
ORIGINAL ARTICLE

Human brain networks: a graph theoretical analysis
of cortical connectivity normative database from EEG data
in healthy elderly subjects

Fabrizio Vecchio & Francesca Miraglia & Elda Judica &

Maria Cotelli & Francesca Alù & Paolo Maria Rossini

Received: 20 January 2020 /Accepted: 1 March 2020
# American Aging Association 2020

Abstract Moving from the hypothesis that aging pro-
cesses modulate brain connectivity networks, 170
healthy elderly volunteers were submitted to EEG re-
cordings in order to define age-related normative limits.
Graph theory functions were applied to exact low-
resolution electromagnetic tomography on cortical
sources in order to evaluate the small-world parameter
as a representative model of network architecture. The
analyses were carried out in the whole brain—as well as
for the left and the right hemispheres separately—and in
three specific resting state subnetworks defined as fol-
lows: attentional network (AN), frontal network (FN),
and default mode network (DMN) in the EEG frequency
bands (delta, theta, alpha 1, alpha 2, beta 1, beta 2,
gamma). To evaluate the stability of the investigated
parameters, a subgroup of 32 subjects underwent three
separate EEG recording sessions in identical environ-
mental conditions after a few days interval. Results
showed that the whole right/left hemispheric evaluation
did not present side differences, but when individual

subnetworks were considered, AN and DMN presented
in general higher SW in low (delta and/or theta) and
high (gamma) frequency bands in the left hemisphere,
while for FN, the alpha 1 band was lower in the left with
respect to the right hemisphere. It was also evident the
test-retest reliability and reproducibility of the present
methodology when carried out in clinically stable
subjects.

Evidences from the present study suggest that graph
theory represents a reliable method to address brain
connectivity patterns from EEG data and is particularly
suitable to study the physiological impact of aging on
brain functional connectivity networks.

Keywords Graph theory . Small world . Functional
connectivity . EEG . eLORETA, biotechnical innovation

Introduction

Understanding the relation between structure and func-
tion of the brain is one of the basic goals of neurosci-
ence. Considering the brain as a complex matrix of
dynamically interacting neuronal assemblies which
could be modeled by stable (maintained in time) or
unstable (changing in time) networks on the basis of
daily experience and individual background, the study
of network science offers new insights into higher level
brain processes such as memory, planning, problem
solving, decision-making, sensorimotor skills, emo-
tions, language, and abstract reasoning as well as vari-
ous types of brain/mind pathophysiology.
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Watts and Strogatz introduced a model—the so-
called small world—for brain networks that allows an
optimal balance between local specialization
(segregation) and global integration (Watts and
Strogatz 1998). This novel approach, based on graph
theory, is a promising way to characterize brain func-
tional organization (Bassett and Bullmore 2006;
Bullmore and Sporns 2009; Ferreri et al. 2014; Stam
and Reijneveld 2007). It provides insights to evaluate
whether the functional connectivity patterns between
brain areas reproduce the organization of theoretically
efficient, flexible, or robust networks (based on the
strength of synchronization in the time-varying oscilla-
tory electromagnetic activity of different brain regions
as measured by EEG or MEG).

The human brain consists of complex inhibitory and
excitatory circuits of functionally specialized areas with
a continuous interplay which fluctuates in time within a
millisecond frame for sharing and integrating informa-
tion. The white-matter (axonal) fibers provide the ana-
tomical basis for signal transfer and communication;
these connections are not random, but are organized in
a so-called small-world network topology. The topology
of a small-world network is characterized by a high
degree of local clustering (segregation) and the presence
of long-distance connections (integration) that secures a
high level of global communication efficiency. Small-
world network organization in brains of healthy humans
has been previously described (Bassett et al. 2006;
Bullmore and Sporns 2009; Gong et al. 2009; Smit
et al. 2008; Sporns and Zwi 2004; Stam et al. 2007;
Stam and Reijneveld 2007); however, only few of them
have investigated the impact of brain diseases on the
small-world architecture (Bartolomei et al. 2006;
Micheloyannis et al. 2006; Ponten et al. 2007).

Recent studies (Miraglia et al. 2016; Miraglia et al.
2017; Vecchio et al. 2014a; Vecchio et al. 2014b) inves-
tigated brain developmental changes in physiological
and pathological aging by analyzing the small-world
network through EEG signals. Results were obtained
with a method based on estimating the sources of EEG
signals (exact low-resolution electromagnetic tomogra-
phy [eLORETA]; most likely not affected by the ambi-
guity of localization and reference dependence), and
omitted zero phase angle coherences to avoid undue
inflation of coherence by volume conduction (Cao and
Slobounov 2010; Lehmann et al. 2012). This method is
artifact-free, since artifacts such as eye blinking and
muscle activity were identified and excluded by the

independent component analysis (ICA) composition
and directly using the current density obtained from
the inverse methods; the weights for the brain network
parameters were extracted.

The aim of the present study was to investigate the
functioning of three specific brain networks: attentional
network, frontal network, default mode network. With
the present investigation, we sought to contribute to the
estimation of spontaneous brain EEG in human to assess
the importance of that effect for clinical examinations of
individual subjects. The interest was to determine
whether there are small-world attributes within each
hemisphere and whether these topological properties
show hemispheric-specific network patterns.

To the best of our knowledge, no previous studies
either provided normative data in healthy elderly large
population or explored the test-retest stability of the
measured parameters as a background for clinical
application.

Subjects and methods

Participants

A total of 170 healthy human volunteers (mean age =
66.7 ± 0.8 (standard error) years) were recruited. All
subjects were right-handed at Handedness Question-
naire (Salmaso and Longoni 1985). Exclusion criteria
included a history of neurological, cognitive, or psychi-
atric disorder; and current treatment with vasoactive or
psychotropic medication. The study was approved by
the local Ethical Committee. Experimental procedures
were conformed to the Declaration of Helsinki and
national guidelines.

Furthermore, 32 subjects underwent two recording
sessions in nearly identical environmental conditions
separated by about 2 days, introducing the factor time
(first, second, and third recording sessions).

Data recordings and preprocessing

EEG recordings were carried out with several digital
EEGmachines from at least 19 electrodes (Fp1, Fp2, F7,
F8, F3, F4, T3, T4, C3, C4, T5, T6, P3, P4, O1, O2, Fz,
Cz, and Pz) positioned according to the International
10–20 system. The choice of having a standard 19-
electrode montage was pursued in order to create a
normative database immediately transferable to a
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clinical scenariowhere such an EEGmontage represents
the routine standard. Two separate channels recording
vertical and horizontal eye movements (EOGs) were
used to monitor blinking and saccades. Impedance was
kept below 5 kΩ and the sampling rate frequency was
set up at least at 256 Hz. Electroencephalographic sig-
nals were measured at rest, in at least 5 min of closed
eyes and no task conditions. During the recording, sub-
jects were awake, seated, and relaxed in a sound atten-
uated and dimly lit room.

The data were processed in MATLAB (MathWorks,
Natick, MA) using homemade scripts based on
EEGLAB toolbox (Swartz Center for Computational
Neurosciences, La Jolla, CA; http://www.sccn.ucsd.
edu/eeglab).

The EEG recordings were band-pass-filtered from
0.2 to 47 Hz using a finite impulse response (FIR) filter.
Imported data were divided into 2 s. Epochs and visible
artifacts in the EEG recordings (i.e., eye movements,
cardiac activity, and scalp muscle contraction) were
removed using an ICA procedure allowing identifica-
tion and extraction of ocular artifact components from
the EEG data. ICA is a blind source decomposition
algorithm that enables the separation of statistically
independent sources frommultichannel EEG recordings
(Hoffmann and Falkenstein 2008; Iriarte et al. 2003;
Jung et al. 2000). ICAwas performed using the Infomax
ICA algorithm (Bell and Sejnowski 1995) as imple-
mented in the EEGLAB. Artifact-free EEG signals were
used for further analyses.

Functional connectivity of cortical source analysis

Brain connectivity was computed using exact low-
resolution electromagnetic tomography (eLORETA)
(Pascual-Marqui et al. 2011) software on regions of
interest (ROIs) defined according to the Brodmann areas
(Bas): 42 ROIs (BAs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13,
17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47),
for the left and for the right hemispheres, and a number
of ROIs in three specific resting state subnetworks
(Allen et al. 2011; Miraglia et al. 2015) detailed as
follows: 13 ROIs in the attentional network (BAs 6, 7,
8, 9, 10, 21, 22, 31, 32, 39, 40, 45, 47); 9 ROIs in the
frontal network (BAs 2, 7, 8, 9, 10, 40, 44, 45, 46); 8
ROIs in the default mode network (BAs 7, 8, 10, 23, 31,
32, 39, 46), for the left and the right hemispheres sepa-
rately (see Fig. 1).

ROIs are needed for the estimation of electric neuro-
nal activity that is used to analyze brain functional
connectivity.

Among the eLORETA current density time series of
the ROIs, intracortical lagged linear coherence, extract-
ed by “all nearest voxels” for the 84 ROIs and centered
on each BA of interest by a sphere of 19 mm for the
resting subnetworks, was computed (Pascual-Marqui
2007; Pascual-Marqui et al. 2011) between all possible
pairs of the ROIs for each of the seven independent EEG
frequency bands (Kubicki et al. 1979) of delta (2–4 Hz),
theta (4–8 Hz), alpha 1 (8–10.5 Hz), alpha 2 (10.5–
13 Hz), beta 1 (13–20 Hz), beta 2 (20–30 Hz), and
gamma (30–45 Hz), for each subject.

Moving from the definition for the complex valued
coherence (Lehmann et al. 2012; Nolte et al. 2004)
between time series x and y in the frequency band ω,
which is based on the cross-spectrum given by the
covariance and variances of the signals, the lagged
linear coherence in the frequency band ω is reported
on the following equation (Pascual-Marqui 2007;
Pascual-Marqui et al. 2011):

LagR2
xyz ¼

ImCov x; yð Þ½ �
Var xð Þ � Var yð Þ− ReCov x; yð Þ½ �2

where Var and Cov are variances and covariance of the
signals, respectively.

Fig. 1 Schematic illustration of considered networks: attentional
(AN) Brodmann areas (BA) 6, 7, 8, 9, 10, 21, 22, 31, 32, 39, 40,
45, 47; frontal network (FN) BA 2, 7, 8, 9, 10, 40, 44, 45, 46;
default mode network (DMN) BA 7, 8, 10, 23, 31, 32, 39, 46
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This equation was developed to provide a measure of
true physiological connectivity not affected by volume
conduction and with low spatial resolution.

The values of connectivity computing between all
pairs of ROIs for each frequency band and for each
subject were used as a measure of weight of the graph
in the following graph analyses.

Graph analysis

A network is a mathematical representation of a real-
world complex system and is defined by a collection of
nodes (vertices) and links (edges) between pairs of
nodes. Nodes in large-scale brain networks represent
brain regions, while links represent anatomical, func-
tional, or effective connections, depending on the
dataset. Anatomical connections typically correspond
to white matter fiber tracts between pairs of gray matter
relays (cortical areas or subcortical relays). Functional
connections correspond to magnitudes of temporal cor-
relations in activity and may occur between pairs of
anatomically unconnected regions.

The nature of nodes and links in individual brain
networks is determined by combinations of brain map-
ping methods, anatomical parcellation schemes, and
measures of connectivity. Many combinations occur in
various experimental settings (Horwitz 2003). Nodes
should ideally represent brain regions with coherent
patterns of extrinsic anatomical or functional connec-
tions (Rubinov and Sporns 2010). Undirected and
weighted networks based on the connectivity between
different ROIs were then built. The nodes of the network
were defined as the ROIs and the edges of the network
were weighted by the lagged linear connectivity values
(Cao and Slobounov 2010). Two coremeasures of graph
theory were computed: weighted characteristic path
length and weighted clustering coefficient, representa-
tive of global connectedness and local interconnected-
ness, respectively (Watts and Strogatz 1998).

Originally described in social networks, the “small-
world” property combines high levels of local clustering
among nodes of a network (to form families or cliques)
and short paths that globally link all nodes of the network.
This means that all nodes of a large system are linked
through relatively few intermediate steps, despite the fact
that most nodes maintain only a few direct connections—
mostly within a clique of neighbors. Small-world orga-
nization is intermediate between that of random net-
works, the short overall path length of which is associated

with a low level of local clustering, and that of regular
networks or lattices, the high-level of clustering of which
is accompanied by a long path length.

The measure of network small-worldness (Sw) is
defined as the ratio between C and L individually nor-
malized with respect to the frequency bands (Miraglia
et al. 2020; Vecchio et al. 2019a; Vecchio et al. 2018a;
Vecchio et al. 2018b; Vecchio et al. 2019b)

The Sw coefficient is used to describe the balance
between the local connectedness and the global integra-
tion of a network. Small-world organization is interme-
diate between that of random networks, the short overall
path length of which is associated with a low level of
local clustering, and that of regular networks or lattices,
the high-level of clustering of which is accompanied by
a long path length. The “small-world” property com-
bines high levels of local clustering among nodes of a
network (to form families or cliques) and short paths
that globally link all nodes of the network. This means
that all nodes of a large system are linked through
relatively few intermediate steps, despite the fact that
most nodes maintain only a few direct connections—
mostly within a clique of neighbors.

In particular, the networks of the present study
are designed as undirected and weighted cerebral
networks. The nodes are represented by the BAs
and the edges are weighted by lagged linear connec-
tivity values. We computed Lw and Cw as a mea-
sure of integration and segregation of the network,
respectively, and Sw as a measure of global brain
network organization.

Statistical evaluation

Analysis of variance (ANOVA) was used between the
ROI indices computed in the three populations for all the
frequency bands. Although data were normally distrib-
uted, ANOVAwas chosen since it is known to be robust
with respect to the departure of normality and homosce-
dasticity of data being treated (Zar 1984). Greenhouse
and Geisser correction was used for the protection
against the possible violation of the sphericity assump-
tion in the repeated measures ANOVA. Besides, post
hoc analysis with Duncan’s test and a significance level
at 0.05 was performed. All the statistical analyses were
performed with the software Statistica (StatSoft Inc.,
www.statsoft.com).

Furthermore, in order to find differences between the
two hemispheres, a two-way ANOVA was evaluated
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among the factors: hemisphere (left, right) and band
(delta, theta, alpha 1, alpha 2, beta 1, beta 2, and gamma)
for the whole hemisphere and for each of the subnet-
work (attentional network (AN); frontal network (FN);
default mode network (DMN)).

Finally, in order to evaluate the within-subject test-
retest variability, ANOVA was conducted for small
world, computed in each frequency band. The signifi-
cance level was set at p < 0.05 and the ANOVAs were
performed between two factors: time (first, second, and
third recording sessions) and band (delta, theta, alpha 1,
alpha 2, beta 1, beta 2, and gamma).

Results

Graph theory based on the EEG cortical sources
as estimated by eLORETA

The evaluation of the normalized small world showed a
typical trend as reported in Fig. 2; the normative data of
this group of subjects and their 5th percentile values are
reported in Table 1.

In order to find differences between the two hemi-
spheres, a two-way ANOVA was evaluated among the
factors: hemisphere (left, right) and band (delta, theta,
alpha 1, alpha 2, beta 1, beta 2, and gamma). No statis-
tical difference between the left and right SW for each
band (F(6, 1002) = 3.2180) was found (see Fig. 3).

Furthermore, in order to find differences between the
right/left hemispheric subnetworks, in each (Fig. 4) of
the attentional network (AN), frontal network (FN), and
default mode network (DMN), a two-way ANOVAwas

evaluated among the factors: hemisphere (left, right) and
band (delta, theta, alpha 1, alpha 2, beta 1, beta 2, and
gamma).

In AN (F(6, 774) = 6.7446, p = 0.00000), delta
(p < 0 .009) , t h e t a (p < 0 .002) , and gamma
(p < 0.000004) presented higher SW in the left
hemisphere.

In FN (F(6, 774) = 5.0472, p = 0.00004), alpha 1
(p < 0.031) presented higher SW in the right hemi-
sphere, while gamma (p < 0.00001) presented higher
SW in the left hemisphere.

In DMN (F(6, 774) = 4.6416, p = 0.00012), theta
(p < 0.0015) and gamma (p < 0.0008) presented higher
SW in the left hemisphere.

Within-subject test-retest analysis

The ANOVA, performed on the three recordings of the
32 subjects, showed that no interaction including time
resulted a significant level (p > 0.5), highlighting the
stability of the measured parameters within the present
methodology when carried out in clinically stable sub-
jects and in line with a recent study with a higher
number of subjects (Vecchio et al. 2019a). As a control
analysis, we also performed a nonparametric statistic
(Friedman’s ANOVA) for each band and the results
confirmed the stability of the measured parameters.

Discussion

Brain connectivity datasets comprise networks of cere-
bral regions directly connected by anatomical tracts or

Fig. 2 Small world showed a
typical trend in the present 170
subjects
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by functional associations. Brain networks represent an
individual “fingerprint” deriving from personal life ex-
perience and skills; however, some generalized modules
can be identified. They are invariably complex, share a
number of common features with networks from other
biological and physical systems, and may hence be
characterized by using complex network mathematical
methods. The concept of functional connectivity is
viewed as pivotal for understanding the organized be-
havior of anatomical regions in the brain during their
activity. This organization is probably based on the
interaction between different and variably specialized
cortical sites. Cortical functional connectivity estimate
aims at describing these interactions as connectivity
patterns, which reflect strength of the information flow
among the involved cortical areas.

Theoretical graph approach can be a very useful tool,
intercepting some global and local features in the func-
tional connectivity patterns estimated from the EEG
along both physiological and pathological aging
(Miraglia et al. 2015; Miraglia et al. 2016; Miraglia
et al. 2017; Miraglia et al. 2018; Rossini et al. 2016;
Vecchio et al. 2014a; Vecchio et al. 2015; Vecchio et al.

2018a; Vecchio et al. 2017a; Vecchio et al. 2014b;
Vecchio et al. 2017b; Vecchio et al. 2016; Vecchio
et al. 2018b; Vecchio et al. 2017c). It is worth mention-
ing that the measured parameters display little within-
subject and among-subject variability and that a test-
retest variability analysis showed that no interaction
including time was significant, highlighting the stability
of the present measurements in line with a previous
study from our group (Vecchio et al. 2019a).

The results of the present work can be summarizing
as follows: for the attentional network, delta, theta, and
gamma rhythms presented higher SW in the left hemi-
sphere; for the frontal network, alpha 1 rhythms present-
ed higher SW in the right, while gamma presented
higher SW in the left hemisphere; for the default mode
network, theta and gamma rhythms presented higher
SW in the left hemisphere.

In particular, the mentioned three networks were
selected for covering human abilities in the following
manner:

Attentional network: cognitive properties such as
executive functions such as working memory,

Table 1 Mean small world

Delta Theta Alpha 1 Alpha 2 Beta 1 Beta 2 Gamma

Mean 1.041169 1.037566 1.002419 1.001883 1.028932 1.033532 1.04276

5 percentile 0.810258 0.715102 0.6192 0.597465 0.749131 0.766062 0.613313

Fig. 3 Small world in the left and
right hemispheres separately
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language, decision-making, visuospatial abilities,
and also alerting, orienting, and executive control
(Keehn et al. 2013; Petersen and Posner 2012;
Posner and Petersen 1990).
Frontal network: language domain, in particular,
functional coupling between frontal areas was
found to be related to performance in grammar-
learning task in healthy older adults (Antonenko
et al. 2013; Antonenko et al. 2012), task-related
activity of a semantic fluency paradigm and
resting-state functional connectivity (Meinzer
et al. 2012).
Default mode network, as a network of intrinsic
functional connectivity, well represented in the rest-
ing state condition as a sign of mental reorganiza-
tion and readiness to execute a task. DMN is asso-
ciated with autobiographical memory and habitual,
self-referential thought (Buckner et al. 2005;
Greicius et al. 2003; Raichle et al. 2001).

Results showed that while evaluating the whole
hemispheres did not present differences but when each
subnetworks are considered, in the left hemisphere, AN
and DMN presented in general higher SW in low (delta
and/or theta) and high (gamma) frequency bands, while
in FN, alpha 1 was lower, with respect to the right
hemisphere.

These results are in line with previous clinical evi-
dence (Miraglia et al. 2015; Vecchio et al. 2014a;
Vecchio et al. 2014b) in which higher levels of delta
and theta were accompanied by a lower level of alpha
SW in elderly subjects with respect to demented pa-
tients. Furthermore, it should be noted that several stud-
ies of our group (Vecchio et al. 2017b; Vecchio et al.
2016) demonstrated that small-world characteristics
could be modified by age or neurodegeneration in the
sense of a reduction of low- and high-frequency

rhythmic EEG oscillations (delta and gamma) and an
increase in alpha bands.

Keeping in mind the above findings and considering
that small-world architecture of hemispheric functional
network could represent an optimal organizational pat-
tern according to evolution and development, it could be
argued that—as above described of a general better
cognitive performance—there is a more specific in-
volvement of left subnetworks with intrinsic character-
istics (higher involvement of delta, theta, and gamma
bands in AN and DMN, alpha 1 band in FN).

Hemispheric damage in humans suggests that the
two cerebral hemispheres have complementary func-
tions: the left hemisphere (LH) is specialized for lan-
guage and action, and the right hemisphere (RH) for
attention and visual spatial perception. The split brain
further suggests that each hemisphere is a complete
cognitive system. In the normal brain, we can therefore
observe asymmetries at all levels of analysis. Anatomi-
cal asymmetries show larger perisylvian language areas
in the LH. Neurochemical asymmetries suggest LH
specialization for activation (dopamine) and RH special-
ization for arousal (norepinephrine). Physiological
asymmetries show greater RH than LH activation for
orienting of spatial attention, the perception of faces and
musical melodies, spatial imagery, encoding and retriev-
al of nonverbal information, and pragmatic aspects of
language processing. LH activation is greater for per-
ception of words and objects; processing of the sound,
grammar, and meaning of words; and encoding and
retrieval of verbal semantic memory. There is also evi-
dence for individual differences in emotional processing
based on frontal lobe EEG asymmetry. Behavioral
asymmetries in the normal brain using hemifield
tachistoscopy and dichotic listening show LH speciali-
zation for phonetic and grammatical language process-
ing which, however, is not exclusive. The discrepancies

Fig. 4 Small world in the left and right subnetworks: attentional network (AN), frontal network (FN), default mode network (DMN)
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between clinical-neurological and normal asymmetries
suggest that the damaged hemisphere inhibits residual
competence on the other side (Zaidel 2001).

Several evidences also showed frequency-dependent
asymmetry in the brain. Regarding alpha band, EEG
studies have highlighted that alpha-band activity is rel-
atively reduced over the occipital-parietal areas of the
hemisphere contralateral to the direction of spatial atten-
tion. Although the inverse problem means that scalp
locations cannot be mapped one-to-one to neural
sources, source models suggests that, at a gross level,
asymmetries observed on the scalp reflect functional
asymmetries in underlying neural systems (Pizzagalli
et al. 2005; Smith et al. 2018). By far the most com-
monly studied EEG asymmetry resides in the alpha
band (8–13 Hz) over frontal sites (Allen et al. 2018).
Frontal alpha asymmetry can be recorded either in the
resting state. Alpha is commonly taken to reflect the
inverse of cognitive activity (Bazanova and Vernon
2014; Coan and Allen 2003), as alpha suppression is
associated with attentional and cognitive engagement
(Mazaheri et al. 2014; Ocklenburg et al. 2019). On the
other hand, Ocklenburg and colleagues observed signif-
icant asymmetries for example in lower and higher
frequency bands, in particular in fronto-central electrode
sites (Ocklenburg et al. 2019).

Evidences from the present study—by comparing
cortical sources of the EEG signals and graph theory
approach—confirm the utility to adopt a mathematical
analysis to investigate relevant features in real complex
brain networks. Results are compatible with the hypoth-
esis that processes as those revealed by changes in
functional networks, may represent a facet of normal
human adult brain aging. In this sense, graph theory
applied to EEG can help the analysis of connectivity
patterns particularly in their dynamic properties thanks
to the high temporal resolution of the EEG signals.

Although the age-related alteration of the present
parameter could be an interesting analysis, the aim of
the present study was at this stage to validate a database
with the aim to immediately transfer to a clinical sce-
nario of pathological aging people. In future study,
collecting a high number of younger subjects, the age-
related modulation should be analyzed.

In conclusion, graph analysis tools described here
represent an interesting probe to study the distinctive
features of physiological aging focusing on functional
connectivity networks. Applied to patient data, this
technique might provide more insight in the

pathophysiological processes underlying age-related
brain disconnection as well as for monitoring the impact
of eventual pharmacological and rehabilitative
treatments.
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