
Detecting Arbitrarily Oriented Subspace
Clusters in Data Streams Using Hough

Transform

Felix Borutta(B), Daniyal Kazempour, Felix Mathy,
Peer Kröger, and Thomas Seidl

Ludwig-Maximilians-Universität München, Munich, Germany
{borutta,kazempour,kroeger,seidl}@dbs.ifi.lmu.de

Abstract. When facing high-dimensional data streams, clustering algo-
rithms quickly reach the boundaries of their usefulness as most of these
methods are not designed to deal with the curse of dimensionality. Due
to inherent sparsity in high-dimensional data, distances between objects
tend to become meaningless since the distances between any two objects
measured in the full dimensional space tend to become the same for
all pairs of objects. In this work, we present a novel oriented subspace
clustering algorithm that is able to deal with such issues and detects
arbitrarily oriented subspace clusters in high-dimensional data streams.
Data streams generally implicate the challenge that the data cannot be
stored entirely and hence there is a general demand for suitable data
handling strategies for clustering algorithms such that the data can be
processed within a single scan. We therefore propose the CashStream
algorithm that unites state-of-the-art stream processing techniques and
additionally relies on the Hough transform to detect arbitrarily oriented
subspace clusters. Our experiments compare CashStream to its static
counterpart and show that the amount of consumed memory is signifi-
cantly decreased while there is no loss in terms of runtime.

Keywords: Oriented subspace clustering · Stream clustering

1 Introduction

Data clustering, i.e., finding groups of similar objects, is an established and
widely used technique for unsupervised problems and/or for explorative data
analysis. However, when facing high-dimensional data, particularly clustering
algorithms quickly reach the boundaries of their usefulness as most of them are
not designed to deal with the problems known by the “curse of dimensional-
ity”. Due to inherent sparsity in high-dimensional data, distances between any
two objects measured in the full dimensional space tend to become the same
for all pairs of objects and, thus, can no longer be used to distinguish simi-
lar from dissimilar objects. Furthermore, clusters often appear within different

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-47426-3 28) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2020
H. W. Lauw et al. (Eds.): PAKDD 2020, LNAI 12084, pp. 356–368, 2020.
https://doi.org/10.1007/978-3-030-47426-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47426-3_28&domain=pdf
https://doi.org/10.1007/978-3-030-47426-3_28
https://doi.org/10.1007/978-3-030-47426-3_28
https://doi.org/10.1007/978-3-030-47426-3_28

Detecting Arbitrarily Oriented Subspace Clusters in Data Streams 357

lower dimensional subspaces. Therefore, it is usually not useful to search for clus-
ters in the full dimensional data space or apply dimensionality reduction which
would only result in one subspace rather than several different ones. To over-
come those issues, several subspace clustering algorithms have been developed
in the past that simultaneously search for meaningful subspaces and for clus-
ters (within these subspaces). Some of these algorithms, e.g. [4,15,16], assume
attribute independence and restrict themselves to the detection of axis-parallel
subspace clusters for performance reason. More general, so-called correlation
clustering algorithms, e.g. [1,2,7,8], allow arbitrarily oriented subspaces that
represent a (usually linear) combination of features, i.e., explicitly allow corre-
lation among features.

Another, yet less considered challenge is subspace clustering in data streams.
Nowadays, as data is produced with high velocity, streaming algorithms become
more and more important. This also holds for areas where high-dimensional data
is produced rapidly, e.g., in industry where large numbers of machine sensors
record huge amounts of data within short time periods. In these scenarios, the
data can usually no longer be stored entirely and hence there is a general need
for suitable data handling strategies for clustering algorithms such that the data
can be processed within a single scan. In this work, we tackle this problem and
present a novel oriented subspace clustering algorithm that is able to detect
arbitrarily oriented subspace clusters in data streams. This method not only
reduces the amount of required memory for processing the data significantly, but
also compresses entire groups of data that are similar wrt to various combinations
of features. The key idea of the proposed method is to load chunks of data
into memory, deriving so-called Concepts as summary structures and applying
a decay mechanism to downgrade the relevance of stale data. Our experimental
evaluation demonstrates the usefulness of the presented method and shows that
the used heap space is drastically reduced without losses in terms of runtime
and accuracy.

2 Related Work

Correlation Clustering. Static algorithms for oriented subspace clustering can
be categorized into PCA-based and Hough-based approaches. The PCA-based
approaches [2,5,7] rely on decomposing neighborhood sets into Eigensystems
that are used to define the corresponding subspaces. The usage of neighborhood
sets makes them prone to outliers and noise. In contrast, approaches based on
Hough transformations [1,14] rely on parameter space transformations, making
them generally more robust. All these methods have been designed for static
data and are not applicable in streaming environments.

Stream Clustering. Previously published work on stream clustering can gen-
erally be distinguished by the way the algorithms process the incoming data. A
large group of algorithms rely on (clustering) feature vector (CF) data structures
that have originally been proposed for the BIRCH algorithm [22]. The idea is
to represent a set of data objects by only a few key statistics that sufficiently

358 F. Borutta et al.

describe the aggregated data. This approach has been adapted for many other
stream clustering approaches, e.g., [3,9,10]. Another compression technique that
is widely employed for stream clustering is to only keep track of the cluster rep-
resentatives. The basic idea is to represent entire chunks of data solely in form
of cluster representatives, e.g., cluster centroids, [12,17,23]. Further, but less
related, techniques to deal with the challenge of summarizing data streams can
be found in [21].

Subspace Clustering in Data Streams. The first method able to cluster
high-dimensional data streams properly was HPStream [4], a k-means based
axis-parallel subspace clustering method that uses an adopted form of CF vec-
tors to represent relevant cluster statistics. IncPreDeCon [15] is an incremental,
axis-parallel subspace clsutering algorithm based on a density-based clustering
model that supports incremental updates but lacks supporting any form of aging
and hence cannot deal with streaming data directly. PreDeConStream [13] and
HDDStream [16] present density-based (axis-parallel) subspace clustering algo-
rithms that both aggregate incoming data objects within different microcluster
structures and retrieve the final clustering by following (slightly different) vari-
ants of the density-based clustering scheme proposed in [6]. The SiblingTree
method [18] is a grid-based axis-parallel subspace clustering approach aiming at
detecting all low-dimensional clusters in all subspaces. All these previously men-
tioned methods are limited to find axis-parallel subspaces. The recently presented
CorrStream algorithm [8] is a PCA-based approach for arbitrarily-oriented sub-
space clustering on data streams. As a PCA-based method, it determines sub-
space clusters derived from neighborhood sets, and hence is prone to outliers. In
contrast, our method relies on Hough transformation and hence is able to filter
outlier.

3 Correlation Clustering Using Hough Transform

The Hough transformation originally has been introduced for detecting linear
segments in image data [19]. The basic idea is to map every object in data space

Fig. 1. Left: data space, right: Hough space

to its corresponding object
function in Hough space, and
subsequently identify inter-
sections of a specific amount
of object functions. If such
an intersection exists, the cor-
responding data objects are
located on a line segment in
data space. This duality of the
Hough transform is shown in Fig. 1. The CASH algorithm [1] borrows this idea
of parameter space transformation for the sake of oriented subspace clustering.
Precisely, they transform objects from data space to Hough space and scan the
Hough space for dense areas, i.e., areas where many functions intersect, by sub-
dividing the space into grid cells in a top-down fashion. For a given cell c, if the

Detecting Arbitrarily Oriented Subspace Clusters in Data Streams 359

Input: Data Stream S, Batch size b
Output: Clustering
1: Clustering ← ∅
2: batch ← empty collection of size b
3: for incoming data object o from S do
4: if batch is not full then
5: add o to batch
6: end if
7: if batch is full then

8: currentConcepts = CASH (batch)
9: Clustering.add(currentConcepts)
10: unifyConcepts(Clustering, ...)
11: // see Section 4.4
12: batch ← empty collection of size b
13: end if
14: end for

Algorithm 1. CashStream
Fig. 2. Workflow

number of object functions intersecting c is greater or equal than a pre-defined
minPts parameter, c is split into halves according to a predefined order on the
axes. The division terminates if a resulting cell is either considered sparse, i.e.,
the number of object functions intersecting this cell is less than minPts, or a
maximum number of splits maxSplit is reached. A grid cell c that is dense after
maxSplit divisions represents a cluster: the points corresponding to the func-
tions intersecting c form a cluster within a arbitrarily oriented (d−1)-dimensional
subspace. However, the cluster (or some of the contained objects) might form
an even lower dimensional cluster. Therefore, the object functions that form the
(d − 1)-dimensional cluster are transformed back into the data space and pro-
jected onto the orthonormal basis that can be derived from c. To detect subspace
clusters of lower dimensions, the CASH algorithm is performed on the resulting
(d − 1)-dimensional dataset recursively until no more cluster can be found.

4 CashStream

4.1 Data Processing: Batch Processing

Regarding the facts that data cannot be kept in memory entirely and stale data
shall be downgraded within stream applications, the CASH algorithm cannot
be adjusted straightforwardly. To tackle these challenges, we propose to process
incoming data in batches, similar to [12], i.e., loading chunks of data into memory
and eventually computing cluster representatives which are kept in memory while
the actual data objects are discarded. This data processing scheme has several
advantages as it (1) enables the adaptation to concept shifts since processing data
batch-wise allows to identify dense grid cells1, potentially with novel subspaces,
during the division steps, (2) caps the amount of consumed memory and (3) even

1 Note that this is not possible with real-time stream processing.

360 F. Borutta et al.

allows the flexibility to adjust to changing data dimensionality as there is no need
for defining a static grid. Precisely, our algorithm basically performs an adapted
variant of CASH on single data chunks and keeps cluster representatives, that
we will refer to as Concepts, in memory. Since the Concepts must be maintained
efficiently, they are designed to be additive, such that two similar Concepts can
conveniently be unified into a single Concept (see Fig. 2). Algorithm 1 outlines
the main procedure of CashStream. After defining the Concept data structure,
we define the similarity between Concepts and describe the unification step as
well as the aging procedure in the following.

4.2 Cluster Representatives: Concepts

As a suitable summary structure for data objects that are assigned to a cluster,
we define a Concept as follows.

Definition 1. A Concept is a data structure used as abstraction of a cluster
resulting from CASH. In a data space D ∈ R

d, a Concept of dimensionality
l < d captures an l-dimensional hyperplane in parameter space P with aggregated
information of the data objects it contained as a result of CASH. A Concept
consists of the following attributes:

– a set E containing d − l equations in Hessian normal form,
– mean μ of all data objects that are assigned to the cluster,
– number of data objects N that are assigned to the cluster,
– the timestamp t of the last update, and
– reference P to parent Concept of dimensionality l + 1, if l < d − 1.

The d − l equations in Hessian normal form are the hyperplane equations that
define the l-dimensional subspace. These are obviously an essential part of the
Concept as they describe the subspace, are used for the unification with other
Concepts, and also are part of the final result of CashStream. The mean μ is
the centroid of the data objects that are assigned to the corresponding cluster
and is used for checking whether the Concept can be merged with another one. N
denotes the number of data objects that are assigned to the cluster. This value
and the timestamp t of the last update of this Concept are used to calculate
an importance score for the Concept. The importance scores are used to weight
the Concepts for the unification of two similar Concepts, since a recent Concept
that represents a large number of data objects should contribute more than a
stale Concept that does not represent as many objects. Finally, a Concept also
includes a reference to a parent Concept, i.e., a Concept representing a higher-
dimensional subspace in which the child Concept is embedded. This enables
CashStream to retrieve a cluster hierarchy.

On Representing Subspaces in Hessian Normal Form. The Hessian nor-
mal form (HNF) [20] has proven to be a well-suited representation for linear
correlation cluster models as it contains a normal vector which describes the ori-
entation of the corresponding hyperplane, respectively subspace. This is essential

Detecting Arbitrarily Oriented Subspace Clusters in Data Streams 361

for the unification step as we use the orientations of two subspaces to determine
their similarity. By using the HNF, we can formally describe a (d−1)-dimensional
hyperplane H as

x · n + b ≤ ε,

with · indicating the scalar product, x ∈ R
d denoting a data point lying on the

hyperplane, n ∈ R
d denoting the unit normal vector and b being the minimum

distance between the hyperplane and the origin. Since subspace clusters typically
are not perfectly correlated, we allow a certain amount of deviation ε and consider
every data point x that solves this equation to lie on H. Note that the ε parameter
is implicitly defined by setting the maxSplit parameter, i.e., the parameter that
basically defines the size of a grid cell on the lowest split level.

A Concept contains d − l of such hyperplane equations as it requires d − l
HNF equations for describing a l-dimensional subspace. Intuitively, this can be
understood as follows: if d − l (d − 1)-dimensional hyperplanes intersect in a
d-dimensional space (with l < d), the intersection is a l-dimensional hyperplane.
Mathematically, this can be seen as solving a simple linear system

Ax = b,

with A denoting an m × d matrix, where m is the number of normal vectors.
If d > m, the linear system is under determined and hence the solution set
describes a (d − m)-dimensional subspace.

As described in Sect. 3, CashStream likewise projects the data objects of
an i-dimensional cluster onto the corresponding (i − 1)-dimensional subspace
to find even lower dimensional clusters. In particular, it also produces an i-
dimensional normal vector ni to define an i-dimensional basis Bi from which the
(i − 1)-dimensional subspace is derived as Bi \ ni ∈ R

i−1 in this step. By doing
this iteratively until no lower dimensional subspace can be found, the CASH
procedure retrieves an ordered set of d − l HNF equations for an l-dimensional
subspace, i.e.,

nd · x + r0 = 0
nd−1 · (Bd \ nd · x) + r1 = 0

nd−2 · (Bd−1 \ nd−1 · (Bd \ nd · x)) + r2 = 0
. . .

with nd−i ∈ R
d−i, 0 ≤ i < l, denoting the (d − i)-dimensional normal vector

that defines the (d − i)-dimensional basis Bd−i, x being a data point associated
with the i-dimensional subspace cluster and ri being the distances between the
subspace hyperplane and the origin. Bd−i\nd−i is a (d−i−1)×(d−i) projection
matrix that is used to project (d−i)-dimensional data objects onto the (d−i−1)-
dimensional subspace. However, for measuring the similarity between two Con-
cepts (cf. Sect. 4.3), the normal vectors have to be d-dimensional. We therefore
reconstruct d-dimensional normal vectors from lower-dimensional normal vectors
as follows. Let nd−i ∈ R

d−i, with 0 < i < l, be the (d − i)-dimensional normal

362 F. Borutta et al.

vector defining the subspace whose basis is denoted as Bd−i−1 = Bd−i \ nd−i,
then the reconstructed d-dimensional normal vector n′

d ∈ R
d is

n′
d = ((((nd−i · Bd−i+1 \ nd−i+1) · Bd−i+2 \ nd−i+2) · . . .) · Bd \ nd) .

Employing this reconstruction strategy to all (d− i)-dimensional normal vectors
with 0 < i < l in addition with the d-dimensional normal vector nd finally
results in the desired set of d − l non-parallel, and hence linearly independent
[11], d-dimensional normal vectors that define the d − l hyperplane equations.

4.3 Similarity Between Concepts

Theoretically, there is an infinite number of equation sets describing a single
subspace cluster, e.g., a 1-dimensional subspace cluster can be modeled by the
intersection of two 2D hyperplanes, the orientation of which is not necessarily
important. In terms of Concept similarity, this means that two Concepts shall
be considered similar as long as the intersections of their subspace equations
describe approximately the same subspace, regardless the orientations of their
subspace equations when considering them individually. Given this observation
and the fact that each subspace hyperplane is defined by its normal vectors, we
formalize the distance measure based on the following idea: Understanding an
intersecting set of hyperplanes as the set of their respective normal vectors, every
other normal vector contained in a second set of equations representing the same
linear subspace is linearly dependent to the first set. However, since we aim at
quantifying the linear dependence of these vectors rather than just determining
whether they are linearly dependent or not, we propose the following similarity
measure. Given a set of linearly independent normal vectors V = {n1, ...,nk},
we quantify the linear dependence of another vector m wrt V by calculating the
singular values SV (A) of matrix A = (n1, ...,nk ,m) and dividing the smallest
value by the largest one. The closer the resulting value

Ldep

⎛
⎝v1, ...vk,m︸ ︷︷ ︸

A

⎞
⎠ =

min (SV (A))
max (SV (A))

is to zero, the closer the vectors of the matrix are to being linearly dependent
due to adding m. Given two Concepts C1 and C2 with their sets of normal
vectors N1 and N2 being of cardinality k, and each normal vector representing a
(d − k)-dimensional subspace, we define the Singular Value Distance as follows:

SVdist(C1, C2) = max
n∈N2

(Ldep(N1,n)) .

Note that this distance measure only accounts for the orientation of the corre-
lation clusters described by the Concepts. However, two Concepts that describe
different, parallel subspaces would have a singular value distance equal to zero.
To avoid an unification of such Concepts we introduce the following secondary
measure accounting for the actual distance in an Euclidean sense, i.e.,

dperp(p,E) = |n1p1 + ... + ndpd − r|,

Detecting Arbitrarily Oriented Subspace Clusters in Data Streams 363

with p denoting any data point of a Concept C1, E denoting the HNF equation
of a Concept C2 and n being the corresponding normal vector. As the actual
data points that defined the subspace are not available due to aggregating the
necessary information, we use the centroid of the Concept as representative.
Thus, we compute the Equation Shift Distance between two Concepts C1 and
C2 as

dshift(C1, C2) = max
i=1,...,k

dperp(µ2, E1,i),

with E1,i being the hyperplane equations of C1 and µ2 being the mean of all
data points forming the subspace captured in C2.

4.4 Aging and Unification

Aging. Informally, the unification of two Concepts is the process of merging
two subspace cluster representatives. However, when unifying two Concepts it
is important to consider the importance of the Concepts, as for instance a very
recent Concept is typically more important than a stale Concept, or a Concept
that represents lots of data objects is more important than a Concept that
represents only a few. Therefore, we introduce an importance score for each
Concept that we use as weighting factor when merging two Concepts. Formally,
we define the importance score of a Concept C as

I(C) = e−λΔt · NC ,

with λ being the decay parameter, Δt being the temporal difference between the
current timestamp and the timestamp given in C, and NC being the number of
data objects that have been assigned to C. The first part of this equation, i.e.,
e−λΔt, is referred to as temporal part and contains the damping factor λ > 0. A
high value of λ means low importance of old data and vice versa. The temporal
part is also used to discard very old Concepts that are considered irrelevant for
an up-to-date subspace clustering model. We therefore introduce a threshold θ
that basically models a sliding window approach as a Concept whose temporal
part falls below the threshold θ is discarded.

Unification. After extracting the new Concepts of a batch and recalculating the
importance score of all Concepts in memory, we perform an unification step for
the new Concepts and the previously extracted ones. Beginning at dimensional-
ity d − 1, we compare all Concepts pairwise in terms of similarity and unify two
Concepts if they are similar enough wrt some similarity threshold. The unifica-
tion is continued in descending order regarding dimensionality. If two Concepts
C1 and C2 of the same dimensionality can be unified, the following operations
are performed to create the resulting Concept C∗:

– For each pair of equations E1,i and E2,i with 0 < i < d − l, we define a
new equation E∗

i by using the weighted mean of the normal vectors and the
weighted mean of the distances to the origin of the two equations, i.e.,

E∗
i =

I(C1) · nE1,i + I(C2) · nE2,i

2
· x +

I(C1) · rE1,i + I(C2) · rE2,i

2
.

364 F. Borutta et al.

This creates a new and possibly slightly shifted set of hyperplane equations.
– The mean representative for C∗ is calculated by weighting the respective

means from C1 and C2 with their importance, i.e.,

μC∗ =
I(C1) · μC1 + I(C2) · μC2

2
.

– The number of data objects represented by C∗ is the sum of data objects
represented by C1 and C2, i.e., NC∗ = NC1 + NC2 .

– The timestamp of C∗ is set to the current timestamp, i.e., the timestamp of
the younger Concept C1, such that tC∗ = tC1 .

– The reference to the parent Concept of C∗ will be set to the parent Concept
of C1. Pointers of Concepts having C1 or C2 as parent are set to C∗.

As Concepts do not have to be identical wrt normal vectors and origin dis-
tances in order to trigger the unification, there will be some shifts of the yet
found subspace clusters. In some applications it might be useful to record these
shifts, e.g., to detect abnormal behaviors. CashStream enables the tracking of
concept shift, since eventual drifts would result in rotations or parallel shifts of
one or several plane equations describing the Concept. Hence, one simply has to
record changes that may result from an unification of an old and a new Concept
to get a history of changes in the underlying data distribution. However, this
comes to the costs of requiring additional memory space.

5 Experiments

We evaluate CashStream by comparing the proposed streaming algorithm
against the static counterpart CASH wrt the performance indicators accuracy,
throughput and memory consumption. Those measures are important metrics
for streaming methods as these methods typically aim at trading some accuracy
for a drastically decreased memory consumption, or runtime.

Datasets. We use synthetic and real world datasets throughout this section. The
synthetic dataset is a 4-dimensional set of points, containing two 2-dimensional
planes of 1000 data points each, and 1000 random noise points. The planes both
are jittered, making the data not perfectly correlated within their corresponding
subspaces (as it appears in real world applications). The real-world dataset is a
slightly manipulated version of the wages dataset. The original dataset has also
been used in [1], and consists of 534 records each having four different features,
i.e., age, years of education, years of experience and salary. However, we enlarge
the dataset by copying and shuffling the records such that we have 40000 data
points and finally can use the data to simulate a data stream appropriately.

Parameter Settings. We perform grid searches over various parameter settings
and report the results for the best settings. Precisely, we range the parameters
over the following sets: damping factor λ ∈ {.2, .5, .8}, temporal threshold θ ∈
{.5, .8, 1}, singular value distance threshold τSV dist ∈ {.005, .01, .02, .03}, and

Detecting Arbitrarily Oriented Subspace Clusters in Data Streams 365

equation shift distance threshold τshift ∈ {.05, .1, .15}2. The timestamp of a
batch is set according to its number, i.e., the i-th batch gets timestamp i. The
minPts parameter that must be set for CASH is set proportionally to the batch
size, i.e., minPts = m̃ · s, with m̃ being the minPts fraction and s being the
batch size. The other CASH specific parameter maxSplits is set according to the
dataset at hand and reported for each experiment individually.

Fig. 3. Throughput for various batch sizes on the wages dataset; values above the bars
are the absolute runtimes in sec; maxSplits = 10, m̃= 0.2.

Clustering Quality. For measuring the clustering quality of CashStream,
we compare the results to a clustering on the same dataset for several dif-
ferent settings of the batch size parameter, including the batch size for
which a single batch contains the entire dataset, which is equivalent to
the static CASH. In terms of evaluation metrics, we employ the Adjusted
Rand Index (ARI) and the Adjusted Mutual Information (AMI) scores.

Table 1. Results on the syn-
thetic dataset. k is the number of
batches, maxSplits = 9, m̃= 0.3.

Batch size k ARI AMI

3000 1 0.951 0.922

1500 2 0.943 0.907

1000 3 0.924 0.881

750 4 0.875 0.829

Note that due to the lack of ground truth in
the real-world dataset, we restrict ourselves to
a synthetic dataset for evaluating the cluster-
ing quality. The calculated ARI and AMI for
this dataset can be seen in Table 1. In general,
it can be observed that the clustering qual-
ity slightly drops when choosing a batch size
below 1000. This might indicate that the sub-
sample might not reflect the data distribution
sufficiently when choosing the batch size too
small, which can be especially problematic in

scenarios where correlations are imperfect. Another reason for the decreasing
clustering accuracy can be the presence of temporal effects (i.e., slight drifts in
the data distribution, increasing amount of noise, etc.).

Runtime/Throughput. We investigate the actual throughput in terms of data
points per second. In general, our evaluation of the throughput can be under-
stood as a runtime comparison between the batched algorithm and the static
CASH. For the throughput experiment, we used the enlarged real-world dataset
to demonstrate the scalability of the batched streaming approach. In Fig. 3, we
2 Note that those parameters are application dependent and thus not investigated in

further detail.

366 F. Borutta et al.

report the throughput in data points per second and the total runtime in sec-
onds. Each of the reported values is the mean value over three runs. For all those
runs, we compared the resulting clustering models (by means of comparing the
detected subspaces) with the expected clustering model and selected the param-
eter setting according to the best result. This experiment shows that the stream
processing procedure has no loss in runtime compared to the static variant. In
particular, it can be seen that the unification of Concepts barely has any effect
on the runtime performance. We also observe that the batch size barely affects
this performance measure.

Memory. As memory consumption is a critical metric for streaming applica-
tions, we show the monitored RAM usage of the batched approach and compare
it to the static CASH. Precisely, we report the heap space usage profiles for both
approaches as the memory usage at runtime is the decisive performance metric.
The shown graphs were created using Java ViusalVM 1.4.2, which is included in
the Java JDK. To simulate a light-weight system, we cap the maximal available
heap space to 2 GB (Fig. 4).

(a) Static approach, processing a single
batch of size 20000, max at ≈1500MB.

(b) Streaming approach, processing three
batches of size 6666, max at ≈850MB.

Fig. 4. Heap space usage profiles for the wages dataset (maxSplits = 8, m̃= 0.2).

For this experiment, we again use the enlarged wages dataset. This time the
dataset consists of 20000 data points (augmented the same way as previously).
Figure 4a shows the heap usage profile when using a single batch that contains
all data points, resp. the static version, and Fig. 4b shows the profile when com-
puting the same experiment with three batches.

For the static approach simulated in the full-sized 20000 points batch, the
heap space rises steadily to a maximum level of around 1500 MB. When subdi-
viding the points into 3 batches of 6666 points, we observe two crucial details:
Firstly, the peak heap space usage is approx. 850 MB, which is significantly lower
than in the static approach. Secondly, the three sequentially processed batches
can clearly be identified as three peaks in the heap space profile.

6 Conclusion

In this work, we presented the novel subspace clustering algorithm CashStream
that is able to deal with high-dimensional streaming data efficiently. Precisely,

Detecting Arbitrarily Oriented Subspace Clusters in Data Streams 367

CashStream relies on the subspace clustering paradigm that was introduced
for the static CASH algorithm, i.e., using Hough transformations to identify
interesting linear subspaces. However, in contrast to CASH, the proposed algo-
rithm uses a batch processing scheme, identifies interesting subspaces within
the data batches, and subsequently compresses important information within
Concept data structures. Our experiments showed that CashStream is fairly
robust against different choices for the batch size and simultaneously reduces
the memory consumption significantly compared to the static CASH algorithm
(less than 50% on the real-world dataset). At the same time the loss in terms of
clustering quality is negligible.

Acknowledgement. This work has been funded by the German Federal Ministry of
Education and Research (BMBF) under Grant No. 01IS18036A. The authors of this
work take full responsibilities for its content.

References

1. Achtert, E., Böhm, C., David, J., Kröger, P., Zimek, A.: Global correlation clus-
tering based on the Hough transform. Stat. Anal. Data Min. 1(3), 111–127 (2008)

2. Achtert, E., Böhm, C., Kriegel, H.P., Kröger, P., Zimek, A.: On exploring complex
relationships of correlation clusters. In: Proceedings of SSDBM, p. 7 (2007)

3. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving
data streams. In: Proceedings of VLDB, pp. 81–92 (2003)

4. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for projected clustering
of high dimensional data streams. In: Proceedings of VLDB, pp. 852–863 (2004)

5. Aggarwal, C.C., Yu, P.S.: Finding generalized projected clusters in high dimen-
sional spaces, vol. 29 (2000)

6. Böhm, C., Kailing, K., Kriegel, H.P., Kröger, P.: Density connected clustering with
local subspace preferences (2004)

7. Böhm, C., Kailing, K., Kröger, P., Zimek, A.: Computing clusters of correlation
connected objects. In: Proceedings of SIGMOD, pp. 455–466 (2004)

8. Borutta, F., Kröger, P., Hubauer, T.: A generic summary structure for arbitrarily
oriented subspace clustering in data streams. In: Amato, G., Gennaro, C., Oria,
V., Radovanović, M. (eds.) SISAP 2019. LNCS, vol. 11807, pp. 203–211. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32047-8 18

9. Bradley, P.S., Fayyad, U.M., Reina, C., et al.: Scaling clustering algorithms to large
databases. In: Proceedings of KDD, vol. 98, pp. 9–15 (1998)

10. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving
data stream with noise. In: Proceedings of SDM, vol. 6, pp. 328–339 (2006)

11. Corwin, L.: Multivariable Calculus. Routledge, London (2017)
12. Guha, S., Mishra, N., Motwani, R., o’Callaghan, L.: Clustering data streams. In:

Proceedings of FOCS, pp. 359–366 (2000)
13. Hassani, M., Spaus, P., Gaber, M.M., Seidl, T.: Density-based projected clustering

of data streams. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM
2012. LNCS (LNAI), vol. 7520, pp. 311–324. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33362-0 24

14. Kazempour, D., Mauder, M., Kröger, P., Seidl, T.: Detecting global hyper-
paraboloid correlated clusters: a Hough-transform based multicore algorithm. Dis-
trib. Parallel Databases 39, 37–72 (2018). https://doi.org/10.1007/s10619-018-
7246-0

https://doi.org/10.1007/978-3-030-32047-8_18
https://doi.org/10.1007/978-3-642-33362-0_24
https://doi.org/10.1007/978-3-642-33362-0_24
https://doi.org/10.1007/s10619-018-7246-0
https://doi.org/10.1007/s10619-018-7246-0

368 F. Borutta et al.

15. Kriegel, H.P., Kröger, P., Ntoutsi, I., Zimek, A.: Towards subspace clustering on
dynamic data: an incremental version of PreDeCon. In: Proceedings of Interna-
tional Workshop on Novel Data Stream Pattern Mining Techniques, pp. 31–38
(2010)

16. Ntoutsi, I., Zimek, A., Palpanas, T., Kröger, P., Kriegel, H.P.: Density-based pro-
jected clustering over high dimensional data streams. In: Proceedings of SDM, pp.
987–998 (2012)

17. O’Callaghan, L., Mishra, N., Meyerson, A., Guha, S., Motwani, R.: Streaming-
data algorithms for high-quality clustering. In: Proceedings of ICDE, pp. 685–694
(2002)

18. Park, N.H., Lee, W.S.: Grid-based subspace clustering over data streams. In: Pro-
ceedings of CIKM, pp. 801–810 (2007)

19. Rosenfeld, A.: Picture processing by computer, vol. 1, pp. 147–176. ACM (1969)
20. Scheid, H., Schwarz, W.: Elemente der linearen Algebra und der Analysis (2009)
21. Silva, J.A., Faria, E.R., Barros, R.C., Hruschka, E.R., De Carvalho, A.C., Gama,

J.: Data stream clustering: a survey. ACM Comput. Surv. 46(1), 13 (2013)
22. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering

method for very large databases. ACM Sigmod Rec. 25, 103–114 (1996)
23. Zhou, A., Cao, F., Qian, W., Jin, C.: Tracking clusters in evolving data streams

over sliding windows. Knowl. Inf. Syst. 15(2), 181–214 (2008). https://doi.org/10.
1007/s10115-007-0070-x

https://doi.org/10.1007/s10115-007-0070-x
https://doi.org/10.1007/s10115-007-0070-x

	Detecting Arbitrarily Oriented Subspace Clusters in Data Streams Using Hough Transform
	1 Introduction
	2 Related Work
	3 Correlation Clustering Using Hough Transform
	4 CashStream
	4.1 Data Processing: Batch Processing
	4.2 Cluster Representatives: Concepts
	4.3 Similarity Between Concepts
	4.4 Aging and Unification

	5 Experiments
	6 Conclusion
	References

