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Abstract

While the mechanistic understanding of proton-coupled electron transfer (PCET) has advanced 

significantly, few reports have sought to elucidate the factors that control chemoselectivity in these 

reactions. Here we present a kinetic study that provides a quantitative basis for understanding the 

chemoselectivity in competitive PCET activations of amides and thiols relevant to catalytic olefin 

hydroamidation reactions. These results demonstrate how the interplay between PCET rate 

constants, H-bonding equilibria, and rate-driving force relationships jointly determine PCET 

chemoselectivity under a given set of conditions. In turn, these findings predict reactivity trends in 

a model hydroamidation reaction, rationalize the selective activation of amide N−H bonds in the 

presence of much weaker thiol S−H bonds, and deliver strategies to improve the efficiencies of 

PCET reactions employing thiol co-catalysts.

Graphical Abstract

Useful synthetic methods exhibit reliable selectivities, enabling users to confidently predict 

reaction outcomes in complex settings. To this end, we have recently become interested in 

trying to understand the features governing chemoselectivity in multi-site proton-coupled 

electron transfer (MS-PCET) reactions. Oxidative MS-PCET reactions are redox processes 

wherein protons and electrons are exchanged between a substrate and two independent 

molecular acceptors – a Brønsted base and one electron oxidant – in a concerted elementary 
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step. Similar to related hydrogen-atom transfer (HAT) reactions,1 prior kinetic studies have 

shown that MS-PCET processes generally exhibit linear rate-driving force relationships,2 

suggesting that abstraction selectivity should track with bond strength differential with 

weaker bonds to hydrogen reacting preferentially. These quantitative insights reinforce a 

common intuition that homolytic activation of very strong bonds (BDFEs ≥ 100 kcal/mol) is 

generally not practical when much weaker bonds to hydrogen (BDFEs ≤ 80 kcal/mol) are 

also present.

We recently observed a curious exception to this principle in the development of a catalytic 

method for alkene hydroamidation.3a, 3b In these reactions, which were subsequently studied 

in detail by Nocera and coworkers,3c a substrate amide N–H bond engages in a concerted 

MS-PCET reaction with an excited-state Ir(III) oxidant and a dialkyl phosphate base to 

furnish a reactive amidyl radical. Subsequent addition of the amidyl to a pendant olefin 

creates a new C–N bond and a vicinal carbon-centered radical that is then reduced by HAT 

from a thiophenol co-catalyst to form the closed-shell product. A surprising aspect of this 

reaction relates to the selectivity of the initial MS-PCET step. Both amides3 and thiols4 were 

demonstrated to be competent substrates for MS-PCET activation under the reaction 

conditions, and the thiophenol S–H bond (BDFE ~ 79 kcal/mol)5 is significantly weaker 

than the substrate amide N–H bond (BDFE ~ 99 kcal/mol).6 Accordingly, one might expect 

that the thiophenol would inhibit the desired N–H oxidation reaction by sequestering the Ir/

phosphate catalysts in a highly favorable, but unproductive, PCET process. However, 

competitive luminescence quenching studies in a model system revealed a rate law for 

deactivation of the Ir excited state that exhibited a first-order concentration dependence on 

the amide and phosphate and a zero-order dependence on the concentration of thiol (Scheme 

1).3a Efficient and selective amide activation in opposition to such a large thermodynamic 

bias raises intriguing questions about the physical origins of MS-PCET selectivity in these 

systems.

Here we present a kinetic study of both amide and thiol PCET activations that sheds light on 

this surprising selectivity. These experiments demonstrate that both pre-equilibrium 

hydrogen bonding and the sensitivity of the rate-driving force relationship for each substrate 

class plays a key role in determining PCET selectivity under a given set of conditions. In 

turn these findings provide insights into potential pitfalls associated with PCET-based 

catalysis with thiol H-atom donors, as well as actionable strategies to overcome them. The 

details of these investigations and their applications to predicting reactivity trends in a 

catalytic hydroamidation reaction are described herein.

Oxidative MS-PCET reactions typically occur through hydrogen-bonded complexes between 

the substrate E–H bond and the Brønsted base.7 As such, the free energy profiles of these 

reactions are determined by both the kinetic barrier for the PCET event and the favorability 

of forming the reactive hydrogen-bonding complex, as illustrated in Figure 1. Based on this 

understanding, we studied the PCET reactions of four N-aryl amides (A1 – A4) and four 

aryl thiols (T1 – T4), mediated by two distinct Ir(III)-based photooxidants (Ir-1 and Ir-2) 

and a dibutyl phosphate base (NBu4OP(O)(OBu)2) in 1,2-dichloroethane (DCE) at room 

temperature (Table 1). The hydrogen bonding equilibrium constant (KA) for association with 

the phosphate base and the PCET rate constant for oxidation of this H-bonded complex 

Qiu and Knowles Page 2

J Am Chem Soc. Author manuscript; available in PMC 2020 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(kPCET) were determined simultaneously for both the amide and the thiol series via a simple 

luminescence quenching method we recently described in a study of ketone PCET 

activation.2c This method enabled us to evaluate the sensitivity of the reaction rates to 

changes in driving force associated with varying either the substrate or the potential of the 

excited state oxidant. The PCET rate constants and H-bonding equilibrium constants for 

both the amide and thiol series are presented in Table 1 and the corresponding rate-driving 

force correlations are shown in Figure 2.9

These results provide a compelling explanation for selective amide activation in the 

competitive luminescence quenching studies discussed above, as seen through comparison 

of the data for PCET activation of (A1) and (T1) by Ir-1 and the phosphate base. 

Surprisingly, the rate constants for PCET with both A1 (8.4 × 109 M−1s−1) and T1 (9.5 × 

109 M−1s−1) approached the diffusion limit in DCE (~1 × 1010 M−1s−1).10 However, the KA 

values indicated that the amide forms a more favorable hydrogen-bonded complex (KA = 

1050 M−1) with the phosphate base than the thiol does (KA = 200 M−1), ensuring that the 

concentration of the reactive amide-phosphate H-bond complex in solution is significantly 

higher than that of the competing thiol-phosphate complex. As both elementary steps occur 

with similar rate constants, the thiol reaction is unable to take advantage of the additional 20 

kcal/mol of driving force, and the resulting selectivity is gated by the relative concentration 

of the reactive H-bonded complexes in solution. Based on the KA and kPCET values 

obtained, the relative rates for amide and thiol activation at the concentrations of the 

synthetic hydroamidation reactions is ~ 50:1, consistent with the previously determined rate 

law for luminescence quenching.3a

Evaluating a series of amide and thiol substrates with less favorable driving forces enabled 

us quantify the rate-driving force relationship for each substrate class outside of the 

diffusion-limited regime. Linear rate-driving force correlations were observed for both 

reactant classes. The amide series exhibited rate constants comparable to those obtained 

previously by Nocera,3c and a Brønsted slope (α) of 0.53, similar to the value expected from 

Marcus theory.11 However, the thiol series exhibits a much shallower dependence (α = 

0.10), indicating a difference in intrinsic barriers for the two sets of substrates.12,13 This 

value is similar in magnitude to the small Brønsted slope observed in our previous study of 

PCET activations of ketones that was attributed to non-perfect synchronization (NPS),2c 

wherein factors that serve to stabilize the product are only partially realized at the transition 

state.14 Mayer and coworkers recently proposed a similar NPS-based explanation for modest 

Bronsted slopes in the MS-PCET oxidations of C–H bonds, and we anticipate that similar 

explanations may be operative here. 15

Importantly, MS-PCET chemoselectivity between competing substrates is determined by 

differences in both KA and kPCET. The differing slopes of the plots in Figure 2 highlights 

that changes in driving force effect kPCET-amide and kPCET-thiol with different sensitivities. 

Therefore, the selectivity between N–H and S–H activation pathways can be modified by 

changing the overall driving force for the reaction, which is jointly determined by the 

identity of the oxidant and the base catalysts. Similarly, differences in KA values modulate 

the concentrations of the reactive H-bonded adducts, whose relative abundance also factors 

into the observed chemoselectivity.
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To demonstrate how the interplay of these factors can influence the chemoselectivity of the 

PCET step, we define a selectivity factor Q, which is taken as □—the ratio of the PCET rate 

constant for oxidation of the amide-phosphate H-bond adduct times its concentration, to that 

of the thiol adduct counterpart (equation 1).

Q = kPCET amide[amide • phosphate]
kPCET thiol[thiol • phosphate] (1)

Q reflects the competition between the two H-bonded adducts to serve as the electron donor 

for a limiting concentration of the excited-state oxidant. As such, we hypothesized that the 

PCET selectivity reflected in Q may correlate with efficiency in a catalytic hydroamidation 

reaction, and that variation of the factors comprising Q could provide useful insight into the 

ways in which reaction outcomes can be rationally modulated (and complex reactivity trends 

understood) through careful choice of reaction conditions. Therefore, we evaluated a series 

of hydroamidation reactions where the value of Q and its component factors were 

systematically varied (Table 2). Importantly, during these catalytic reactions the amide 

substrate is consumed while the concentration of the thiol catalyst remains relatively 

constant.3c This will cause the initial value of Q (Q0 in Table 2) to decrease as the reaction 

proceeds, and below a certain threshold of Q the thiol is expected to compete kinetically 

with the amide substrate in the PCET event, effectively halting reaction progress.

The reactions in the upper portion of Table 2 are divided into three groups. Within each 

group, a single thiol is employed, while the identities of the amide and oxidant are varied. 

Notably, in all cases the reaction yields were found to trend together with the Q0 values. The 

mass balance for reactions that did not reach full conversion was comprised predominantly 

of recovered starting material. Further evidence that PCET chemoselectivity had a direct 

impact on reaction outcomes could be found in entry 9, which reached a reaction endpoint of 

60% yield and 30% recovery after 12 hours. However, adding a second equivalent of starting 

material after 12 hours (and thus re-raising the Q value above the critical threshold) resulted 

in restored hydroamidation reactivity and an additional 36% yield of product formation. This 

indicates that while the productive reaction had stalled, the catalyst system was still active 

and that the lack of reactivity was principally a function of a kinetically dominant but non-

productive PCET activation of the thiol.

Evaluating the results in Table 2 more broadly, we can distinguish several general reactivity 

trends. First, amide substrates bearing electron-withdrawing groups (EWGs) are more 

favorable H-bonding partners for the anionic phosphate, resulting in an increased value of 

KA-amide and a higher equilibrium concentration of the amide phosphate adduct. However, 

kPCET-amide decreases for the same substrates as EWGs increase the strength of the N–H 

bond. Since the Brønsted α value for amides is comparatively large (~0.53), the change in 

driving force dominates and the overall rate of N–H PCET is suppressed. Accordingly, Q0 

also decreases, and the hydroamidation reactions of these substrates are less efficient than 

the parent compound (e.g. comparing entries 4, 5, 6; 8, 11, 12).

Incorporating EWGs into the aryl thiol also increases KA-thiol and the equilibrium 

concentration of the thiol-phosphate complex, while simultaneously diminishing kPCET-thiol 
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as the S–H BDFE increases. However, the Brønsted slope for the thiol is comparatively 

small (α =0.10), indicating that changes in the driving force have comparatively little impact 

on kPCET-thiol. As such, the increase in adduct concentration is the dominant factor, and 

serves to increase the overall rate of S–H PCET activation. This in turn decreases Q0 and 

makes the hydroamidation reaction less efficient (e.g. comparing entries 5, 11, 17; 19, 20).

Finally, as the reduction potential of the Ir photocatalyst becomes more positive the driving 

force for both PCET reactions becomes more favorable. This causes both kPCET-amide and 

kPCET-thiol to increase while both KA values remain constant. However, since kPCET-amide is 

more sensitive to changes in the driving force than kPCET-thiol, Q0 increases when a stronger 

oxidant is employed, resulting in a more efficient hydroamidation reaction (e.g. comparing 

entries 3, 6; 9, 11). These results demonstrate how chemoselectivity in MS-PCET reactions 

and their attendant effects on reaction efficiency can be modulated simply by varying the 

driving force associated with the one-electron oxidant. Considered altogether, we note that 

every oxidant and thiol can effectively facilitate the hydroamidation reaction of at least one 

amide substrate; moreover, every amide substrate can be effectively cyclized with at least 

one combination of oxidant and thiol. These studies provide quantitative framework for 

interpreting reactivity trends and suggest general strategies for increasing selectivity for 

amide activation in marginal reactions. We anticipate that the framework presented here will 

provides a road map for studying chemoselectivity in other PCET reactions, where the 

interplay of hydrogen bonding affinities, differential PCET kinetics, and the sensitivities of 

the rate driving force relationships can be rationally exploited to improve the selectivity of a 

given process.
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Figure 1. 
Free energy surface for the MS-PCET activation of amides and thiols.
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Figure 2. 
Rate-driving force relationships
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Scheme 1. 
MS-PCET chemoselectivity relevant to catalytic hydroamidation reactions
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Table 1.

Kinetic and H-bonding equilibrium data

entry amide/thiol *Ir(III) BDFEN-H/S-H (kcal/mol)6,8 KA(M−1) ΔG°’PCET (kcal/mol) kPCET (M−1s−1)

1 A1 Ir-1 98.9 1050 8.4 8.4×109

2 A1 Ir-2 98.9 1050 10.9 1.1×109

3 A2 Ir-1 101.1 3550 11.3 9.3×108

4 A2 Ir-2 101.1 3550 13.8 6.8×107

5 A3 Ir-1 101.6 1390 11.2 9.3×108

6 A3 Ir-2 101.6 1390 13.7 7.5×107

7 A4 Ir-1 100.0 1500 9.7 3.0×109

8 A4 Ir-2 100.0 1500 12.2 1.8×108

9 T1 Ir-1 79.1 200 −12.4 9.5×109

10 T1 Ir-2 79.1 200 −9.8 3.6×109

11 T2 Ir-1 76.9 44 −15.6 1.0×1010

12 T2 Ir-2 76.9 44 −13.0 7.0×109

13 T3 Ir-1 84.0 5600 −5.5 4.0×109

14 T3 Ir-2 84.0 5600 −3.0 1.0×109

15 T4 Ir-1 81.3 2150 −8.8 8.3×109

16 T4 Ir-2 81.3 2150 −6.3 2.2×109
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entry amide/thiol *Ir(III) BDFEN-H/S-H (kcal/mol)6,8 KA(M−1) ΔG°’PCET (kcal/mol) kPCET (M−1s−1)
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