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Abstract
Autophagy allows for cellular material to be delivered to lysosomes for degradation resulting in basal or stress-induced
turnover of cell components that provide energy and macromolecular precursors. These activities are thought to be
particularly important in cancer where both tumor-promoting and tumor-inhibiting functions of autophagy have been
described. Autophagy has also been intricately linked to apoptosis and programmed cell death, and understanding these
interactions is becoming increasingly important in improving cancer therapy and patient outcomes. In this review, we
consider how recent discoveries about how autophagy manipulation elicits its effects on cancer cell behavior can be
leveraged to improve therapeutic responses.

Facts

● Autophagy has complicated and often competing roles
in cancer.

● There are five distinct stages: initiation, nucleation of the
autophagosome, expansion and elongation of the
autophagosome membrane, closure and fusion with the
lysosome, and degradation of intravesicular products.
Each stage has a subset of potential therapeutic targets
for inhibiting autophagy in humans.

● Inhibition of autophagy using chloroquine or hydroxy-
chloroquine has already shown promise in clinical trials
and numerous other clinical trials are ongoing to
determine the optimal tumors to treat and chemotherapy
combinations.

● Markers of autophagy dependence including BRAF
alterations, KRAS mutations, and EGFRvIII mutations
may provide a way to select patients that will have a
maximal response to autophagy inhibition therapy.

● Autophagy interacts with apoptosis to define a tumor
cell’s apoptotic threshold.

Open Questions

● How should we target autophagy to maximize benefit—
early vs. late stage targets; inhibition or stimulation?

● How do we best understand the molecular mechanisms
underlying autophagy’s effects on tumor behavior and
how our deliberate interventions to target the pathway
actually work?

● How do we develop rationally based interventions to
manipulate autophagy to improve cancer therapy?

● Will more potent and selective autophagy inhibitors
improve on the clinical benefits that we have seen with
chloroquine and hydroxychloroquine?

Introduction

In 2016, Yoshinori Ohsumi was awarded the Nobel Prize
for Physiology or Medicine for his work on autophagy and
its impact in the study of human health and disease [1]. Its
role in cancer therapy is particularly important. Indeed,
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although it is well accepted that autophagy is important in
many diseases, until now, the majority of clinical studies
that involve deliberate attempts to manipulate autophagy are
in cancer therapy, almost always in patients with advanced
disease. It is felt that autophagy is an important mechanism
to prevent cancer development in both cell autonomous and
non-cell autonomous methods. Autophagy maintains nor-
mal cell homeostasis through the removal of oncogenic
protein substrates, toxic unfolded proteins and damaged
organelles. This helps prevent chronic cellular damage and
transition into a cancer-initiating cell [2]. Autophagy also
works with immunosurveillance to provide a non-cellular
autonomous cancer prevention method. For example,
decreased autophagy is associated with infiltration of reg-
ulatory T cells that suppress the immune system and
decrease effective immunosurveillance allowing for
increased tumor initiation [3]. Once malignant cancers are
fully established, increased autophagy enables tumor cell
survival and growth [2, 4]. Thus, in premalignant lesions,
enhancing autophagy might prevent cancer [5]. Conversely,
in advanced cancers, while both enhancing autophagy and
inhibiting it have been proposed as therapeutic strategies
[4, 6, 7], clinical interventions to deliberately manipulate
autophagy in cancer therapy are already underway [7] with
the vast majority focused on inhibiting autophagy. These
studies focus on blocking the recycling mechanism of
autophagy to prevent the renewal of cellular proteins and
other molecules that help cancer cells survive under
stressful conditions such as hypoxia [8–10], nutrient
deprivation [11, 12] and to enhance other cancer treatments
including chemotherapy [13] and radiation [14]. Autophagy
can have both tumor cell autonomous and non-autonomous
promoting effects on tumor growth [15] and both the
degradative process of autophagy itself related but distinct
degradative processes as well as non-degradative activities
of the autophagy machinery can affect tumor cell behavior
[16]. Additionally, we now have a better mechanistic
understanding of how autophagy interacts with cell death
pathways to alter therapeutic responses to cancer treatments.
In this review, we focus on how we may be able to leverage
our understanding of these interactions and mechanisms
to better harness the power of autophagy manipulation in
cancer care.

Autophagy as a therapeutically targetable
process

Macroautophagy (referred to hereafter as autophagy) is a
highly conserved catabolic process with the formation of
double membrane vesicles called autophagosomes that
engulf cellular proteins and organelles for delivery to the
lysosome [17, 18] (Fig. 1). Autophagy occurs at a basal

level in all cells and can be induced by various signals and
cellular stresses [7]. Autophagy related (ATG) genes are
evolutionarily conserved and tightly regulate the production
of autophagosomes [18], which is divided into five distinct
stages: initiation, nucleation of the autophagosome,
expansion and elongation of the autophagosome membrane,
closure and fusion with the lysosome, and degradation
of intravesicular products. This breakdown of stages is
important as each stage has a subset of potential therapeutic
targets for inhibiting autophagy in humans. Importantly,
while blocking autophagy at any stage should be similarly
effective at preventing degradation of autophagic cargos,
recent work raises the possibility that biological effects on
tumor cell behavior may be different when the autophagy
pathway is blocked at different stages.

Initiation can be impeded at the activation complex
which involves potential targets including the protein
kinases ULK1and ULK2 [19, 20] and a scaffolding protein
FIP200 [21]. A class III PI3K complex, also important for
initiation, includes the potential targets VPS34 [22–24]
(also known as PIK3C3) and Beclin 1, a putative tumor
suppressor [25]. Expansion of the autophagosome proceeds
as the LC3 and GABARAP families of proteins are con-
jugated to phosphatidylethanolamine (PE) and added to the
growing membrane. This part of the process can be inter-
rupted by targeting the ATG4 family of proteases [26],
which cleave LC3/GABARAP family members to allow
them to undergo a lipid conjugation reaction that requires an
E1-like enzyme ATG7. It is also theoretically possible to
target the conjugation machinery with an ATG7 inhibitor.
Genetic targeting of ATG7 has shown the potential of
blocking this enzyme in cancer cells [27, 28]. Conjugation
of LC3-I and PE form LC3-II (MAP1LC3B), a common
autophagosome marker [29].

The contents of the autophagosome, including cargo
proteins and organelles, are eventually degraded following
fusion with a lysosome and the creation of the autophago-
lysosome. This is where currently clinically available drugs
including chloroquine (CQ) and hydroxychloroquine
(HCQ) inhibit autophagy by decreasing autophagosome/
lysosome fusion [30]. Newer drugs are also in development
to target this stage including lys05 [31], a bisaminoquino-
line, and DQ661, a unique inhibitor of autophagy and
mTOR that is much more lysosome-specific than the current
widely used drugs like CQ [32].

Alternatives to macroautophagy

In most discussions, autophagy is synonymous for macro-
autophagy (as it is throughout this article). But, there are
other important forms of autophagy that should be under-
stood and considered when thinking of development of new
cancer therapies. Chaperone-mediated autophagy (CMA)
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occurs when cytosolic proteins with motifs related to the
pentapeptide KFERQ are recognized by Heat Shock cog-
nate 70 kDa Protein (HSC70; also known as HSPA8). The
chaperone complex translocates into the lysosome via the
lysosomal-associated membrane protein 2A, LAMP2A
[33, 34]. CMA has been implicated in cancer with inhibition
of LAMP2A resulting in decreased tumor growth and
metastasis [35]. However, as with macroautophagy, CMA’s
effects in cancer also appear to be context dependent. For
example, CMA has also been shown to reduce MYC by
regulating its proteasomal degradation, suggesting a tumor

suppressive role of CMA in normal tissues [36]. Impor-
tantly, some of the currently proposed therapeutic inter-
ventions designed to inhibit macroautophagy (those that
target the lysosome) might also affect CMA, whereas others
(e.g., those affecting the ULK1/2 initiation complex)
should not.

Selective macroautophagy is used to remove specific
cellular components [37] and targeting specific selective
autophagy processes may represent a way to more
selectively achieve therapeutic effects with autophagy
manipulations. Cargo adaptors such as Sequestosome 1

Fig. 1 Clinical and pre-clinical targets of inhibition along the five
stages of autophagy. The process of autophagy is divided into five
distinct stages: initiation, nucleation, expansion and elongation, clo-
sure and fusion, and cargo degradation. Each stage has potential
clinical targets. The ULK/FIP200/ATG13 complex induces vesicle
nucleation, which continues with involvement of the BECN1 complex
which includes VPS34. Multiple ULK1 and VPS34 inhibitors
are in pre-clinical evaluation. Expansion and elongation are mediated
by ubiquitin-like conjugation systems with conjugation of

phosphatidylethanolamine (PE) to LC3-II facilitated by the protease,
ATG4B, and the E1-like enzyme, ATG7, resulting in LC3-II incor-
poration into the growing membrane. Multiple ATG4B inhibitors are
in pre-clinical development. Finally, fusion of the autophagosome and
lysosome as well as degradation of intravesicular products can be
inhibited through the use of lysosomal targeted agents such as CQ and
HCQ, which are already in clinical use and under investigation in
clinical trials. Additionally, more potent drugs are in preclinical
development that target the lysosome and the lysosomal enzyme PPT1.
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(p62/SQSTM1) target specific substrates to autophago-
somes, including specific proteins and complexes of pro-
teins, organelles including peroxisomes, mitochondria,
lysosomes, endoplasmic reticulum and other organisms such
as bacteria. These cargos are often selected by adaptor
recognition of polyubiquitinated molecules followed by
binding of the adaptor to LC3 via LC3-interacting regions
(LIRs) that bind hydrophobic pockets on LC3 (LIR-docking
sites). Iron homeostasis is in part controlled by selective
autophagy as well [38], but through a somewhat different
mechanism. When cells sense that they are deficient in iron,
ferritin is degraded by autophagy. The co-activator 4
(NCOA4) binds ferritin heavy chain (FTH1) molecules
resulting in delivery to autophagosomes and release of iron
into the cell [38]. Interestingly, however, NCOA4 does not
contain a conventional LIR [37].

Identification of alternative LC3-binding proteins (also
known as ATG8-binding proteins in lower eukaryotes) has
grown substantially in recent years [39]. Ubiquitin-
interacting motifs (UIMs) have been shown to have
high-affinity binding to ATG8 through recently described
UIM-docking sites (UDS), a receptor binding patch on
ATG8. This is important in the degradation of targets such
as CDC48/p97, an essential segregase that extracts proteins
from membranes or multi-subunit complexes [39]. Muta-
tions within CDC48/p97 have been implicated in diseases
such as Charcot–Marie–Tooth and familial amyotrophic
lateral sclerosis [40] and recycling of this protein through
autophagy potentially influences the development or
severity of such diseases [39]. A better understanding of the
mechanisms behind such targeted autophagy could enable
us to make inhibitors that would block specific cargo from
being taken in to autophagosomes in cancer cells, as well
as other diseases, and could provide new ways to
more selectively target autophagy for therapeutic benefit
(Table 1).

Targeting the early stages of autophagy

One potential approach of targeting autophagy is blocking
the early stages of initiation and elongation through reg-
ulators such as ULK1 [19, 41], VPS34 [22, 23, 42] and
ATG4B [26]. ULK1 and ULK2 are the only serine/threo-
nine kinases in the autophagy pathway making them a
prime potential target [43]. There are various ATP-
competitive inhibitors against ULK1 kinase [44] including
the selective SBI-0206965 (SBI) [43]. SBI inhibits autop-
hagy and synergizes with mTOR inhibition [43] and other
standard chemotherapies [20]. SBI also effectively induces
a cytotoxic apoptotic response in lung cancer during nutri-
ent starvation [19]. This is important as solid tumors often
have hypoxic and nutrient-deficient centers [45]. Similarly,
inhibitors of VPS34, such as VPS34-IN1 [22] and SB02024

[46], have been developed. SB02024 was shown to suc-
cessfully block autophagy as well as reduce xenograft
models of breast cancer as well as synergize with other
therapies in vitro [46]. Both ULK1 and VPS34 inhibitors
have also been shown to be effective in autophagy-
dependent CNS tumor cells [47]. ATG4B is a cysteine
protease that is important for the processing of LC3B and
inhibition of this enzyme through targeted agents such as
NSC185058 can limit osteosarcoma tumor cell in vitro and
in vivo [26]. Additional ATG4B inhibitors UAMC-2526
[48] and S130 [49] are effective at blocking autophagy as
well and have anti-cancer effects in xenograft colorectal
tumors. While the preliminary data for these early stage
inhibitors is encouraging, these compounds are still in early
pre-clinical studies and additional research is ongoing.
Potential issues with selectivity and the need for higher
concentrations may limit clinical utility. Further work to
optimize lead drugs will be needed before moving to clin-
ical trials [50].

Targeting the late stages of autophagy—our
current clinical focus

Current clinical efforts in cancer therapy focus on the use of
the already FDA-approved CQ or HCQ due to their
affordability and long-term history of use in a variety of
illnesses. CQ was initially developed and pioneered in the
treatment of malaria [51]. HCQ was developed by adding a
hydroxyl group to CQ which decreased potential toxicities
but maintained its overall effectiveness [52]. While CQ

Table 1 Pre-clinical and clinical inhibitors of autophagy.

Stage of autophagy Target Drug Status

Initiation ULK1/2 SBI-0206965 Pre-clinical

ULK1/2 MRT67307 Pre-clinical

ULK1/2 MRT68921 Pre-clinical

Nucleation VPS34 VPS34-IN1 Pre-clinical

VPS34 SB02024 Pre-clinical

VPS34 PIK-III Pre-clinical

PIK3C3/VPS34 SAR405 Pre-clinical

Expansion/elongation ATG4B NSC185058 Pre-clinical

ATG4B UAMC-2526 Pre-clinical

ATG4B S130 Pre-clinical

Fusion Lysosome CQ Clinical trial

Lysosome HCQ Clinical trial

Lysosome Lys05 Pre-clinical

Lysosome/
mTORC1

DQ661 Pre-clinical

Degradation PPT1 HCQ Clinical trial

PPT1 Lys05 Pre-clinical

PPT1/mTORC1 DQ661 Pre-clinical
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continued to be used to treat malaria around the world,
HCQ was recognized for an additional benefit of controlling
inflammatory conditions such as systemic lupus erythema-
tosus (SLE) [53] and rheumatoid arthritis (RA) [54].
Importantly, these drugs were adopted early in pediatric
patients with SLE and RA [55]. The routine use of these
drugs in both adult and pediatric patients for over 50 years
has provided a wealth of dosing and safety data that has
been vital in early investigations of autophagy manipulation
in cancer therapy.

The first indication of CQ as a potential cancer therapy
was by Victor Bedoya in 1970 who noted CQ was toxic
against lymphoma and melanoma cells, although the iden-
tification of autophagic vesicles, which accumulate in
response to these drugs because autophagosome fusion and
degradation is blocked, was more of a side note than a focus
of his study [56]. Murakami et. al. were the first to clearly
identify CQ’s ability to inhibit autophagy and its relation to
the inhibition of lysosomal degradation of cellular contents
[57]. The first clinical trial of CQ in the treatment of glio-
blastoma (GBM) patients demonstrated significantly
improved clinical outcomes for patients [14]. These findings
were the first in the fast-paced advancement of the study of
CQ and HCQ in cancer therapy.

In 2007, Amaravadi and colleagues [58] showed that in
Myc-induced p53 negative lymphomas, where tumor cells
were naturally resistant to apoptosis, re-expression of p53
lead to apoptosis that was further enhanced with the inhi-
bition of autophagy, while, importantly, surviving cells
demonstrated increased autophagy. Subsequent inhibition
of autophagy in these cells along with alkylating agents lead
to increased apoptosis and cell death. Following this first
demonstration that autophagy inhibition could enhance the
tumor killing activity of other anti-cancer agents, many
in vitro studies, genetically engineered mouse models
(GEMMs) and patient-derived xenograft (PDX) mouse
models provided abundant pre-clinical evidence that inhi-
bition of autophagy with various anti-cancer drugs can, at
least under some circumstances (see below), produce
improved tumor cell killing. This large body of studies lead
to both veterinary and human clinical trials [4, 6, 59], cur-
rently 61 such trials are listed on clinicaltrials.gov.

Briceno et al.’s initial small study of GBM patients
treated with CQ in conjunction with standard of care
radiation and temozolomide showed a median survival of
33 months compared with 11 months for control patients
[14]. Follow-up clinical trials and retrospective data from
this group supported these initial findings [60, 61] sug-
gesting a role for CQ in GBM therapy. Combining CQ with
whole-brain radiation for brain metastasis also demonstrated
improved intracranial tumor control [62, 63].

Later clinical trials made an effort to correlate depth of
autophagy inhibition by HCQ and changes in therapy

response [13, 64–69]. Human trials included a broad range
of tumors including GBM [67], advanced solid tumors and
melanoma [64–66] and myeloma [68]. Consistent with the
idea that autophagy inhibition alters cellular responses in
both normal cells and tumor cells to other treatments, the
maximum tolerated dose (MTD) of HCQ varied in relation
to the concomitant therapy. Studies performed with HCQ in
combination with targeted therapies such as vorinostat were
able to reach an MTD of 600 mg twice daily [64] while
HCQ in combination with cytotoxic chemotherapy such as
temozolamide and radiation in GBM required a smaller
dose of 400 mg twice daily [67]. Common dose-limiting
toxicities included gastrointestinal toxicity and fatigue [64–
66]. As a single agent, the MTD of HCQ is not known and
600 mg twice daily in adult patients is the highest dose
tested in combination therapy studies to date [65].

Measurable responses to autophagy inhibition have var-
ied by tumor type, therapy combinations and measured
outcome (Table 2). The initial GBM studies of CQ in
combination with temozolomide and radiation demonstrated
more than a doubling of median survival [14, 60, 61]. A
follow-up phase I/II trial with HCQ in place of CQ found no
significant improvement in survival [67]. This difference
may be related to dose limitations of HCQ due to myelo-
suppression not reported in the CQ studies. More intensive
pharmacokinetic and pharmacodynamic studies in the HCQ
trial also demonstrated these patients had inconsistent
inhibition of autophagy [67]. Pharmacokinetic studies in
canine (dog) lymphoma patients using HCQ and doxor-
ubicin demonstrated a 100-fold increase in HCQ in the
tumor compared to plasma concentrations demonstrating a
disconnect between tumor exposure and measuring autop-
hagy inhibition in peripheral blood mononuclear cells
(PBMCs) as a surrogate for effectiveness [13]. There is also
an inverse relationship between tumor extracellular pH and
the level of HCQ uptake [70], which may result in different
levels of autophagy inhibition at the center of a tumor
compared to peripheral areas. A recently developed phy-
siologically based pharmacokinetic model of HCQ offers a
possible way to understand these differences and predict
individual patient responses to HCQ [71]. Developed and
validated in both mice and human samples, the physiolo-
gically based pharmacokinetic model of HCQ is able to
predict blood and tissue exposures and could potentially be
used to guide future clinical trials.

Potential alternatives to CQ and HCQ

More potent and selective next- generation lysosomal tar-
geted inhibitors are in development including Lys05, a
bisaminoquinoline and DQ661, a dimeric quinacrine with
the additional benefit of parallel lysosome and mTOR
inhibition [32] (Table 1). Lys05, which is approximately
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tenfold more potent than CQ [72], has been successful in
limiting melanoma and colorectal adenocarcinoma growth
as a single agent in mouse models [72]. DQ661 has also
shown impressive in vivo single-agent activity in melanoma
and colorectal cancer and in vivo efficacy in combination
with gemcitabine in pancreatic ductal adenocarcinoma
(PDAC) [32] This is in contrast to HCQ, which has shown
limited clinical responses as a single agent in cancer such as
advanced metastatic pancreatic cancer [69]. Additional pre-
clinical data in PDX studies of less advanced pancreatic
cancer suggests HCQ may have some limited single-agent
response [73] but combination therapy is more likely to
produce clinically relevant responses [74].

It is often assumed that any agent that inhibits autophagy
has the same consequence irrespective of the inhibitor used.
The developing studies on these agents suggest that this
assumption is wrong even if we limit the analysis only to
drugs that target the lysosome. Lys05 is a more potent
autophagy inhibitor than HCQ due to a greater accumula-
tion in and deacidification of the lysosome [72]. DQ661 was
also shown to have improved deacidification of the lyso-
some. Additionally, this agent allowed identification of the
molecular target for the drug in the lysosome. DQ661
inhibition of autophagy is associated with its ability to
inhibit palmitoyl-protein thioesterase 1 (PPT1), a glyco-
protein important in the catabolism of lipid-modified protein
during lysosomal degradation [32]. When DQ661 binds
PPT1, it blocks its ability to cleave thioester bonds from
palmitoylated proteins. This results in lysosomal displace-
ment of v-ATPase subunits and also causes impaired lyso-
somal recruitment of mTOR. This is important because in
amino-acid rich environments, mTOR is recruited to the
lysosome and activated by its master regulator RHEB [32].
Concurrent inhibition of both the lysosomal component of
autophagy and mTOR results in superior nullification of
protein translation and potentially improved activity in
cancer therapy [32]. Further investigation determined that
CQ derivatives such as HCQ and Lys05 are also able to
inhibit PPT1, but only DQ661 maintains its activity in
acidic media. This is particularly important due to limiting
of CQ and HCQ uptake into tumor tissue with decreasing
pH, making it difficult for these drugs to effectively block
autophagy in more acidic tumors [70]. Interestingly, recent
data have shown that CQ itself inhibits autophagy by
impairing autophagosome fusion with lysosomes, rather
than affecting lysosomal acidity like Lys05 [30]. This
results in additional cellular changes and CQ is known to
have other autophagy-independent anti-cancer effects
[75, 76] and to be able to sensitize cancer cells to therapy
through autophagy-independent mechanisms [77]. The
mechanistic differences between how CQ and CQ-
derivatives such as HCQ and Lys05 inhibit autophagy
may explain some of the clinical responses and uses for

these drugs, such as HCQ’s anti-inflammatory and auto-
immune benefits in SLE [53, 78] and RA [54, 79]. Further
understanding of the mechanistic differences between
the various CQ-like molecules may allow improved treat-
ment strategies and help us take advantage of both the
autophagy-dependent and autophagy-independent effects of
these drugs.

Additional methods are available to influence autophagy
including the use of epigenetic modifiers. The epigenetic
control of autophagy has been demonstrated through acet-
ylation of histones, hyper-methylation of CpG islands and
the disruption of mRNA function due to cytoplasmic non-
coding RNAs [80]. Epigenetic targeted therapy can affect
this control. For example, the use of histone deacetylase
inhibitors to treat malignant peripheral nerve sheath tumors
led to an increase in autophagy and a resistance to therapy
[81]. Vidoni et al. recently reviewed natural products that
have been shown to alter gene expression via epigenetic
effects resulting in changes in autophagy [80]. For example,
curcumin is able to restore expression of miR-143 which in
turn inhibits autophagy via ATG2B and has been shown
to sensitize prostate cancer cells to apoptosis following
radiation [82]. Numerous other natural products have been
shown to epigenetically upregulate autophagy [80].

The interplay between autophagy and apoptosis in
cancer therapy

Autophagy is a known survival mechanism in several tumor
types [10, 83–85]. This can be due to protection against
nutrient starvation and providing substrates for basic cell
survival [12]. But it can also be related to its role in pro-
tecting cells from undergoing programmed cell death such
as apoptosis [86]. Anti-cancer treatments usually work by
inducing apoptosis taking advantage of the closer proximity
of cancer cells to their apoptotic threshold than is the case
for normal cells [87]. The role of autophagy in the control
and modulation of apoptosis and apoptotic thresholds is
important to understand in developing cancer therapies.

Autophagy is known to interact with and control cano-
nical apoptosis. In a normal cell, pro and anti-apoptotic
signals work together to maintain a balance between the life
and death of the cell. Intrinsic stimuli that tip this scale
toward a pro-apoptotic path drive mitochondria to become
permeabilized, known as mitochondrial outer membrane
permeabilization (MOMP). This results in a cascade of
activity that starts with the release cytochrome C into the
cytosol where it can bind APAF-1. This allows APAF-1 to
oligomerize to form a scaffold, called the apoptosome, for
caspase-9 activation and ultimately a full caspase cascade
including the effector caspases, caspase-3, 6 and 7, leading
to cell death. Extrinsic apoptosis results from death receptor
activation through receptors such as Fas (CD95) and tumor
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necrosis factor-related apoptosis-inducing ligand (TRAIL)
and caspase-8 activation. Caspase-8 can lead directly to cell
death through activation of the effector caspases or, more
commonly, by cleaving the BCL-2 homology 3 (BH3)-only
protein BID and activating the intrinsic mitochondrial
pathway by inducing MOMP [88].

A historic understanding of apoptosis held that once
MOMP has occurred, cells were committed to death. This
belief has recently been questioned with the concepts of
incomplete [89] or minority [90] MOMP. These incomplete
forms of MOMP lead to limited caspase activation and a
pool of mitochondria that survive and support cell survival.
Autophagy within cancer cells can lead to inefficient
MOMP, slowing the rate of cell death and presenting an
opportunity for the cell to recover and regain the ability to
grow [91]. More concerning, cells that survive minority
MOMP can develop genomic instability, cellular transfor-
mation, and enhanced tumorigenesis [90, 92].

This has led to the concept that autophagy controls apop-
tosis, and vice versa and, that this relationship may control a
cell’s ability to reach its apoptotic threshold. BCL family
proteins control the balance of pro and anti-apoptotic signals
and set the apoptotic threshold of a cell [93]. These proteins
are also involved in the initiation of autophagy [86]. For
example, the production of autophagosomes is stimulated
when the Beclin 1/BCL-2 complex is disrupted by BH3-only
proteins (PUMA, NOXA, NIX, BID, BNIP3) [94]. This
allows Beclin 1 to complex with VPS34 and stimulate
autophagy. In turn, BH3 proteins such as PUMA suppress
BCL-2 function resulting in increased apoptosis. This func-
tion has also been shown in reverse with autophagy regulating
the level of PUMA [91]. The mechanism underlying this
effect (Fig. 2) has recently been described to involve the
transcription factor Forkhead box O3 (FOXO3), which is
itself known to regulate autophagy, e.g., in stem cells [95].
A decrease in autophagy results in the increased transcription
of PUMA by FOXO3 through a single forkhead response
element (FHRE). Loss of this FHRE was sufficient to block
apoptosis when an autophagy inhibitor was combined with
the MDM2 inhibitor Nutlin 3 [96]. Interestingly, this rela-
tionship arises because FOXO3a is itself degraded by
autophagy [96] creating a potential homeostatic feedback loop
whereby a transcription factor that is itself regulated by
autophagy controls the expression of autophagy regulators
and simultaneously regulates the apoptotic threshold by
controlling a key apoptotic regulator. Thus, we suggest that a
cell can correct short periods of autophagy inhibition by
increasing FOXO3a levels and subsequently activating
downstream autophagy targets. However, with prolonged
autophagy inhibition, this will activate pro-apoptotic genes as
well, such as PUMA, sensitizing the cell to death [97].

Therapies targeting BH3-only proteins are already in
clinical use, with the above data suggesting manipulation of

these proteins will influence not only apoptosis but may also
affect autophagy. Venetoclax, a BH3-mimetic inhibitor of
BCL-2, was approved by the FDA in 2015 for the treatment
of chronic lymphocytic leukemia (CLL) and small lym-
phocytic lymphoma. Newer generation of BH3-mimetics
are also in development targeting not only BCL-2 but also
MCL-1 and BCL-XL. While there are no current clinical
trials investigating the combination of such BH3-mimetics
and autophagy inhibition, there is strong evidence to sug-
gest their combined potential for clinical benefit. For
example, it has been shown in acute myeloid leukemia
(AML) that there is an increase in vacuole membrane pro-
tein (VMP1), an autophagy-associated protein, and that
cells overexpressing this protein resulted in increased
autophagy and was correlated with increased mitochondrial
health and increased protection against oxidative stress.
It also decreased AML response to venetoclax-induced
MOMP [98], an important consideration as it is being
actively investigated in over 30 active adult and pediatric
AML clinical trials (www.clinicaltrials.gov).

Autophagy manipulation and the tumor immune
response

The importance of the immune system in cancer therapy
cannot be understated. Therefore, understanding how
autophagy manipulation affects tumor immune response is
vital. It has been reported that autophagy in dying tumor
cells is needed for immunogenic cell death and efficient
tumor recognition by the immune system [99, 100]. In
melanoma, an effective tumor immune response was shown
to require intact autophagy [101]. A further study found that
calorie restriction mimetics increased autophagy and could
boost anti-tumor immune responses [102]. Autophagy can
also stimulate tumor antigen cross-presentation supporting
improved tumor immune responses; [103] autophagy inhi-
bition could potentially interfere with process. These studies
would suggest it would be better to increase, not decrease,
autophagy during cancer therapy. This is also supported by
some correlative clinical data where breast cancer patients
with higher LC3 puncta (a surrogate for autophagosomes)
and the presence of nuclear HMGB1 had improved overall
and metastatic-free survival [104] and increased immune
infiltration of the tumor [105].

However, as with most aspects of the immune system, its
interaction with autophagy is complex with activation of
autophagy being associated with immunological promotion
as well as inhibition of tumors [106]. Some anti-tumor
immune responses are enhanced by autophagy inhibition
[107–109]. Furthermore, a recent study found equivalent
T-cell immune responses with both genetically inhibited
autophagy in tumors and following treatment with CQ to
block autophagy [110]. Thus, there are arguments both for
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and against autophagy inhibition considering the effects
on anti-tumor immune responses. It will therefore be
important to ensure that clinical studies incorporate analysis
of anti-tumor immune responses when autophagy is being
manipulated.

Potential reasons for failure of autophagy inhibition
as a therapeutic strategy

Current methods of clinical autophagy manipulation could
have potential toxicity from global autophagy inhibition.
Acute whole-body knockout of an essential autophagy gene
(Atg7) in adult mice had a profound anti-tumor effect on
KRAS-driven lung cancer. However, it also led the death of

the mice due to severe neuronal toxicity, disruption of
glucose homeostasis, and increased susceptibility to infec-
tion [111]. Importantly, however, the chronic use of HCQ
for rheumatologic disorders and treatment of some cancer
patients with CQ for years [112, 113] suggests incomplete
autophagy inhibition (as is seen with these agents) can be
done safely. Furthermore, patients could be taken off the
drug for periods of time to allow for therapy breaks.

Difficulties obtaining efficient autophagy inhibition
within solid tumors may also limit clinical effectiveness. As
noted above, HCQ uptake may differ based on pH and from
outer to the inner areas of a tumor, resulting in unequal
inhibition between tumor cells [70]. Inconsistent inhibition
has been shown in clinical trials that did not show

FOXO3
FOXO3 FOXO3

FOXO3

Fig. 2 The interplay between autophagy and apoptosis. Autophagy
and apoptosis interact through the control of multiple proteins. BH3-
only proteins disrupt the interaction of Bcl-2 and Beclin 1. This allows
Beclin 1 to stimulate autophagy through Vps34 and Bcl-2 to inhibit
apoptosis through interaction with Bax/Bax. Autophagy controls cel-
lular levels of FOXO3. Increased FOXO3 stimulates autophagy

regulation genes to induce autophagy and reduce overall FOXO3
levels. If there is continued presence of elevated FOXO3, it results in
increased transcription of PUMA, which is then free to block with
interaction between Bcl-2 and Bax/Bak. Once Bax/Bak are released,
they can permeabilize mitochondria resulting in effector caspase
activation and apoptotic cell death.
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significant effects [67, 69]. Finally, proper patient selection
may limit positive findings in clinical trials. Without a clear
understanding of which patients should receive such ther-
apy, a potential response in one subset of patients may be
overshadowed by non-responders in a larger subset.

How do we maximize the therapeutic benefit of
autophagy manipulation in cancer?

The published results of autophagy inhibition clinical trials
support the safe use of CQ and HCQ in the clinic. Positive
clinical results such as those seen in CQ in the treatment of
GBM [14, 61] and HCQ in select pancreatic cancer patients
[74] are encouraging. Unfortunately, conflicting results with
less positive or no evidence of clinical improvements make it
difficult to know how to best utilize autophagy inhibition.
Correspondingly, preclinical evidence would suggest, in
select cases, autophagy inhibition may be contraindicated.
One recent study demonstrated that inhbition of autophagy
led to reactivation of aberrant expression of 6-phosphofructo-
2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) in dormant
murine breast cancer stem cells (BCSCs) allowing them to
reactivate and proliferate resulting in recurrent metastatic
disease [114]. These results highlight that proper patient and
drug selection are needed to maximize the benefits of
autophagy inhibition and limit potential adverse outcomes.

The drugs currently available including CQ and HCQ that
are being actively used in clinic are not truly autophagy
specific. Even the newer drugs such as ULK1 and VPS34
inhibitors affect other pathways. Additionally, the majority of
clinical trials have been in patients with no selection criteria
beyond tumor type on which to think autophagy inhibition
will work well (Table 2). There has also been little rationale
for which therapies to combine with autophagy inhibition
beyond adding CQ or HCQ to current standard therapies,
leading to a variety of combinations with little basis or testing
whether some combinations will be better than others.
However, one set of tumors, those driven by RAS-RAF-MEK
pathway, may demonstrate a way forward.

The concept of autophagy addiction, also known as
autophagy-dependence, is important because in at least
some cases, has been shown that only autophagy-dependent
tumors respond well to autophagy inhibition even when the
same combination of drugs with CQ are tested [115].
Indeed, synergy between autophagy inhibitors and other
drugs may occur in autophagy-dependent tumor cells while
being antagonistic in autophagy-independent tumors
[115, 116]. Some mechanisms of autophagy addiction are
now known and are driving new clinical trials, particularly
in tumors driven by the RAS-RAF-MEK pathway. Mouse
models of lung cancer and melanoma driven by the
BrafV600E were amongst the first tumors to demonstrate
autophagy-dependence and were highly sensitive to Atg7

deletion [27, 117]. Further studies have demonstrated that
autophagy inhibition is sufficient to kill BrafV600E-positive
CNS tumor cells, but not their wildtype BRAF-expressing
counterparts [116]. This has led to multiple clinical trials in
melanoma and CNS tumors with patients selected for the
presence of BrafV600E (Table 2).

Tumors driven by mutations in KRAS increase autop-
hagy to maintain cell metabolism [118–120]. PDAC has
high rates of KRASmutation and this is thought to contribute
to PDAC being autophagy dependent [119, 121, 122].
Additionally increased activity of transcription factors pro-
mote autophagy [123] and pancreatic stellate cells in the
tumor microenvironment use autophagy to fuel tumor
metabolism [124]. Early in vivo xenograft trials of PDAC
treated with autophagy inhibition demonstrated decreased
tumor growth [73]. Follow-up clinical trials found improved
surgical outcomes in PDAC patients treated with gemcita-
bine, nab-paclitaxel and HCQ pre-operatively [74, 114].
More recent studies have demonstrated the benefit of
autophagy inhibition in combination with targeting the RAS
pathway itself through inhibition of MEK [122] or ERK [52]
directly. These encouraging results have led to the devel-
opment of clinical trials inhibiting MEK and autophagy in
metastatic NRAS melanoma (NCT03979651 [125]) and
PDAC (NCT03825289 [126]) (Table 2).

Mutations outside the RAS pathway have also been
implicated as markers of autophagy addiction. Functional
JUN N-terminal kinase 1 (JNK1) is required for hypoxia-
induced autophagy [127] and is being studied as a potential
predictor of response to autophagy inhibition in PDAC
(NCT01506973 [128]). Epidermal growth factor receptor
(EGFR) mutations or amplifications have also been utilized
to identify autophagy-dependence. EGFR regulates
numerous downstream pathways that influence autophagy,
including PI3K-AKT-mTOR, STAT3 and RAS family
signaling [129]. EGFR mutations and amplifications are
associated with radioresistance in GBM and head and neck
squamous cell carcinomas. These tumors are highly
autophagy-dependent and responsive to pharmacologic
inhibition of autophagy [130]. GBM tumors expressing
EGFR variant III (EGFRvIII), a common mutation in the
extracellular domain of EGFR, have been also been shown
to be autophagy dependent [131]. These studies have
resulted in selection of patients with mutant or high
expressing EGFR tumors for autophagy inhibition clinical
trials in non-small cell lung cancer (NCT00977470 [132])
and GBM (NCT02432417 [133]).

Summary and future directions

Even just the limited discussion above shows that autop-
hagy has complicated and often competing roles in cancer.
Thus, it has sometimes been suggested that it is unwise to
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consider targeting autophagy in cancer. We think that such
a position is unduly pessimistic. Moreover, we believe that
since many of the interventions that are currently used in
patients as well as the physiological stimuli that affect
tumors such as nutrient deprivation affect autophagy, we do
not have a choice—we have always been altering autophagy
in cancer patients. The real question is not whether we
should or should not target autophagy. Instead, we should
focus on how to do so in a way that will maximize the
benefit. This could include improved drugs to manipulate
autophagy and improved clinical trial design and patient
selection. By understanding the molecular mechanisms by
which autophagy elicits its effects on tumor behavior
and combining this knowledge with a better understanding
of how our deliberate interventions to target the
pathway actually work, it may be possible to build on the
examples described above and develop rationally based
interventions to control and manipulate this process to
improve treatment.
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