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Abstract
Bipolar disorder (BD) is a neuropsychiatric mood disorder 
characterized by recurrent episodes of mania and depres-
sion in addition to disruptions in sleep, energy, appetite,  
and cognitive functions-rhythmic behaviors that typically 
change on daily cycles. BD symptoms can also be provoked 
by seasonal changes, sleep, and/or circadian disruption, in-
dicating that chronobiological factors linked to the circadian 
clock may be a common feature in the disorder. Research 
indicates that BD exists on a clinical spectrum, with distinct 
subtypes often intersecting with other psychiatric disorders. 
This heterogeneity has been a major challenge to BD re-
search and contributes to problems in diagnostic stability 
and treatment outcomes. To address this heterogeneity, we 
propose that chronobiologically related biomarkers could 
be useful in classifying BD into objectively measurable phe-
notypes to establish better diagnoses, inform treatments, 
and perhaps lead to better clinical outcomes. Presently, we 
review the biological basis of circadian time keeping in hu-

mans, discuss the links of BD to the circadian clock, and pre-
sent recent studies that evaluated chronobiological mea-
sures as a basis for establishing BD phenotypes. We conclude 
that chronobiology may inform future research using other 
novel techniques such as genomics, cell biology, and ad-
vanced behavioral analyses to establish new and more bio-
logically based BD phenotypes. © 2020 S. Karger AG, Basel

Introduction

Bipolar disorder (BD) is a common, severe, and de-
bilitating mental illness that affects approximately 1–3% 
of the population [1, 2]. The negative impact associated 
with BD is immense. This chronic illness currently 
ranks as the sixth leading cause of disability worldwide 
[3] and is estimated to be the world’s fourth largest 
cause of disability among young adults aged 15–44 years 
[4]. Among psychiatric disorders, BD has one of the 
highest suicide rates, with estimates that 10–20% of af-
fected patients ultimately take their own lives [5]. Even 
though the vast majority of individuals suffering from 
affective episodes experience significant degrees of psy-
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chosocial impairment [6], many patients suffering from 
BD go untreated [1].

BD is defined primarily by recurrent manic and de-
pressive episodes. Additional diagnostic criteria reveal 
underlying chronobiological disruptions in BD. BD is 
marked by fluctuations and disturbances in activity and 
energy, appetite, attention, subjective speeds of thought, 
and sleep – all processes that commonly show diurnal 
variation in healthy subjects. Additionally, some specifi-
ers used to describe the illness, such as rapid cycling and 
seasonality, also suggest that rhythm disturbances are a 
core feature of the disorder [7]. Rhythm disruptions are a 
hallmark of BD [7, 8]. Variations in intrinsic circadian 
periods [9, 10], phase shifts [11–19], and less stable bio-
logical rhythms [20–25] have all been noted in associa-
tion with the illness. Disturbances in lifestyle regularity 
[26–28], sleep disturbances [29–42], variations in mela-
tonin secretion [17, 43], and disruptions in rhythmic lo-
comotor activity [24, 25, 44, 45] have all been reported.

Among the challenges in studying and treating BD is the 
heterogeneity, defined as the variability in the clinical pre-
sentation, of the disorder. The illness is not fully character-
ized by existing diagnostic and classification systems, and 
many individuals with the same diagnosis show consider-
able differences in illness course and treatment response 
[46]. This heterogeneity in clinical presentation may reflect 
the presence of multiple, distinct pathophysiological 
mechanisms underlying the development and/or progres-
sion of BD [47]. While considerable progress has been 
made in understanding the biological mechanisms under-
lying BD, much remains to be known, and phenotypic het-
erogeneity has undoubtedly contributed to the challenges 
in identifying pathophysiological mechanisms associated 
with BD. One proposed method to address the issue of het-
erogeneity is to identify phenotypes, or observable traits 
and characteristics, for the illness [48]. A plausible pheno-
type should be supported by empirical evidence, be com-
prised of measurable characteristics, and be directly appli-
cable to the disorder in question [48]. For BD, differences 
in the expression of chronobiological characteristics like 
circadian rhythm disturbances, sleep abnormalities, and 
seasonality among others may meet these criteria.

In this review we examine the heterogeneity of BD 
from a chronobiological perspective. We provide a back-
ground for the genetic and neurobiological foundations 
of the circadian clock system and evaluate evidence link-
ing BD patients and chronobiological disturbances. Fi-
nally, the evidence supporting distinct chronobiological 
phenotypes in BD is reviewed, with discussion of the di-
rections for future research in the field.

Structure and Function of the Circadian Timing 
System

Circadian rhythms play an essential role in life. They 
are self-sustained, ∼24-h rhythms that are present in 
nearly every organism, including humans. The circadian 
timing system directly or indirectly influences the timing 
of nearly all rhythmic physiological activity in humans, 
including sleep and activity cycles as well as seasonal 
rhythms [49]. Additional physiological functions under 
the regulation of the circadian timing system include 
temperature regulation, feeding and metabolism, hor-
mone secretion, and inflammation. In mammals, the su-
prachiasmatic nucleus of the hypothalamus functions as 
the master pacemaker [49]. However, many brain re-
gions besides the suprachiasmatic nucleus contain circa-
dian clocks, including areas that have been implicated in 
mood regulation and mood disorders, such as the frontal 
cortex, hippocampus, amygdala, and striatum [50, 51]. 
Recent estimates in nonhuman primate sampling from 
64 tissues across the body indicates that > 80% of the ge-
nome is rhythmically expressed in at least one tissue and 
that genes involved in critical cellular processes are typi-
cally rhythmic in the relevant tissue for that function 
[52]. Moreover, rhythms in the brain are widespread and 
show anatomically distinct profiles comprised of distinct 
ensembles of rhythmic genes in different brain regions 
[52]. Accordingly, behaviors and neurophysiological 
processes affected by mood disorders, such as cognitive 
function, reward processing, motivation, and mood reg-
ulation, are under the regulation of the circadian clock 
[50, 51].

At the core of the circadian timing system are endog-
enous molecular clocks comprised of transcriptional/
translational feedback loops made up of circadian genes 
[53, 54] (Fig.  1). The positive feedback loop consists  
of heterodimeric transcriptional activator complexes 
(CLOCK/NPAS2-ARNTL) that bind to CACGTG E-box 
or related E-box-like sequences to regulate transcription 
of core clock genes (PER1/2, CRY1/2, CIART, NR1D1/2, 
and DBP) [55, 56]. The CLOCK/NPAS2-ARNTL com-
plex regulates the expression of its own transcriptional 
repressors PER1/2/3 and CRY1/2 that gradually inhibit 
their own expression over ∼24-h cycles to sustain a rhyth-
mic circadian oscillator. Negative feedback is achieved 
upon accumulation of PER and CRY proteins in the cy-
toplasm, where they dimerize to form a PER-CRY repres-
sor complex that translocate back to the nucleus upon 
phosphorylation by CSNK1D/E to negatively regulate 
their own transcription. CLOCK/NPAS2-ARNTL het-
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erodimers also activate the expression of transcription 
factors NR1D1/2, CIART, and RORA/B, which form a 
second feedback loop and activate and repress ARNTL, 
NFIL3, and CRY1 transcription at ROR response ele-
ments containing a 5′-AGGTCA-3′ motif. D-box ele-
ments (5′-TTAYGTAA-3′) are activated and repressed 
by DBP and NFIL3, respectively, and regulate circadian 
transcriptional oscillations of PER1/2/3, NR1D1/2, and 
RORA/B. DBP and NFIL3 proteins are critical for deter-
mining the period length of the circadian oscillator [57] 
and have been implicated in phase resetting of the circa-
dian clocks [58].

Virtually every cell in the body has an autonomous 
circadian clock [59, 60]. It is the expression of clock genes 
that results in the ability of cells to maintain time keeping 
rhythms in a cell-autonomous manner. In addition to 
governing molecular clock functions, clock genes also 
regulate the expression of clock-controlled output genes, 
i.e., genes that do not have a direct time keeping function 
but are involved in temporal regulation of tissue-specific, 
physiological processes in which timing plays an impor-
tant role, including many implicated in mood regulation 

[61, 62]. The majority of rhythmically expressed genes in 
the body fall into this latter category of clock-controlled 
genes.

Effects of Circadian Misalignment on Health

One of the important functions of the circadian timing 
system is to coordinate physiological processes and be-
haviors across systems. It is believed that stable organiza-
tion of biological rhythms is an indicator of good health 
and well-being [63]. Chronobiological disturbances are 
now widely recognized as a general health concern influ-
encing a wide array of diseases [64–67], including psychi-
atric illnesses [68–73]. Circadian misalignment, or mis-
alignment between the circadian pacemaker and behav-
ioral or environmental cues, is associated with health 
problems [74] and with adverse physiological [75, 76] and 
mental sequelae [63, 76, 77].

Evidence has demonstrated that there is individual 
variability in the susceptibility towards temporal disorga-
nization and the propensity to experience symptoms of 

Fig. 1. Transcriptional regulation of the human molecular clock. 
Transcriptional/translational feedback loops of molecular clocks 
are comprised of core circadian genes consisting of transcription-
al activators (green) and repressors (red) responsible for the rhyth-
mic expression of core clock genes and clock-controlled genes. Ki-
nases (blue) are responsible for post-translation modification via 
phosphorylation (P) of key proteins within the cytoplasm required 
for translocation of proteins and protein complexes into the nu-
cleus. ARNTL, aryl hydrocarbon receptor nuclear translocator-

like; CCGs, clock-controlled genes; CIART, circadian-associated 
repressor of transcription; CK1ε/δ, casein kinase 1 epsilon/delta; 
CLOCK, clock circadian regulator; CRY1/2, cryptochrome circa-
dian regulator 1/2; DBP, D-box-binding PAR BZIP transcription 
factor; GSK3β, glycogen synthase kinase 3 beta; NFIL3, nuclear 
factor, interleukin 3-regulated; NPAS2, neuronal PAS domain 
protein 2; NR1D1/2, nuclear receptor subfamily 1 group D mem-
ber 1/2; PER1/2/3, period circadian regulator 1/2/3; RORA/B, 
RAR-related orphan receptor A/B; RRE, ROR response elements.
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circadian misalignment [78–80]. In BD, this includes ab-
normalities in circadian phase [16, 18, 81–83], low-am-
plitude rhythms/rhythm fragmentation [83–86], and 
sleep disturbances [87, 88]. It may, therefore, be the case 
that a subset of BD patients suffer to a greater degree from 
chronobiological disturbances. If this is the case, chro-
nobiological phenotyping may play a significant role in 
identifying BD groups that are most vulnerable or resis-
tant to the adverse health effects of circadian misalign-
ment and/or desynchronization.

Impact of Chronotype on BD

Circadian rhythm disorders represent the extreme 
ends of a broader spectrum of morning versus evening 
preferences that extends into the healthy population. This 
circadian phenotype is commonly called chronotype 
[89]. Chronotype, or the diurnal preference for daily ac-
tivities, is often used to obtain a measure of interindivid-
ual variations in circadian rhythms and appears to be a 
relatively stable trait [90] likely associated with genetic 
markers [90]. People with different chronotypes can dif-
fer dramatically in responses to shift work [91], homeo-
static sleep regulation [92–94], activity phase [95, 96], re-
sponses to sleep fragmentation [97, 98], total sleep dep-
rivation [99, 100], and circadian phase [101, 102]. 
Chronotype is estimated to be about 50% heritable [103] 
and varies across populations and developmental stage 
[104–107]. Resting on a continuum, chronotype is likely 
to be polygenic in origin [90, 108].

It has been suggested that in BD patients, chronotype 
is a stable trait characteristic [16, 109]. BD patients con-
sistently exhibit a significantly higher preference for eve-
ningness compared to control subjects [16, 81, 110–113]. 
Chronotypic traits may impact the clinical presentation 
and course of bipolar illness. A greater degree of evening-
ness has been associated with rapid mood swings [82], 
higher recurrence rates [82, 114], and an earlier age of ill-
ness onset [82] and lithium response [115]. Chronotype 
has also been associated with physiological parameters 
[116, 117], including variations in body temperature 
[101, 116, 118], catecholamine secretion [116, 119], sleep 
patterns [116, 120–122], subjective activation and arous-
al [116, 119, 123], and circadian rhythms of hormone se-
cretion [118] in healthy controls that may be important 
to the underlying pathophysiology of BD and/or pheno-
typic expression.

Physiological markers have been associated with BD. 
For example, an evening chronotype has been associated 

with insomnia [124], longer sleep latency [113], a higher 
percentage of total body fat and obesity [125, 126], higher 
homocysteine levels [127], increased atherogenic index of 
plasma [128], and a higher level of triglycerides [128]. 
Chronotype may also have clinical implications in BD. 
For example, an evening chronotype has been associated 
with higher response rates to the antidepressant response 
of total sleep deprivation plus light therapy [129].

Genome-Wide Associations of Clock Genes with 
Chronotype and BD

While genome-wide association studies (GWAS) have 
not identified core clock gene associations with BD; the 
sample size of the most recent BD GWAS [130] is still 
relatively underpowered compared to chronobiologically 
related GWAS studies with samples sizes surpassing 
100,000 individuals [108, 131–135]. Variants in the core 
clock genes ARNTL [131, 136], NPAS2 [131], PER2 [108, 
131, 132, 135, 136], PER3 [135, 136], CRY1 [131, 132], and 
RORB [131] have all shown significant GWAS association 
with chronotype. Other clock genes including ARNTL 
[56], NFIL3 [137], and CRY2 [136] demonstrated weaker 
associations with BD and chronotype that did not reach 
the threshold for genome-wide significance. Other GWAS 
chronotype-associated genes – MEIS1/2 [131, 132] and 
VIP [131, 132, 136] – have previously well-established 
roles in regulating circadian rhythms [135, 136].

There is some indication that genetic markers of BD 
overlap with chronobiological phenotypes [138, 139]. For 
instance, a chronotype-associated locus lies in proximity 
to the clock gene CIART [56, 140] and overlaps with a 
newly reported risk locus (rs7544145) for BD [130]. Sim-
ilarly, a variant in the clock gene ARNTL was among a 
small number of markers that differentiated polygenic 
risk for schizophrenia from BD [141]. Genetic variation 
in clock genes may not be limited to BD only. In addition 
to chronotype, differences in other chronobiological phe-
notypes also have a genetic basis [142]. Looking at related 
traits, CRY1, PER2, and PER3 variants are associated with 
ease of getting up in the morning [132]. Markers on the 
genes NFASC, SLC25A17, and MEIS with roles in regulat-
ing circadian rhythms are associated with lower relative 
amplitude in locomotor activity [143] and relative ampli-
tude of rest-activity cycles [143]. RORB and MEIS1 vari-
ants are associated with insomnia [132–134, 144], and 
MEIS1 variants are also related to sleep duration [145] 
and other sleep-related traits [133]. These data indicate 
that many chronotype-associated markers identified by 
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GWAS are not well functionally characterized, and there 
are likely to be numerous pathways and genes that influ-
ence rhythmic behaviors both within and beyond the core 
circadian clock. It is not yet clear to what degree the genes 
identified may demonstrate pleiotropic effects on other 
systems or what the impact of these identified markers are 
on chronobiological aspects of BD. For instance, NR1D2 
variants exhibit robust GWAS associations with intelli-
gence [146–149] and cognitive ability [150–152], traits 
that have been previously linked to BD [153–157].

Cellular Models of Circadian Clocks in BD

In recent years, novel techniques have been developed 
to assess the cellular function of molecular clocks in 
healthy human subjects. These studies have begun to es-
tablish that there are significant interindividual differ-
ences in the functioning of molecular clocks [158, 159] 
and that this variation is associated with differences in 
behavior, chronotype, and physiology [158–160]. Brown 
et al. [158] characterized the expression of molecular 
clocks in fibroblasts of 19 individuals. While the average 
period of the sample was similar within the normal range 
previously reported for humans, the investigators noted 
a greater than expected variability in circadian phase. 
These investigators also found that period and phase of 
cellular clocks were associated with the chronotypes of 
human cell donors [159]. These findings were partially 
replicated by Hida et al. [160], who found a relationship 
between the period of molecular clocks and chronotype. 
While these observations have been made in the general 
population, similar chronobiological heterogeneity may 
exist in BD.

While GWAS are well suited to capture information 
from relatively large population cohorts, they typically 
cannot inform researchers about the functional conse-
quences of a genetic variant as it relates to a time keeping 
function. Therefore, a complementary approach is to as-
sess molecular clock functioning and chronobiological 
phenotypes in cells from BD patients. Since circadian 
clocks are cell-autonomous and present throughout the 
body, peripheral cell types like fibroblasts may be one use-
ful model. These cells have the advantage of being rela-
tively accessible and easy to grow. In one early study by 
Yang et al. [161] the expression of 12 clock genes was ex-
amined using PCR and protein analyses in fibroblast cul-
tures in a time series over 72 h. Lower amplitude expres-
sion rhythms for BMAL1 (ARNTL), REV-ERBα (NR1D1), 
and DBP as well as decreased phosphorylation of GSK3B 

were found in the BD compared to the control cells. Lat-
er studies again studied fibroblasts, but this time using a 
bioluminescent reporter gene (PER2-luc), which allowed 
for more frequent sampling over longer times. In this 
study, cells from BD patients were found to have a longer 
circadian period and abnormal amplitude response to 
treatment of the cells with lithium [162]. In follow-up 
studies the same authors again studied fibroblast cultures, 
but this time from cells obtained in the course of a pro-
spective, multicenter, clinical trial of lithium monothera-
py [115]. In lithium responder samples, cells had a short-
er period compared to samples from non-responders. 
Moreover, there were other rhythm characteristics that 
differed between groups, with a linear relationship be-
tween period and phase and a period shortening effect in 
lithium responders, but not in cells from non-responders. 
These cellular models have provided some important 
functional context to genetic studies. However, since fi-
broblasts lack key features of neurons (e.g., neurotrans-
mitters, electrical activity, synaptic connections), there 
may be additional BD-related chronobiological functions 
that are better examined in neuronal cells.

Sleep Abnormalities and BD

The two-factor theory of sleep predicts that circadian 
rhythms have a major impact on sleep behavior [163]. 
The American Academy of Sleep Medicine currently rec-
ognizes four intrinsic circadian rhythm sleep-wake disor-
ders (CRSWDs) [164]. These include advanced sleep 
phase disorder, delayed sleep phase disorder, irregular 
sleep-wake rhythm disorder, and non-24-h sleep-wake 
disorder, each disorder being marked by a particular 
characteristic. Advanced sleep phase disorder has been 
associated with shorter circadian acrophase and period 
(Fig. 2), while delayed sleep phase disorder has been as-
sociated with longer circadian acrophase and period. Ir-
regular sleep-wake rhythm disorder is characterized by 
fragmented and pattern-lacking sleep-wake cycles. Non-
24-h sleep-wake disorder presents with a progressive 
lengthening of circadian period.

Takaesu and colleagues [165–167] have conducted a 
series of studies examining the presence of CRSWD in 
BD. These investigators found that approximately one-
third of bipolar patients met the criteria for a CRSWD 
[165, 166]. They further demonstrated that these comor-
bidities had clinical implications. BD patients with co-
occurring CRSWD were associated with higher suicide 
rates [165], greater recurrence rates [166, 167], antide-
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pressant-related manic switch [166], and higher rates of 
family history of psychiatric disorders [165].

Sleep characteristics may also prove to be important 
phenotypic signatures of BD and overlap with chrono-
biological mechanisms. Scott et al. [168] studied the re-
lationship between sleep and BD in families. In this 
study, individuals with a family history of BD and sub-
jects without a history of familial mood disorders were 
compared using actigraphy measures and Pittsburgh 
Sleep Quality Index scores. They found that the family 
history-positive group differed in mean nighttime sleep 
duration, variability in waking after sleep onset, sleep 
disturbances, and daytime dysfunction, indicating that 
sleep problems cosegregate with the genetic risk for BD 
in families. Studies also suggest that sleep phenotypes 
exist in BD. For example, short sleep duration has dem-
onstrated association with more severe symptoms [42], 
while both short and long sleep duration have been as-
sociated with poor functioning and quality of life [42]. 
A worse course of illness [30, 169], increased symptom 
severity [30, 42, 169], and impairments in functioning 
and quality of life [30, 42, 169] have also been related to 
sleep disruption. Specific types of sleep disturbances 
may also be associated with specific mood states. Vari-
ability in sleep latency has been associated with depres-
sive symptoms [169], and lower and more variable sleep 
efficiency has been associated with more lifetime de-
pressive episodes [169]. Decreased sleep efficiency [169] 
and the duration of REM and slow-wave sleep [30] have 
also been associated with mania. Disturbances of sleep 
could potentially predispose a subset of BD patients  

towards disruptions in such circadian components as 
phase and acrophase, thus leading to a misalignment of 
circadian rhythms in BD.

Seasonal Rhythms and BD

Seasonality, including recurrent mood episodes and the 
level of functioning associated with seasonal changes, is an-
other potential BD phenotype with chronobiological mech-
anisms. While seasonal rhythms occur over longer time in-
tervals than the circadian rhythm (i.e., months versus 
hours), the suprachiasmatic nucleus and circadian clock 
genes are also critically involved in regulating these long 
cycles, in conjunction with melatonin and effects on thy-
roid hormones in the pars tuberalis of the anterior pituitary 
gland [170]. Therefore, circadian variation in BD patients 
may also be associated with seasonal mood changes [171]. 
A subpopulation of BD patients present with a seasonal 
pattern to their mood episodes [172–176]. For those with 
seasonal patterns, mania appears to peak in the early spring 
with a nadir in the late fall [172], mixed mania peaks in the 
late summer with a nadir in the late fall [172], and depres-
sion appears in the autumn to winter months [173].

Chronobiological Phenotypes and Clinical Features

The clinical characteristics of BD are heterogeneous, 
with differences in the course of illness, comorbidity of 
medical and psychiatric conditions, and treatment re-
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Fig. 2. Cosinor curve frequently used to 
represent circadian rhythms. In cosinor 
modeling, period is the duration of one cy-
cle, amplitude is the peak value from a 
wave’s mean, acrophase is a measure of the 
time of overall high values recurring in 
each cycle, and mesor is the rhythm-adjust-
ed mean.
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sponses [177]. This variability is likely the result of bio-
logical and environmental variability across several etio-
logical mechanisms [47]. Unfortunately, it is this het-
erogeneity that may have hindered discoveries of 
pathophysiological mechanisms associated with the ill-
ness. Better-defined BD phenotypes may unravel some of 
the diagnostic complexity and help to identify more co-
herent categorization schemes [48]. This in turn may 
yield better diagnostic approaches and improve treat-
ment selection. Based on the work reviewed herein, we 
propose that variability in circadian and chronobiological 
measurements may be objective and quantifiable traits 
that could be used to more precisely organize BD patients 
into coherent phenotypes.

Humans show significant interindividual differences in 
a wide variety of chronobiological characteristics [90]. In-
dividual differences in the free-running circadian period 
(tau) [178–180], circadian amplitude [102, 181], and circa-
dian phase [101, 102, 179, 181] have all been reported. 
There is mounting evidence suggesting that chronobiolog-
ical disturbances are not only associated with BD, but that 
specific clinical and physiological signatures point to cir-
cadian disruptions as potential chronobiological pheno-
types in the illness. As with individuals intolerant to shift 
work [63], subsets of patients with BD may differ in sus-
ceptibility to the disruption of biological rhythms [182]. 
People who demonstrate an inability to adapt to shift work 
demonstrate alterations in sleep such as insomnia, short 
sleep duration, poor sleep quality, and mood alterations 
including irritability and mood lability [63, 183–188]. The 
question arises whether a similar mechanism may apply to 
BD and whether specific chronobiological phenotypes are 
present within the larger diagnostic category.

Pagani et al. [189] examined actigraphy-based pheno-
types in 26 Costa Rican and Colombian pedigrees. The 
study included 136 euthymic BD individuals and 422  
unaffected relatives. BD subjects expressed fragmented 
rhythms overall compared to unaffected controls (i.e., 
lower activity, longer sleep times, and low amplitude). 
Forty-nine activity-related phenotypes exhibited signifi-
cant heritability, and 12 of these overlapped with herita-
bility for BD. Using linkage analysis, the study identified 
a genome-wide significant locus on chromosome 12 for 
inter-daily stability of activity and suggestive linkage in 
the same region for the mean number of sleep bouts in 
the awake period and amplitude. Taken together, these 
studies indicate that a wide variety of rhythmic processes 
governing sleep and activity are altered in BD and that 
some of the factors underlying this variability may also 
overlap with the risk for BD.

Conclusion

In mammals, the circadian timing system keeps phys-
iological rhythms synchronized with each other and the 
environment. Organism-wide coordination of rhythms 
influences multiple physiological systems, brain regions, 
and behaviors that are germane to both healthy mood 
regulation and mood disorders, including BD. Given the 
important and fundamental nature of the circadian clock, 
it is not surprising that rhythm disturbances are associ-
ated with detrimental mental health sequelae.

Humans show significant interindividual differences 
in a wide variety of chronobiological characteristics, sug-
gesting that these traits lie on a continuum even in healthy 
subjects. As with many other human traits, this variabil-
ity lends itself to potential dysfunction when located at 
extreme ends of the spectrum. It is now widely recognized 
that chronobiological disturbances predispose individu-
als experiencing them to health problems and disease 
states including psychiatric disorders. As in other com-
plex trait disorders, individuals are not all prone to the 
development of adverse consequences related to chrono-
biological disruption. This may be particularly relevant in 
BD.

Rhythm disruptions are a hallmark of BD. While gen-
erally associated with the illness, chronobiological distur-
bances may be enriched in particular BD subgroups, sug-
gesting they may be markers of certain illness chrono-
biological phenotypes, possibly with distinct etiological 
factors, illness course, and treatment response. Recent re-
search has begun to support this notion. It is estimated 
that as many as one-third of bipolar patients may suffer 
from an independent CRSWD. These comorbid condi-
tions may be related to a worse illness course. BD patients 
with significant chronobiological disturbances have been 
shown to have higher suicide rates, recurrence rates, and 
antidepressant-related manic switch rates. Another ex-
ample is chronotype where a greater degree of evening-
ness has been associated with rapid mood swings, greater 
recurrence rates, and an earlier age of illness onset in the 
disorder, and less response to treatment with lithium.

The effects of chronobiology interacting with BD could 
arise in several different ways, none of which are mutu-
ally exclusive (Fig.  3). First, disruption of clock genes 
could be a primary factor that directly contributes to BD 
in some subjects. Next, inherited chronobiological distur-
bances could disturb rhythms in physiological processes 
that worsen BD through secondary effects on the illness 
(e.g., globally increased stress, decreased sleep). Finally, 
chronobiological disturbances could lead to unhealthy in-
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teractions with environmental factors (e.g., light, diet, so-
cial contacts) that provoke symptoms or negatively affect 
illness course. Given the widespread involvement of the 
circadian clock in multiple organ systems and physiologi-
cal processes, multiple mechanisms may be involved in 
each individual. It will be of interest in the future to deter-
mine whether BD patients who differ in circadian disrup-
tion differ in outcomes to chronobiologically based treat-
ments such as melatonin or orexin receptor agonists, 
bright light therapy, partial sleep deprivation/phase ad-
vance, social rhythms therapy, and others.

While initial studies are promising, additional research 
is required to better define these putative chronobiologi-
cal phenotypes in BD. New methods allow researchers to 
investigate the function of molecular clocks in living cells. 
The establishment of induced pluripotent stem cell-de-
rived neurons may allow us to examine molecular rhythms 
in human neurons for the first time, perform transcrip-
tome analysis over the circadian time course, and use in-
tegrative approaches for transcriptome-wide association 
studies to identify significant gene expression-trait asso-
ciations. Using these approaches, it will be useful to iden-
tify the intersections of clock outputs with other biological 
risk factors for BD. Similarly, long-term sleep and activity 
measurements in human subjects are becoming more ac-
cessible and feasible in clinical populations. More refined 
analysis of larger cohorts with detailed clinical examina-
tion and collection of biomarkers will undoubtedly help 

to further resolve the target populations. It will be impor-
tant to determine the clinical, course of illness, physiolog-
ical/cellular/molecular mechanisms, and genetic differ-
ences that distinguish these groups. Finally, it also will be 
of considerable interest to correlate molecular and genet-
ic factors with rhythmic behaviors in human subjects and 
to identify clinical features of BD that may differ as a func-
tion of chronobiological features. It is of vital importance 
to understand how the molecular gears of the ticking clock 
interlock with other biological and clinical factors under-
lying BD. These exciting new avenues for chronobiologi-
cally based research will continue to bring us closer to a 
bridge from the bench to the bedside.

Most importantly, research in this important area 
marks a step toward personalized medicine. Further re-
search on chronobiological profiles in BD may improve 
diagnostic and classification criteria, inform research of 
the underlying pathophysiology of the disorder, and clar-
ify the relationships with other clinical characteristics of 
the illness. Moreover, chronobiological phenotypes may 
help to identify subgroups of BD patients with distinct 
etiological factors and/or responses to treatment which 
may aid in the development of novel and specifically  
directed interventions [48, 190]. As activity and sleep 
rhythms are increasingly measured reliably and passively 
with electronic devices, future research could develop 
methods for monitoring the illness, allowing patients and 
clinicians to more effectively intervene when necessary. 

Other genetic risk factors Clock gene variants

Bipolar disorder Rhythmic
physiology and behavior
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Fig. 3. Pathways by which clock gene varia-
tion could affect the illness progression of 
BD. (1) Clock gene variants may be causally 
related to BD and directly lead to the emer-
gence of symptoms and mediate some as-
pects of the illness. (2) Clock genes may act 
in a pleiotropic manner to alter rhythms in 
biological processes like neurotransmission, 
endocrine systems, immune response, and 
others that affect relevant physiology and 
modulate the course BD. (3) Chronobiolog-
ical factors also affect behaviors that affect 
interactions with environmental cofactors 
such as sunlight, diet, and socialization. 
These environmental factors interact with 
genetic and other biological substrates (in-
cluding BD-specific risk alleles) to affect the 
course and progression of BD. It is unclear 
whether these environmental effects are me-
diators, modulators, or both. Of note, the 
three pathways outlined above are not mu-
tually exclusive and could in principle run 
concurrently. BD, bipolar disorder.
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We firmly believe that the identification and character-
ization of chronobiological phenotypes will represent a 
large step toward improving the characterization, man-
agement, and treatment of this debilitating disorder.
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