of FA in white matter has been correlated
with cognitive impairments, most often with processing
speed and executive function. A loss of FA in white
matter tissue, where FA is expected to be high, indicates
ultrastructural changes that are presumed to be predom-
inantly the result of demyelination or alterations in
myelin (Salat et al. 2005; Jung et al. 2010; Soares
et al. 2013). However, FA also reflects axonal caliber,
injury, and density, as well as uniformity of fiber direc-
tion and gliosis. Research continues to characterize the
specific histopathological correlates of DTI metrics,
including FA, and how these radiological–
histopathological correlates change in different disease
contexts (Salat et al. 2005; Wei et al. 2015; Leemans
et al. 2019). Despite this, and with some controversy
(Jones et al. 2013), DTI measures such as FA are widely
inferred as a measure of white matter integrity. The
limitations of this interpretation are well detailed by
Jones et al. (2013), but the appeal to using DTI mea-
surements to infer functionally deleterious changes is
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supported by findings of cognitive correlates (Salat et al.
2010). While abnormal white matter diffusion parame-
ters may be biologically and clinically relevant corre-
lates, researchers shouldmaintain caution in interpreting
the specific physiological basis of these findings.

The clinical utility of measuring ultrastructural white
matter changes is further demonstrated by the potential-
ly diagnostic and prognostic value of leukoaraiosis.
Also known as white matter hyperintensities,
leukoaraiosis is the radiological phenomenon of diffuse
signal changes in cerebral white matter, appearing rela-
tively hypodense on CT or hyperintense on T2 MRI
(Clarke et al. 2000; Pettersen et al. 2008; Kalaria et al.
2012; Cai et al. 2015; Brickman et al. 2015; Lee et al.
2016). Leukoaraiotic white matter has increased diffu-
sivity, as measured by DW-MRI (O’Sullivan et al. 2004;
Altamura et al. 2016), and leukoaraiosis is an important
risk factor for stroke, dementia, and death (Debette and
Markus 2010; Brickman et al. 2012; Brickman 2013).
The term leukoaraiosis, derived from the Greek leuko
(white) and araiosis (rarefaction), was coined intention-
ally so as not to assume any particular disease etiology
(Hachinski et al. 1987); similarly, white matter
hyperintensities are strictly a radiological description
that does not imply etiology. Still to this day, the exact
processes that causes leukoaraiosis have not been deter-
mined. Vascular pathology is commonly proposed as the
underlying mechanism of leukoaraiosis (Black et al.
2009; Wardlaw et al. 2015; Shi and Wardlaw 2016;
Ter Telgte et al. 2018), although dysregulation of glial
cells, blood–brain barrier (BBB) integrity, and inflam-
matory processes have also been implicated (Raz et al.
2012; Huang et al. 2018; Chen et al. 2018).

White matter vascular pathology

White matter is particularly sensitive to vascular disrup-
tion (Black et al. 2009; Iadecola 2013). In a study of
healthy subjects, whenmild hypercapnia was induced to
produce systemic vasodilation, a significant steal phe-
nomenon was observed that resulted in reduced blood
flow to white matter (Mandell et al. 2008). The very
regions that had reduced blood flow matched the com-
mon neuroanatomical locations of leukoaraiosis, name-
ly periventricular white matter (Mandell et al. 2008;
Black et al. 2009). This was also supported by a previ-
ous study of subjects with leukoaraiosis that had normal
blood flow to gray matter but reduced white matter
blood flow (Markus et al. 2000). Reduced blood flow

indicates a poorer cerebrovascular reserve in white mat-
ter, and the white matter regions that are relatively more
prone to leukoaraiotic changes indeed fall within the
“watershed” regions in between the major arterial zones
of the brain (Markus et al. 2000; Mandell et al. 2008;
Iadecola et al. 2009; Wang et al. 2016; Lin et al. 2017).
Moreover, white matter has been shown to be highly
vulnerable to ischemic injury, with increased suscepti-
bility seen with age (Wang et al. 2016). The greater
white matter vulnerability to ischemia is attributed to a
relative paucity of collateral blood flow in deep white
matter (Iadecola et al. 2009). The high sensitivity of
oligodendrocyte precursor cells to both ischemia-
induced oxidative stress (Wang et al. 2016) and fibrin-
ogen extravasated across a disrupted BBB (Petersen
et al. 2017, 2018) further impair remyelination after
vascular injury.

Hypertension, a highly prevalent vascular condition,
also correlates with disruptions of white matter structure
(Skoog 1998; Li et al. 2016) and is a key risk factor for
leukoaraiosis (Raz et al. 2003; van Dijk et al. 2004). At
the same time, the presence of leukoaraiosis is more
common in subjects with orthostatic hypotension (Oh
et al. 2014) and increased pulse pressure (Kim et al.
2011a; Wang et al. 2015). Cerebral small vessel disease
(SVD) is an umbrella term for pathologies of perforating
cerebral arterioles, capillaries, and venules (Shi and
Wardlaw 2016) and is associated with systemic vascular
risk factors such as hypertension, atherosclerosis, diabe-
tes mellitus, and atrial fibrillation (van Norden et al.
2011). Cerebral SVD also often manifests as
leukoaraiosis (Black et al. 2009; Wardlaw et al. 2015;
Shi andWardlaw 2016; Ter Telgte et al. 2018), and thus,
white matter is generally thought to be susceptible to
common systemic cardiovascular conditions. A lot of
histopathological heterogeneity has been observed in
leukoaraiosis, so that in general, any vascular conditions
that cause cerebral hypoperfusion, BBB disruption,
chronic ischemia, microinfarcts, venous collagenosis,
vessel tortuosity, or vessel wall thickening is also
thought to cause leukoaraiosis (Gouw et al. 2011; Lin
et al. 2017; Ter Telgte et al. 2018). Cerebrovascular
disease, the underlying neuropathology of VCI, is very
heterogeneous, and multiple types of cerebrovascular
lesions can be observed in a single brain. Universally
accepted neuropathological criteria for VCI do not exist
(Korczyn et al. 2012; Sachdev et al. 2014), and the
correlations between the breadth of cerebrovascular dis-
ease and its range of clinical manifestation are an area of
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ongoing research (Kalaria et al. 2004; Jellinger 2013;
Kalaria 2016). However, it is informative to classify
cerebrovascular disease according to major etiological
categories (Jellinger 2013; Smith 2017):

& Large vessel disease or atherosclerosis: prolifera-
tion of the intima (atheroma) in medium and large
arteries, with accumulation of cholesterol and leu-
kocytes that can lead to plaque formation and calci-
fication. Plaques can rupture, causing local throm-
bosis and a single large brain infarct, or plaques can
produce emboli and multiple infarcts.

& Small vessel disease: reduced compliance in arteri-
oles and capillaries due to arteriosclerosis,
lipohyalinosis, arteriolosclerosis, and amyloid
angiopathy, resulting in lacunar infarcts, even small-
er microinfarcts, small hemorrhages, and extravasa-
tions of blood known as microbleeds.

& Cardiac: cardioembolic injury, commonly attributed
to atrial fibrillation, as well as any condition that
impairs cerebral perfusion such as cardiomyopathy,
cardiogenic shock.

& Other systemic disease: sickle cell disease, auto-
immune conditions such as vasculitis, and
noncardiogenic causes of circulatory shock.

Cerebrovascular lesions can be further categorized
according to distribution: focal, multifocal, or diffuse.
Focal lesions can be attributed to any of the etiologies
described above, but focal lesions that result in VCI
are usually the result of an infarct in functionally
critical regions. Focal lesions affecting the mesial
temporal lobe, anterior cingulate cortex, caudate, thal-
amus, angular gyrus of the dominant hemisphere, and
key white matter areas can result in strategic infarct
dementia (Korczyn et al. 2012). Multifocal lesions of
large vessel etiology can result in multiple infarct
dementia (Korczyn et al. 2012). Multifocal or diffuse
lesions of small vessel etiology are particularly het-
erogeneous and are seen in VCI attributed to multiple
lacunar infarcts, Binswanger disease, hypertensive
angiopathy, and cerebral amyloid angiopathy
(Korczyn et al. 2012; Rosenberg 2018). In two hered-
itary cerebrovascular conditions that can result in
VCI, dominant arteriopathy with subcortical infarcts
and leukoencephalopathy (CADASIL) (Jellinger
2013) and Moya Moya disease (Yamashita et al.
1983), both small and large vessel disease are seen in
a multifocal/diffuse distribution.

The categories of cerebrovascular pathologies
outlined here are far from exhaustive but do capture
some of the breadth of factors involved. Further
considerations related to neuropathological staging
include lesion severity and location(s). Sampling
strategies and the detection of white matter lesions,
including noninfarct lesions such as demyelination,
vacuolation, and diffuse gliosis, are also in ongoing
development and will likely play an important role in
correlating cerebrovascular disease and VCI (Kalaria
et al. 2004; Jellinger 2013; Kalaria 2016). This will
also contribute to developing a better understanding
of the relationship between white matter vascular
pathology and leukoaraiosis.

White matter vascular insufficiency and gliosis

In addition to the large variety of vascular abnormal-
ities observed in leukoaraiotic white matter, many
active and dystrophic glial cells are also observed.
This includes dysfunctional oligodendrocytes,
clasmatodendritic astrocytes (abnormal astrocytes
with swollen soma and short blunt processes), and
activated microglia (Gouw et al. 2011; Joutel and
Chabriat 2017; Hase et al. 2018; Fillingham et al.
2019). As glial cells actively maintain white matter
integrity and homeostasis, they present important
targets for therapeutic intervention (Di Benedetto
and Rupprecht 2013; Prokop et al. 2013; Ahmed
et al. 2017). Astrocytes interact with microglia in
inflammatory conditions and are an important factor
in both white matter maintenance and inflammation
(Harry and Kraft 2008; Matute and Ransom 2012;
Lundgaard et al. 2014; Heppner et al. 2015;
Kaminsky et al. 2016). However, neuroinflammation
in neurodegenerative diseases is thought to be driven
primarily by microglia, which are involved in both
cytokine secretion and phagocytosis (Di Benedetto
and Rupprecht 2013; Jäkel and Dimou 2017; Ahmed
et al. 2017). Indeed, preclinical studies have shown
that the inhibition of white matter microglia protected
white matter integrity and cognitive function after
cerebral hypoperfusion by induced bilateral carotid
artery stenosis (see Table 1). Cognitive and white
matter protection has also been demonstrated by
shifting microglia activation to favor M2 polariza-
tion, the anti-inflammatory microglia phenotype
(see Table 1). On the contrary, mice subject to chron-
ic cerebral hypoperfusion with knockout of CD73,
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which promotes M2 polarization (Xu et al. 2018), had
increased levels of white matter reactive astrocytes,
activated microglia, and proinflammatory cytokines,
resulting in poorer white matter lesion scores and im-
paired working memory (Hou et al. 2015). In stroke-
prone renovascular hypertensive rats, astrocyte and mi-
croglia proliferation was reduced by an agonist of the
peroxisome proliferator-activated receptor-γ agonist, pi-
oglitazone; this reduced white matter lesion scores,
Morris water maze impairment, aberrant arteriolar re-
modeling, and chronic white matter expression of pro-
inflammatory cytokines (Lan et al. 2015). Thus, microg-
lia play a central role in the vulnerability of white matter
to vascular insufficiency.

Despite the importance of both microglia and astro-
cytes in maintaining white matter in neurodegenerative

disease and in health, there is a relative paucity of
literature on how dysregulation of these white
matter glial cells affects executive function. In
two rodent studies, white matter microglial activa-
tion was associated with executive dysfunction
(Kim et al. 2016; Arinrad et al. 2017), and two
recent postmortem studies of dementia pugilistica
and alcohol-related neuropathology also demon-
strated an association between executive dysfunc-
tion with white matter astrocytosis (Kim et al.
2011b; De La Monte and Kril 2014). The preva-
lence and burden of diseases that can induce dys-
regulation of white matter microglia and astro-
cytes, and consequentially, impair white matter
integrity and executive function, warrants more
research.

Table 1 Inhibition and modulation of microglia protects white matter integrity and cognitive function in rodent models of cerebral
hypoperfusion

Treatment Study Proposed primary
mechanism

Outcomes

Cardiotonic pill* Lee et al. (2013) Inhibition of microglial
activation

Attenuated loss of white matter MBP
Attenuated ERK and p38MAPK expression
Attenuated inflammatory cytokines expression

Dimethyl fumarate Fowler et al. (2018) Modulation of microglia
and macrophage

Attenuated white matter
microglial/macrophage density

Attenuated MIP-1α expression
Rescued peak latency of evoked compound

action potentials

Fingolimod Qin et al. (2017) Shifting microglia
toward M2 polarization
via STAT3 signaling

Attenuated white matter microglial activation
and inflammatory cytokine expression

Attenuated demyelination and disorganization
of Ranvier nodes

Promoted oligodendrocytogenesis
Rescued working memory

Minocycline Manso et al. (2018) Inhibition of microglial
proliferation

Reduced white matter microglial density and
microglial proliferation

Rescued peak latency of evoked compound
action potentials

Minocycline Miyanohara et al. (2018) Inhibition of microglia
and macrophage

Reduced white matter microglial density
Rescued exploratory behavior

Knockout/knockdown Study Proposed primary mechanism Outcomes

CX3CR1/
Fractalkine-Receptor
siRNA KD

Liu et al. (2015) Inhibition of
CX3CL1/CXCR1
neuron–microglia
signaling cascade

Attenuated p38MAPK and PKC expression
Attenuated inflammatory cytokine expression
Reduced white matter lesion scores
Rescued water maze escape latency

TRPM2 KO Miyanohara et al. (2018) Inhibition of
TRPM-mediated
activation of microglia

Attenuated loss of myelin and oligodendrocytes
Attenuated increase of microglial density
Attenuated increase of inflammatory cytokines
Rescued exploratory and alternation behavior

MBP = myelin basic protein; ERK = extracellular signal-regulated kinases; p38MAPKs = p38 mitogen-activated protein kinase;MIP-1α =
macrophage inflammatory protein 1α; PKC = protein kinase C

*Herbal medicine composed of Salvia miltiorrhiza, Panax notoginseng, and Dryobalanops aromatica Gaertner
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White matter pathology and executive dysfunction

Concurrent with a growing interest in the role of glial
cells in cerebrovascular insufficiency-induced white
matter pathology, the specific cognitive manifestations
of white matter disease have also been a focus of recent
studies. Disruption of projection fibers is well appreci-
ated as a cause for sensorimotor deficits. However,
cognitive deficits can arise from the disruption of asso-
ciation fibers, which are crucial for facilitating the dis-
tributed processing needed for executive function. Ex-
ecutive function refers to a group of interdependent
cognitive functions that enable planning, mental manip-
ulation, and control over goal-directed behavior. The
core subdomains of executive function are inhibitory
control, working memory, and cognitive flexibility
(Diamond 2013), which all rely on information process-
ing in the prefrontal cortex (PFC) and its extensive
connections with other cortical and subcortical brain
regions. Although specific locations of leukoaraiosis
do associate with impairments of specific subdomains
(Smith et al. 2011), leukoaraiosis in any region is also
correlated with hypometabolism in the PFC and global
impairments of executive function (Tullberg et al. 2004;
Madden et al. 2009; Smith et al. 2011). The substantial
convergence of fiber pathways that connect the PFC
may explain how pathology in even a small focal white
matter lesion could affect metabolism in the entire fron-
tal cortex and cause broad impairments of executive
function (Filley 2005).

Of all cognitive domains, executive function is often
the most sensitive to both environmental and physiolog-
ical stressors (Diamond 2013). Accordingly, executive
function declines in late adulthood (Diamond 2013;
Harada et al. 2013), which has been linked to disrup-
tions of white matter integrity (Gunning-Dixon and Raz
2000; Van Petten et al. 2004; Hedden and Gabrieli 2004;
Head et al. 2004; Grieve et al. 2007;Madden et al. 2009;
Sasson et al. 2013; Rabin et al. 2018). Even in normal
aging, white matter volume shows a greater decline than
gray matter volume (Guttmann et al. 1998; Salat et al.
2005). For patients diagnosed with dementia or at risk of
dementia, one of the most difficult challenges is the loss
of functional independence, and the cognitive domain
that best predicts current and future functional indepen-
dence is executive function (Razani et al. 2007; Johnson
et al. 2007;Mlinac and Feng 2016). This emphasizes the
importance of supporting general white matter health for
maintaining functional independence. The three core

subdomains of executive function will be reviewed
herein.

Inhibitory control

Inhibitory control of attention, thought, behavior, and
emotions constitutes one of the core subdomains of
executive function (Diamond 2013). Inhibitory control
of attention can occur involuntarily, as with the filtering
of stimuli at the level of perception such as background
noise at a cocktail party. Inhibitory control of attention
can also occur voluntarily, as when effort is made to
ignore stimuli that distract from goal-directed behavior
(Diamond 2013). The inhibition of both mental repre-
sentations and behavior can be best appreciated in con-
ditions where such inhibition is impaired; intrusive
memories and thoughts are a core component of post-
traumatic stress disorder (Levy and Anderson 2008;
Falconer et al. 2008), substance addiction (Baler and
Volkow 2006), and the obsessive component of
obsessive-compulsive disorder (Penadés et al. 2007),
while impairments of behavioral inhibition are also seen
in substance addiction (Baler and Volkow 2006) and the
compulsions seen in obsessive-compulsive disorder
(Penadés et al. 2007). Lastly, inhibitory control of emo-
tions is regularly required in social interaction and main-
taining motivation while delaying gratification through
arduous tasks, such as writing a dissertation (Diamond
2013).

The PFC is responsible for regulating and inhibitory
control over attention, thought, behavior, and emotions.
The inferior frontal gyrus in the ventrolateral PFC
(VLPFC) plays an important role in inhibition via direct
connections to other cerebral cortices, basal ganglia, the
subthalamic nucleus, and cerebellar cortices (Chambers
et al. 2009; Arnsten and Rubia 2012). In particular, the
right VLPFC has been associated with behavioral inhi-
bition, whereas the bilateral actions of the VLPFC con-
tribute more to inhibition of attention and thoughts
(Garavan et al. 1999; Chambers et al. 2009; Arnsten
and Rubia 2012). Inhibition of emotions appears to rely
more on the bilateral activation of the ventromedial PFC
(VMPFC), which has extensive connections with the
amygdala, hypothalamus, nucleus accumbens, and
brainstem nuclei (Chambers et al. 2009; Arnsten and
Rubia 2012). Both the VMPFC and VLPFC are consid-
ered to initiate top-down control of inhibition but other
structures downstream are also crucial to inhibitory
control, namely the basal ganglia and supplementary
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motor areas (Chambers et al. 2009). While focal lesions
in any of these structures may cause specific impair-
ments of inhibition, white matter lesions in any of the
circuits that connect these structures will also impair
inhibitory control (Arnsten and Rubia 2012).

Working memory

Another core domain of executive function is working
memory, defined as the function of holding and manip-
ulating information that is not perceptually present
(mental representations) (Diamond 2013). Working
memory is often further distinguished by verbal and
nonverbal (visual–spatial) content and is utilized in all
instances of mental math, mental reorganization or re-
vision of information, and relating different pieces of
information such as verbal translation; working memory
is essential for reasoning. Working memory may often
be miscategorized as a type of short-termmemory rather
than a subdomain of executive function, but working
memory is more closely linked to executive function in
terms of neuroanatomy, childhood development, and
function (Diamond 2013).

There is considerable controversy over whether work-
ing memory is a dissociable cognitive domain. Of
course, working memory and short-term memory are
highly inter-related. This is demonstrated by short-term
memory tasks that require a longer (suprathreshold)
number of information items, wherein working memory
is automatically engaged to organize the information.
The key distinction between working memory and
short-term memory is that the former involves manipu-
lations of information in addition to the mental holding
of that information. Holding information activates the
VLPFC during tasks that require either workingmemory
or short-term memory, while working memory-
dependent tasks involving the manipulation of informa-
tion are also associatedwith activation of the dorsolateral
PFC (DLPFC) (Diamond 2013). Similarly, working
memory and inhibitory control are often functionally
interdependent and show high neural co-activation
(Diamond 2013). Working memory directs inhibitory
control, while inhibitory control regulates the informa-
tion that can occupy working memory. This has led
many to view inhibitory control as derivative; like a
spotlight, the function of working memory to enhance
specific goals or thoughts may inherently repress un-
wanted goals or thoughts, that is, inhibitory control.
Others still maintain that working memory and

inhibitory control are dissociable domains, and that men-
tal suppression requires more than just a relative lack of
mental enhancement. While this debate continues
(Diamond 2013), most will agree that all subdomains
of executive function are highly interdependent.

Cognitive flexibility

Cognitive flexibility, often referred to as behavioral
flexibility in the context of animal studies, builds on
both inhibitory control and working memory. Cognitive
flexibility describes the ability to change perspectives or
goals, which involves the inhibition of current thoughts
or goal-directed behaviors and the engagement of new
ones (Diamond 2013). Representative tasks that require
cognitive flexibility include design fluency, verbal flu-
ency, and category fluency, wherein a subject is asked
to, respectively, think of different uses of a table, differ-
ent words that begin with a certain letter, or alternate
sequentially between letters and numbers (Diamond
2013). Accordingly, cognitive flexibility is considered
to be crucial for creativity. Lesions of the dorsomedial
PFC (DMPFC) produce the most consistent impair-
ments of different types of fluency (Robinson et al.
2012; Chapados and Petrides 2013).

Another common task that requires cognitive flexi-
bility is task switching. A relatively simple form of task
switching is known as reversal, such as when a reward-
ing option is changed from a left switch to a right switch.
Lesions of the orbitofrontal cortex (OFC), located be-
tween the VMPFC and VLPFC (Carlén 2017), result in
reversal impairments (Dalley et al. 2004; Bizon et al.
2012). Amore complex form of task switching is known
as set shifting, which requires a subject to redirect their
attention between different sets of cues; this is exempli-
fied by the Wisconsin Card Sorting Task, wherein sub-
jects need to shift between sorting rules that depend on
shape, color, or number (Robinson et al. 1980). In
contrast to reversal, set shifting is impaired by lesions
of the DLPFC (Dalley et al. 2004; Bizon et al. 2012).

Both reversal and set-shifting tests have also been
adapted for rodent studies, wherein maze-based or
operant-based challenges require rodents to reverse be-
havior or shift behavior according to attentional sets
(Bizon et al. 2012). Although the functional divisions
of the PFC do not arrange in the same neuroanatomical
topography in rodents, reversal and set-shifting impair-
ments are similarly doubly dissociated in rats (Floresco
et al. 2009). Additional pathways between the PFC,
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thalamus, and striatum that also contribute to set-
shifting behavior are also conserved across species
(Floresco et al. 2009), further supporting the interpreta-
tion that behavioral flexibility in rats is still very infor-
mative for the study of cognitive flexibility in humans
(Bizon et al. 2012; Carlén 2017).

Alzheimer disease

The high co-occurrence of cerebrovascular disease and
AD (Toledo et al. 2013; Arvanitakis et al. 2016; Smith
2017) has prompted research on whether the two diseases
may have synergistic neuropathological and cognitive
effects (Iadecola 2004; Zlokovic 2005, 2011; Kisler
et al. 2017; Sweeney et al. 2019). The Nun Study found
that AD pathology was far more likely to correlate with
dementia if cortical infarcts or lacunar strokes were also
present (Snowdon et al. 1997). This finding has been
replicated, with a recent meta-analysis of 2856 cases from
10 studies finding that compared to patients with post-
mortem evidence of AD, patients with both AD neuro-
pathology and cerebrovascular disease were three times
more likely to have had clinical dementia (Azarpazhooh
et al. 2018). In a large postmortem study from the Na-
tional Alzheimer’s Coordinating Centre, 80% of patients
diagnosed with AD were also found to have cerebrovas-
cular pathology, significantly greater than the 67% of
subjects that had cerebrovascular pathology but no cog-
nitive impairment (Toledo et al. 2013). Furthermore, a
recent large cross-sectional study with participants of the
Religious Orders Study and the RushMemory and Aging
Project found the odds of a clinical diagnosis of AD to be
increased in participants that had cerebral atherosclerosis
or cerebral arteriosclerosis, confirmed postmortem
(Arvanitakis et al. 2016). Thus, the prevention and treat-
ment of cerebrovascular disease is likely to play an im-
portant role in reducing the burden of AD dementia in
addition to VCI (Hachinski and Sposato 2013; Pase et al.
2017; Azarpazhooh et al. 2018).

Role of glia in Alzheimer disease

Both neuritic plaques and neurofibrillary tangles (NFT)
are associated with astrocytosis and microgliosis
(Serrano-Pozo et al. 2011b). Whereas the cerebral bur-
den of amyloid β peptide (Aβ) plateaus early after
symptom onset (Serrano-Pozo et al. 2011b; Jack et al.
2013), astrocytosis and microgliosis continue to

increase linearly as the disease progresses (Serrano-
Pozo et al. 2011b). Moreover, astrocytosis and
microgliosis are correlated with NFT burden and loss
of cortical thickness (Serrano-Pozo et al. 2011b), raising
the question of whether these glial responses are merely
reacting to the AD pathology or playing a central role in
the disease mechanism (Heppner et al. 2015). As glial
cells are fundamental to the maintenance of CNS ho-
meostasis, including inflammatory processes, glial cells
present a favorable therapeutic target for modifying the
course of AD (Di Benedetto and Rupprecht 2013;
Prokop et al. 2013; Ahmed et al. 2017).

Neuroinflammation in AD is thought be driven pri-
marily by microglia, the brain’s resident myeloid cells,
which are involved in both cytokine secretion and
phagocytosis (Prokop et al. 2013; Heppner et al.
2015). This is distinct from the conditions that are
traditionally defined as neuroinflammatory diseases,
namely multiple sclerosis and the different forms of
encephalitis, which are driven by peripheral leukocytes
that migrate into the CNS from systemic circulation
(Heppner et al. 2015). The adaptive immune response,
mediated primarily by T and B lymphocytes, has not
been implicated in AD neuroinflammation, so the mech-
anisms seen in most autoimmune conditions are unlike-
ly to be observed in AD. Furthermore, astrocytes are
also directly involved with AD neuroinflammation (Von
Bernhardi and Eugenín 2004; Heppner et al. 2015).
Unlike in multiple sclerosis, traumatic injury, or ische-
mic stroke, astrocytes in AD do not typically form glial
scars even though they upregulate the expression of glial
fibrillary acidic protein (Heppner et al. 2015). Instead,
reactive astrocytes appear to modulate microglial func-
tion and play an important role in Aβ degradation (Von
Bernhardi and Eugenín 2004; Pascual et al. 2012;
Heppner et al. 2015). This is further complicated by
the observation of senescent or dystrophic microglia
and astrocytes associated with prolonged exposures of
high Aβ concentrations, which may indicate a crucial
decompensation in the course of AD (Thal 2012; Streit
et al. 2014; Heppner et al. 2015). It remains to be
determined which specific processes in AD neuroin-
flammation are protective and which are detrimental
(Prokop et al. 2013; Heppner et al. 2015).

Both preclinical and clinical studies suggest a critical
role of glial-mediated inflammation in AD. Cognitive
and neuropathological profiles of transgenic mouse
models of AD have been improved by a breadth of
molecules with anti-inflammatory properties:

GeroScience (2020) 42:445–465452



rapamycin, minocycline, pioglitazone, thalidomide,
etanercept, and celastrol, all of which modulate tumor
necrosis factor-α (TNF-α) signaling and the activation
of proinflammatory microglia and astrocytes (Corbett
et al. 2015; Calsolaro and Edison 2016; Decourt et al.
2016). TNF-α is a proinflammatory cytokine that plays
a pivotal role in inflammation throughout the body, and
its expression is increased by both neurons and glial
cells during both acute and chronic brain injury
(Decourt et al. 2016). Aβ activates several TNF-α-
dependent pathways, including cyclooxygenase
(COX)-mediated inflammatory processes (Medeiros
et al. 2010). Nonsteroidal anti-inflammatory drugs
(NSAIDs) reduce these inflammatory processes by
inhibiting COX in neurons, microglia, and astrocytes
(Krause and Müller 2010; Zhang et al. 2018), and
NSAIDs may also offer neuroprotection by COX-
independent pathways such as the direct promotion of
nonamyloidogenic processing of amyloid precursor pro-
tein (Kukar and Golde 2008; Zhang et al. 2018; Sanz-
Blasco et al. 2018). Cohort studies have shown promise
in reducing the risk of AD, with the most recent meta-
analysis of 236,000 participants from 16 cohort studies
citing a 19% relative risk reduction of AD diagnosis
(Zhang et al. 2018). This supports the potential of anti-
inflammatory drugs as a disease-modifying therapy, but
the optimal NSAID type and dose and the duration and
timing of treatment have yet to be identified. Skepticism
over this direction of research is raised by several studies
that showed an increased incidence of AD among
NSAID cohorts (Zhang et al. 2018). The only
randomized-controlled trial of NSAID intervention did
find reduced AD incidence if treatment was initiated in
asymptomatic individuals, but increased incidence if
treatment was initiated in patients with cognitive impair-
ment or dementia (Breitner et al. 2011), suggesting that
the timing of NSAID intervention with regard to disease
stage is a crucial factor. This consideration is likely to
extend to other anti-inflammatory drug trials, such as the
anti-TNF-α biologic, etanercept, which showed favor-
able but nonsignificant trends in phase-II trial of patients
with mild to moderate AD (Butchart et al. 2015).

In AD, glial cell density increases throughout gray
matter tissue, but also in white matter (Andrade-Moraes
et al. 2013). Oligodendrocytes provide important tropic
supports to neurons, but Aβ is toxic to oligodendrocytes
in vitro (Roth et al. 2005; Sachdev et al. 2013). Histolog-
ical changes of white matter are commonly observed in
AD; while oligodendrocyte density is decreased,

postmortem evaluation has found astrocyte and microglia
numbers to be increased in the white matter of patients
with AD dementia (Tomimoto et al. 1996; Sjöbeck and
Englund 2003). Positron emission tomography studies
have also identified increased white matter inflammation
in AD patients (Raj et al. 2017; Jeong et al. 2017).

White matter changes in Alzheimer disease

Much of AD continues to be defined by pathological
changes in gray matter, but white matter degeneration is
also observed in AD, both on imaging and in histolog-
ical samples (Bronge et al. 2002; Zhang et al. 2007;
Agosta et al. 2011; Migliaccio et al. 2012; Lin et al.
2014). In AD, white matter degeneration can range from
demyelination to gross atrophy (Agosta et al. 2011;
Maier-Hein et al. 2015; Lee et al. 2016). The specific
patterns of white matter atrophy may also be crucial to
differentiating potentially distinct forms of AD
(Migliaccio et al. 2012). Whereas late onset AD more
typically featured white matter atrophy in the medial
temporal regions, early onset AD features greater cin-
gulate atrophy (Migliaccio et al. 2012). Atypical vari-
ants of AD include the logopenic variant of primary
progressive aphasia (lv-PPA), which features more left
parietal white matter atrophy, and posterior cortical at-
rophy (PCA), which features more occipital white mat-
ter atrophy. Compared to late onset AD, more white
matter atrophy in the lateral temporal cortex, parietal
cortex, cingulum, and corpus callosumwere observed in
early onset AD, lv-PPA, and PCA (Migliaccio et al.
2012). Thus, specific patterns of white matter atrophy
may aid in characterizing specific forms of AD.

This has prompted the possibility that white matter
disease may be a core feature of AD (Sachdev et al.
2013). Whether white matter atrophy is due to local
degenerative changes or secondary to remote neuronal
injury, i.e., due toWallerian or anterograde, degeneration
has not been determined (Agosta et al. 2011). Currently,
there is more evidence in favor of white matter atrophy
as a secondary process, as gray matter and white matter
volume loss are usually correlated (Agosta et al. 2011).
However, primary local damage and retrograde damage
in the context of AD cannot be ruled out (Agosta et al.
2011). Oligodendrocytes may be sensitive to the in-
creased concentrations of Aβ seen in the brains of pa-
tients with AD, and loss of oligodendrocytes due to
increased concentrations of Aβ could contribute to white
matter demyelination and consequent degeneration
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(Roth et al. 2005; Sachdev et al. 2013). Moreover, the
specific patterns of diffusion tensor changes seen in AD
are not suggestive of Wallerian degeneration (Pierpaoli
et al. 2001; Song et al. 2002; Agosta et al. 2011). While
gray matter and white matter volume loss may be corre-
lated in AD, white matter damage seen in MCI showed
no relationship with gray matter atrophy (Agosta et al.
2011; Maier-Hein et al. 2015). This suggests that espe-
cially in the early stages of disease, white matter may
undergo atrophy due to local injury and retrograde de-
generation as well as secondary degeneration due to gray
matter injury and anterograde degeneration (Agosta et al.
2011). The growing evidence of glial dysregulation as a
common feature of AD also suggests potential inflamma-
tory mechanisms by which white matter could be dam-
aged directly (Goldberg and Ransom 2003; Sachdev et al.
2013; Raj et al. 2017), independent of gray matter senile
plaques and NFT (Serrano-Pozo et al. 2011a).

Any observed primary local damage could also be
attributed to vascular injury, as whitematter is particularly
sensitive to vascular disruption (Mandell et al. 2008;
Wang et al. 2016; Li et al. 2016) and cerebrovascular
disease is highly comorbid with AD (Toledo et al. 2013;
Smith 2017). However, there is a considerable overlap in
the findings that are conventionally attributed to purely
AD and purely vascular neuropathologies (Groves et al.
2000; de la Torre 2004; Girouard and Iadecola 2005;
Kalaria and Ballard 2006; Rodrigue 2013), with many
proposing that vascular disruption may be central to AD
as well (Moody et al. 1997; de la Torre 2002, 2004;
Kalaria et al. 2012; Cai et al. 2015; Brickman et al.
2015). The intersection of AD and VCI may be most
apparent in leukoaraiosis (Clarke et al. 2000; Pettersen
et al. 2008; Kalaria et al. 2012; Cai et al. 2015; Brickman
et al. 2015; Lee et al. 2016). Leukoaraiosis is associated
with disruptions of white matter integrity (O’Sullivan
et al. 2004; Altamura et al. 2016) and vascular pathology
(Pantoni and Garcia 1997; Wardlaw et al. 2003; Basile
et al. 2006; Mandell et al. 2008; Conklin et al. 2014;
Bernbaum et al. 2015; Shi and Wardlaw 2016; Huang
et al. 2018), but leukoaraiosis is also an important risk
factor for AD (O’Sullivan et al. 2004; Brickman 2013;
Altamura et al. 2016) and leukoaraiosis volume has also
been correlated directly with the severity of cognitive and
functional impairment in AD (Ble et al. 2006; Stout et al.
1996; Diaz et al. 1991). Recently, CSF concentrations of
Aβ were found to correlate with leukoaraiosis volume
(Van Westen et al. 2016; Pietroboni et al. 2018). In the
Dominantly Inherited Alzheimer Network (DIAN) study,

which follows a cohort of carriers of genetic mutations
known to cause early onset AD (PSEN1/2, APP),
leukoaraiosis volume began to increase significantly
6 years prior to estimated symptom onset (Lee et al.
2016). Specifically in the parietal and occipital lobe,
leukoaraiosis was significantly increased as early as
22 years prior to estimated symptom onset. This offers
strong support for leukoaraiosis as a core feature of AD
and a potential biomarker (Lee et al. 2016). However, the
pathological basis of leukoaraiosis has yet to be identi-
fied. While many studies suggest a vascular etiology for
leukoaraiosis (Wardlaw et al. 2015), dysregulation of
astrocytes in the BBB (Huang et al. 2018) and genetic
variation related to inflammation have also been impli-
cated (Raz et al. 2012). Though dysregulation of astro-
cytes and aberrant inflammation can certainly be initiated
by vascular pathology, AD-related proteinopathies may
also drive the dysregulation of glial cells and neuroin-
flammation, as discussed above.While leukoaraiosis may
already be an informative predictor for dementia, further
research is needed to characterize the etiology of
leukoaraiosis in the context of AD.

The neurovascular hypothesis of Alzheimer disease

In recognition of the high comorbidity between AD and
VCI, the neurovascular hypothesis of AD proposes that
the interaction of amyloid pathology and cerebrovascu-
lar disease is a core mechanism that leads to neuronal
injury and cognitive impairment (Zlokovic 2005). The
neurovascular hypothesis directs focus to the NVU,
which is composed of neurons, astrocytes, endothelial
cells, myocytes, pericytes, crucial extracellular compo-
nents, and resident immune cells (Muoio et al. 2014). A
crucial component of the NVU is the BBB, which
segregates the interstitial microenvironment of the
CNS and regulates the clearance of neurotoxic mole-
cules such as Aβ. The NVU also regulates the coupling
of blood flow and local metabolic demands, known as
hyperemia or neurovascular coupling (Girouard and
Iadecola 2005; Tarantini et al. 2017). Thus, the NVU
is crucial to protecting the brain from both AD pathol-
ogy and cerebrovascular disease. At the same time, the
NVU can be directly disrupted by both of these diseases
as well as systemic vascular conditions (Iadecola 2004;
Girouard and Iadecola 2005; Zlokovic 2011; Deane
et al. 2012; Halliday et al. 2016; Zenaro et al. 2017).
Experimental studies have generated evidence in
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support of the neurovascular hypothesis, identifying
potential therapeutic targets that may prevent important
neurodegenerative disease mechanisms (Iadecola 2004;
Girouard and Iadecola 2005; Zlokovic 2011; Deane
et al. 2012; Carnevale et al. 2012; Williams et al.
2012; Jin et al. 2015; Halliday et al. 2016; Zenaro
et al. 2017).

The NVU and blood–brain barrier

Autoregulation of large vessels maintains near-constant
blood flow to a large vascular territory, accomplished by
intravascular regulation of the luminal diameter to com-
pensate for fluctuations in systemic blood pressure. In
contrast, coupling occurs at the microscopic level of the
vascular bed, accomplished through a complex coordi-
nation between NVU cells responding to fluctuations in
the metabolic demands of the local parenchyma (Muoio
et al. 2014). Myocytes are the smooth muscle cells that
make autoregulation of arteries and arterioles possible,
and myocytes communicate with downstream pericytes
via gap junctions (Borysova et al. 2013). Pericytes are
also contractile cells that regulate blood flow at the level
of capillary beds and individual capillaries, and
pericytes have been found to communicate with both
endothelial cells and astrocytes (Muoio et al. 2014).
Astrocytes are considered to be the key detector of
abluminal metabolic demands, receiving glutamatergic
signals from neurons and interneurons (Muoio et al.
2014). To relay these signals and affect local blood flow,
astrocyte endfeet release vasoactive substances such as
eicosanoids which directly stimulate or inhibit the con-
traction of pericytes (MacVicar and Newman 2015).
Additionally, astrocyte endfeet release potassium ions
into blood vessels and onto myocytes, inducing vasodi-
lation (MacVicar and Newman 2015). Endothelial cells
alsomodulate vascular tone and relay signals of vascular
tone to astrocytes (Muoio et al. 2014). Importantly, cells
of the NVU are mutually dependent on crucial extracel-
lular trophic factors during both development, mainte-
nance, and ultrastructural remodeling (Muoio et al.
2014). The NVU directs the formation, maintenance,
and remodeling of the BBB, which regulates the passive
and active diffusion of molecules and ions both into and
out of the brain parenchyma. The physical barrier of the
BBB is formed in part by the complex basement mem-
brane that is maintained by both endothelial cells and
astrocytes (Zenaro et al. 2017). More recently, the pri-
mary inflammatory cells of the brain, microglia, have

also been found to respond to ischemia and contribute to
BBB and vascular remodeling by cytokine signaling.
Dysregulation of any of the NVU cells or microglia can
contribute to a dysfunctional BBB.

NVU dysfunction

The NVU maintains neurovascular coupling and the
microenvironment of the CNS, promoting healthy
CNS function. However, vascular conditions can lead
to dysregulation of the NVU, disrupting CNS homeo-
stasis. Hypertension, ischemic stroke, and covert or
“silent” brain infarcts (SBI) are among the most preva-
lent vascular etiologies that can cause NVU dysfunc-
tion. The NVU is essentially the site at which small
vessel disease occurs; arteriolosclerosis, lipohyalinosis,
microbleeds, and microhemorrhages indicate profound
disruption of the NVU (Rosenberg 2017). Due to the
diffuse nature of small vessel disease, NVU dysregula-
tion is likely to exist well beyond the immediate tempo-
ral or anatomical proximity of detectable cerebrovascu-
lar lesions, such as SBI. Impaired coupling results in
oligemia, hypoxia, and mitochondrial-mediated oxida-
tive stress (Zlokovic 2011), with further injury propa-
gated by dysregulated inflammation (Barakat and
Redzic 2016; Zenaro et al. 2017; Thurgur and
Pinteaux 2018). Meanwhile, a “leaky” BBB can result
in extravasation of circulating molecules and proteins
that have toxic and proinflammatory effects in the brain
(Zlokovic 2011; Rosenberg 2017). BBB dysfunction
has even been shown to be an independent biomarker
of cognitive dysfunction (Nation et al. 2019). Interest-
ingly, peripheral sources of circulating Aβ can enter the
CNS, induce Aβ-related pathology, and disrupt neuro-
nal function (Zlokovic 2011; Deane et al. 2012; Bu et al.
2018); this can be prevented by molecular interventions
that target specific molecules in the NVU (Deane et al.
2012). Thus, NVU dysfunction can exacerbate or result
in AD pathology. In turn, abluminal pathology such as
AD can also propagate dysregulation of the NVU and
BBB, creating a self-propagating pathological cycle.

Hypertension and the NVU

Hypertension is a highly prevalent condition, affecting
31.1% of the global adult population, of which fewer
than a third achieve blood pressure control (Mills et al.
2016). Hypertension is also recognized as a leading
vascular risk factor for stroke and dementia (Tzourio
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2007; Kennelly et al. 2009), including AD (Oveisgharan
and Hachinski 2010; Iadecola 2014; Livingston et al.
2017). Experimental animal models of comorbid hyper-
tension have been shown to exacerbate AD-related pa-
thology (Díaz-Ruiz et al. 2009; Gentile et al. 2009;
Carnevale et al. 2012, 2016; Csiszar et al. 2013;
Cifuentes et al. 2015). However, while the connection
between hypertension and cerebrovascular disease is
well established (Tzourio 2007; Kennelly et al. 2009),
it remains inconclusive whether antihypertensive thera-
py reduces AD incidence (Lithell et al. 2004; Peters
et al. 2008; McGuinness et al. 2009; Perrotta et al.
2016). The recent SPRINT-MIND study demonstrated
a reduced incidence of cognitive impairment in subjects
with intensive blood pressure control (Williamson et al.
2019), supporting the role of blood pressure manage-
ment in cognitive protection. In addition to
dysregulating cerebrovascular autoregulation, hyperten-
sion can also disrupt neurovascular coupling (Girouard
and Iadecola 2005). This was observed in an experimen-
tal hypertensive rodent model that had an attenuated
blood low response to whisker stimulation (Kazama
et al. 2003), which was further exacerbated by neocor-
tical application of Aβ or by transgenic expression of
pathogenic amyloid precursor protein (Faraco et al.
2016a). Similarly, in a clinical cohort study using posi-
tron emission tomography, hypertensive subjects dem-
onstrated a reduced hemodynamic change during a
memory task (Jennings et al. 2005). Moreover, hyper-
tension has been shown to cause BBB leakiness and the
proinflammatory activation of microglia and astrocytes
(Setiadi et al. 2018). Perivascular macrophages, resident
immune cells that are distinct from microglia, have also
been found in mice to release reactive oxygen species in
response to hypertension, resulting in neurovascular and
cognitive dysfunction (Faraco et al. 2016b). These are
some of the mechanisms by which hypertension can
disrupt the NVU and CNS function, even in the absence
of detectable cerebrovascular disease (Girouard and
Iadecola 2005).

Ischemic stroke, silent brain infarcts, and the NVU

The lifetime risk of ischemic stroke in the Framingham
study was found to be 18% for women and 15% for men
at 55 years of age (Seshadri et al. 2006). Disturbingly,
SBI are also found in 10–20% of the general elderly
population, increasing with age and hypertension
(Vermeer et al. 2007; Fanning et al. 2014) to as high as

62% in select elderly populations with other significant
morbidity (Nakagawa et al. 2000). SBI most often affect
the subcortical white matter, basal ganglia, thalamus,
and the infratentorial region (Vilar-Bergua et al. 2016).
While the chronic impact of SBI on proximal intact
NVUs is difficult to investigate, it is likely to demon-
strate similar processes seen in ischemic strokes and
small vessel disease. Following ischemic stroke, auto-
regulation and coupling are impaired even in brain
regions that appear uninjured (Girouard and Iadecola
2005). Similarly, in a transient middle cerebral artery
occlusion model, BBB disruption can be observed
30 days after injury, even in the contralateral hemisphere
(Garbuzova-Davis et al. 2014). When striatal lacunar
infarcts were modeled in a transgenic mouse model of
AD, increased APP, tau, and inflammatory microglia
were observed in the cortex and hippocampus
(Whitehead et al. 2010). In this same study, anti-
inflammatory treatment reduced the area and density
of amyloid precursor protein near the injury site. Thus,
inflammation may play an important role in propagating
AD-related pathology following NVU injury by ische-
mic stroke and SBI.

Abluminal injury: Alzheimer disease pathology
and the NVU

Aβ is generally cleared from the brain by enzymatic
degradation or by active clearance across the BBB,
mediated by the low-density lipoprotein receptor-
related protein (LRP) pathway. Endothelial cell LRP1
binds and initiates clearance of abluminal unbound Aβ
as well as ApoE-bound Aβ; interestingly, ApoE ε4
inhibits this active transport of Aβ out of the brain
(Zlokovic 2011). By impairing the clearance of Aβ,
reduced expression of LRP1 in blood vessels has been
associated with AD in both preclinical and clinical stud-
ies (Zlokovic 2011). However, Aβ can impair its own
clearance by oxidizing LRP1, which was observed in
the hippocampal tissue of AD patients (Owen et al.
2010). As Aβ is toxic to virtually all cell types in the
NVU, increased concentrations of Aβ, as seen in AD,
can directly disrupt the NVU (Veszelka et al. 2013;
Erickson and Banks 2013). Additionally, dysregulated
inflammation induced by AD pathology can further
disrupt the NVU, while failure of perivascular macro-
phages to clear Aβ can contribute to its accumulation in
the brain (Hawkes et al. 2009; Erickson and Banks
2013; Faraco et al. 2016b). Thus, the disruption of the
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NVU may be either a cause of AD, a consequence of
AD, or both. In any case, there is a strong indication that
the NVU has a central role in neurodegenerative disease.

White matter pathology and the neurovascular
hypothesis

The neurovascular hypothesis offers a potential under-
standing of AD that is non-neuron-centric (Zlokovic
2005), as it draws attention to the important role of non-
neuronal cells in the NVU. Similarly, the often-
overlooked factor of white matter disease may also play
an important role in the neurovascular hypothesis; dis-
ruption of NVUs in periventricular white matter, which is
particularly vulnerable to cerebrovascular pathology
(Markus et al. 2000; Raz et al. 2003; Vicario et al.
2005; Mandell et al. 2008; Black et al. 2009; Wang
et al. 2016; Li et al. 2016), may contribute to the accu-
mulation of cerebral Aβ and, in turn, AD. Both in pre-
clinical and clinical studies, AD pathology is associated
with impaired coupling (Tarantini et al. 2017; Kisler et al.
2017). Dramatic pericyte loss is observed in the white
matter of patients that had AD, which is also accompa-
nied with demyelination (Montagne et al. 2018). This
was further investigated in transgenic mice lacking cere-
bral pericytes, which developed white matter dysfunc-
tion, white matter atrophy, hippocampal and cortical at-
rophy, and cognitive impairments (Montagne et al. 2018).
Furthermore, a transgenic mouse model of AD treated
with simvastatin, a cholesterol-lowering drug, showed
improved coupling and cognition (Tong et al. 2012).

The role of proinflammatory astrocytes andmicroglia
in NVU injury, white matter integrity, and cognitive
impairment is also strongly supported; recent experi-
mental animal studies showed that targeted modulation
of astrocyte- and microglia-mediated inflammation
protected white matter ultrastructure, white matter func-
tion, and cognition following chronic hypertension (Lan
et al. 2015) and hypoperfusion bilateral common carotid
artery stenosis (Table 1). In elderly individuals with
hypertension and/or diabetes mellitus type 2,
neurovascular coupling was measured by changes in
blood flow velocity in the middle cerebral artery during
a series of cognitive evaluations. More responsive cou-
pling was correlated with better scores on cognitive
flexibility tasks and higher white matter FA, an indicator
of white matter integrity (Sorond et al. 2013). In the
same study, consumption of cocoa flavanol for 30 days
improved coupling and behavioral flexibility scores,

which was attributed to the beneficial effects of cocoa
flavanols on systemic and cerebral vascular function
(Sorond et al. 2013). Altogether, these studies strongly
indicate that white matter inflammation and cerebrovas-
cular disease play an important role in the pathogenesis
of executive dysfunction and AD.

Conclusion

Although the NVU, white matter disease, and executive
dysfunction have been relatively understudied in de-
mentia, advances in cognitive testing and imaging tech-
nology have provided recent leaps in characterizing this
triad, refining what may have been previously referred
to as white matter dementia. The disease processes of
the aging cerebral vasculature and brain parenchyma are
synergistic at the NVU. In particular, NVU dysfunction
is likely to underlie the vulnerability of white matter to
cerebrovascular injury and, in turn, executive dysfunc-
tion. Thus, NVU dysfunction may be the fundamental
disease process that accounts for the frequent comorbid-
ity of VCI and AD. This is supported by studies of
neurodegenerative pathology, the epidemiology of
mixed dementia, and the neurovascular hypothesis of
AD. This also highlights the manifold importance of
characterizing NVU dysfunction and identifying associ-
ated therapeutic targets. Fortunately, the cells that form
the NVU are relatively biologically accessible and are
actively involved in maintaining brain homeostasis, fur-
ther supporting the therapeutic potential of intervention
at the NVU. Targeting the glial cells of the NVU prom-
ises to preserve white matter integrity and executive
function, which are now clinically quantifiable and,
above all, important for preserving the quality of life in
older age and for patients diagnosed with dementia.
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