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Abstract

Regulatory variation plays a major role in complex disease and that cell type-specific binding of transcription factors (TF) is
critical to gene regulation. However, assessing the contribution of genetic variation in TF-binding sites to disease heritability
is challenging, as binding is often cell type-specific and annotations from directly measured TF binding are not currently
available for most cell type-TF pairs. We investigate approaches to annotate TF binding, including directly measured
chromatin data and sequence-based predictions. We find that TF-binding annotations constructed by intersecting
sequence-based TF-binding predictions with cell type-specific chromatin data explain a large fraction of heritability across
a broad set of diseases and corresponding cell types; this strategy of constructing annotations addresses both the limitation
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that identical sequences may be bound or unbound depending on surrounding chromatin context and the limitation that
sequence-based predictions are generally not cell type-specific. We partitioned the heritability of 49 diseases and complex
traits using stratified linkage disequilibrium (LD) score regression with the baseline-LD model (which is not cell
type-specific) plus the new annotations. We determined that 100 bp windows around MotifMap sequenced-based
TF-binding predictions intersected with a union of six cell type-specific chromatin marks (imputed using ChromImpute)
performed best, with an 58% increase in heritability enrichment compared to the chromatin marks alone (11.6× vs. 7.3×,
P = 9 × 10−14 for difference) and a 20% increase in cell type-specific signal conditional on annotations from the baseline-LD
model (P = 8 × 10−11 for difference). Our results show that TF-binding annotations explain substantial disease heritability
and can help refine genome-wide association signals.

Introduction
Genome-wide association studies have revealed that non-coding
genetic variation plays a central role in complex diseases and
traits (1–3). Partitioning disease heritability has further aided our
understanding of the contribution of specific genomic features,
shining a particular spotlight on cell type-specific regulation
(4–7). Transcription factors (TFs) are key elements of transcrip-
tional regulation (8–10), and changes in their binding are known
to affect human disease (11–17). However, TFs are numerous and
their binding is often cell type-specific; directly measuring TF
binding is possible using ChIP-seq (18), but ChIP-seq data have
been generated for only a limited number of TFs and cell types
(19,20); a complete atlas of all TF-binding sites would require
tens of thousands of experiments, requiring immense resources.
Because of these complexities, the contribution of genetic vari-
ation in TF-binding sites to disease heritability has not been
assessed for a broad set of diseases and corresponding cell types.

Many TFs bind specifically to unique motifs in the DNA
sequence (21–23), and their binding preferences can be inferred
using sequence alone (24–32). However, these sequence-based
predictions often lack specificity as chromatin context has pro-
found effects on TF binding. The vast majority of matches to a
TF consensus sequence fall in regions of heterochromatin, which
are inaccessible and therefore not actually bound (19). It has been
shown that incorporating chromatin information and footprints
from DNase-seq, ATAC-seq, or histone modification ChIP-seq in
addition to sequence can greatly improve prediction of TF bind-
ing (33–35). However, methods that include footprinting depend
on signal unique to ATAC-seq and DNase-seq, which is lost when
the data are imputed, and are thus limited to cell types where
directly measured ATAC-seq or DNase-seq data are available.
Since ATAC-seq and DNase-seq are not currently available in
most of the Roadmap cell types (20), we sought an alternate
strategy for annotating cell type-specific TF-binding sites.

Here, we consider measurements of cell type-specific regu-
latory activity, which are available for more than 100 cell types

(20,36). We intersect various sequence-based TF annotations
with cell type-specific chromatin annotations [including those
imputed using ChromImpute (37)], creating cell type-specific
TF-binding annotations for many tissues and cell types. This
strategy addresses both the limitation that identical sequences
may be bound or unbound depending on surrounding chromatin
context and the limitation that sequence-based predictions are
often not cell type-specific and can easily be applied to a broad
set of tissues and cell types. We use stratified LD score regression
(S-LDSC) (4) with the baseline-LD model (5) plus the new anno-
tations to partition the heritability of 49 diseases and complex
traits (average N = 320 K) in order to evaluate the contribution of
these cell type-specific TF binding annotations to disease.

Results
Cell type-specific TF-binding annotations predict direct
measurements of TF binding

To create more accurate annotations of cell type-specific TF
binding, we intersected sequence-based predictions with cell
type-specific chromatin annotations (Fig. 1; see Materials and
Methods). We constructed cell type-specific chromatin annota-
tions by taking the union of ChIP-seq peaks from five histone
modifications that have previously been associated with active
enhancers and promoters (H3K4me1, H3K4me2, H3K4me3,
H3K9ac and H3K27ac) as well as DNase1 hypersensitive sites
(38), available in 127 tissues and cell types as part of the
Roadmap Epigenomics project (20). As experimental data are
not available for every chromatin mark in every cell type, we
constructed two sets of annotations: one from all available
directly measured peaks and one from imputed peaks computed
for each chromatin mark and cell type using ChromImpute (37).
We call these combined cell type-specific chromatin annotations
‘Chromatin.measured’ and ‘Chromatin.imputed’, respectively.
We intersected the cell type-specific chromatin annotations

Figure 1. Strategy for constructing cell type-specific TF-binding annotations. We intersect sequence-based TF-binding annotations such as MotifMap±100 bp (blue

bars; mean segment length 240 bp) with cell type-specific chromatin annotations (red bars; mean segment length 1200 bp) to create cell type-specific TF-binding

annotations such as Chromatin∩MotifMap100 (purple bars; mean segment length 220 bp).
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with three sets of sequence-based TF-binding predictions:
MotifMap (24), Kheradpour et al. (25) and CisBP (39). MotifMap
uses sequence preferences from TRANSFAC (21) and JASPAR
(22,23) as well as conservation to predict binding. Kheradpour
et al. train many motif-finding methods on ENCODE TF ChIP-seq
data and choose those that perform best to apply genome-wide.
CisBP is a large database of TF-binding preferences from many
sources. For each TF prediction set, we also tested annotations
that include 20, 50, and 100 bp windows. These windows may
capture effects of sequence outside of the core motif (40) and
may capture cooperative binding sites for TFs that were not
included in the datasets. We did not include sequence-based
TF-binding predictions produced by deep learning methods
(27–31) in our main analyses (see Discussion). We have made
our annotations and partitioned LD scores freely available (see
Web Resources).

We assessed whether our new cell type-specific TF-binding
annotations predict direct measurements of TF binding. We
compared ChIP-seq peaks from 91 experiments for 76 factors in
lymphoblastoid cell lines (LCLs) from ENCODE (19) with the cor-
responding LCL-specific TF-binding annotations and computed
fold excess overlap (Fig. 2 and Supplementary Material, Table S1;
see Materials and Methods). As expected, there was relatively
small excess overlap for the sequenced-based predictions: mean
1.69× [standard error (SE) 0.02] across the three sequence-based
predictions. However, the excess overlap was much larger when
using either measured or imputed cell type-specific chromatin
annotations: 12.9× (SE 0.4) or 9.6× (SE 0.3), respectively. [In addi-
tion to the Roadmap chromatin annotations, we also considered
the recently published fitCons2 (36) annotations, because they
also represent cell type-specific annotations of regions likely
to be regulatory; these annotations are based on evolutionary
constraint. However, they exhibited only 2.0× excess overlap
with TF ChIP-seq (SE 0.02); see Supplementary Material, Table
S1.] When the chromatin annotations were intersected with
sequence-based predictions, the excess overlap increased, with
the highest overlap in Chromatin.measured∩CisBP: 17.6× (SE
0.7). Analysis of five other cell types for which ChIP-seq TF-
binding data were available for at least 20 TFs produced similar
conclusions (Supplementary Material, Table S1). This confirms
that the new annotations are more accurately capturing cell
type-specific TF binding. However, ChIP-seq peak may not pro-
vide a true gold-standard metric for capture of TF-binding sites,
as sequencing data peaks will also include regions surrounding
the sites that are actually bound (41). Indeed, ChIP-seq peaks
for TF binding ranged from 200 to 500 base pairs, while TF-
binding sites are generally 6–20 base pairs (9). This may imply
that enrichments for true TF binding are underestimated in this
analysis. Moreover, enrichment for TF binding does not guaran-
tee that the annotations will be informative for human disease.
We therefore turn to analysis of disease heritability to evaluate
our annotations and investigate their potential applications.

Predicted cell type-specific TF-binding annotations
are enriched for disease heritability

We assessed whether our new cell type-specific TF-binding
annotations are enriched for disease heritability. We used two
metrics to quantify the contribution of an annotation to disease
heritability: enrichment and standardized effect size (τ∗; see
Materials and Methods). Enrichment is defined as the proportion
of heritability explained by single nucleotide polymorphisms
(SNPs) in an annotation divided by the proportion of SNPs in

Figure 2. Comparison of excess overlap with TF ChIP-seq. We report the fold

excess overlap with TF ChIP-seq peaks from ENCODE cell line GM12878 (LCL;

data available from 91 experiments for 76 TFs) for sequence-based TF-binding

annotations (blue bars), cell type-specific chromatin annotations (red bars) and

cell type-specific TF-binding annotations (purple bars). Error bars denote one

SE. The percentage under each bar indicates the proportion of SNPs in each

annotation. Numerical results, including results for five other tissues for which

ChIP-seq TF-binding data were available for at least 20 TFs, are reported in

Supplementary Material, Table S1.

the annotation (4). τ∗ is defined as the proportionate change in
per-SNP heritability associated with an increase in the value of
the annotation by one standard deviation, conditional on other
annotations included in the model (5). Unlike enrichment, τ∗
quantifies effects that are unique to the focal annotation.

We analyzed 49 diseases and complex traits for which sum-
mary association statistics are publicly available (Table 1; aver-
age N = 320 k) and analyzed 127 Roadmap tissues and cell types
(20). For each (trait, cell type) pair, we ran S-LDSC (4) using
the baseline-LD model v2.0 (see Web Resources) (5) and the
corresponding cell type-specific chromatin annotation. For each
trait, we chose the best cell type based on statistical significance
of τ∗ for the cell type-specific chromatin annotation, consistent
with the previous work (Table 1) (4). We used this cell type for all
cell type-specific annotations for that trait; this is a conservative
choice when comparing our new cell type-specific TF-binding
annotations to cell type-specific chromatin annotations.

We sought to identify the most disease-informative way to
combine sequence-based TF-binding predictions and cell type-
specific chromatin annotations. For each combination of 24
cell type-specific TF-binding annotations [3 sequence-based TF
predictions × 4 window sizes (0, 20, 50 and 100 bp) × 2 chromatin
types (measured, imputed)], we ran S-LDSC conditional on
the baseline-LD model and the cell type-specific chromatin
annotation. We meta-analyzed results across the 49 traits
and calculated three metrics for each annotation: heritability
enrichment, τ∗ and combined τ∗; combined τ∗ is a generalization
of τ∗ that quantifies the combined information in the cell
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Table 1. Choice of best cell type for each trait

Trait Electronic identification (EID) Tissue type Z-score

Red blood cell distribution (UKBB) E123 Blood (K562) 6.81
High-density lipoprotein (HDL) E066 Liver 4.43
Coronary artery disease E109 Small intestine 4.11
Autoimmune traits E116 Blood (LCL) 7.30
Depressive symptoms E082 Fetal brain 3.59
Hypothyroidism (UKBB) E116 Blood (LCL) 6.33
Red blood count (UKBB) E035 Blood (CD34) 4.58
Dermatologic diseases (UKBB) E044 Blood (CD4) 5.33
White blood cell count (UKBB) E031 Blood (CD19) 7.65
Respiratory and ear–nose–throat
diseases (UKBB)

E042 Blood (CD4) 5.45

Age at menopause (UKBB) E022 IPSC 3.28
Platelet count (UKBB) E036 Blood (CD34) 7.34
Ulcerative colitis E116 Blood (LCL) 4.45
Age first birth E082 Fetal brain 3.96
Schizophrenia E082 Fetal brain 5.97
Low-density lipoprotein (LDL) E066 Liver 3.57
Eosinophil count (UKBB) E046 Blood (CD56) 8.14
Waist-hip ratio (UKBB) E063 Adipose 9.19
Systolic blood pressure (UKBB) E097 Ovary 6.59
Crohn’s disease E041 Blood (CD4) 5.08
Eczema E042 Blood (CD4) 6.54
FEV1-FVC ratio (UKBB) E088 Lung 9.37
Type 2 diabetes E118 Liver (HepG2) 2.85
Rheumatoid arthritis E116 Blood (LCL) 5.86
High cholesterol (UKBB) E066 Liver 3.96
Forced vital capacity (UKBB) E088 Lung 6.95
BMI E072 Brain 2.60
BMI (UKBB) E070 Brain 6.99
Type 2 diabetes (UKBB) E118 Liver (HepG2) 3.12
Number of children ever born E015 ESC 3.19
Height (UKBB) E023 Adipose 8.35
Years of education E082 Fetal brain 7.50
College education (UKBB) E082 Fetal brain 8.55
Age at menarche (UKBB) E087 Pancreas 5.74
Height E049 Mesenchyme 6.94
Neuroticism (UKBB) E082 Fetal brain 7.11
Balding type 1 (UKBB) E086 Fetal kidney 4.99
Anorexia E082 Fetal brain 2.12
Morning person (UKBB) E082 Fetal brain 7.82
Smoking status (UKBB) E082 Fetal brain 7.30
Heel T score (UKBB) E086 Fetal kidney 8.32
Tanning (UKBB) E061 Skin 2.87
Sunburn occasion (UKBB) E061 Skin 2.63
Skin color (UKBB) E059 Skin 3.17
Hair color (UKBB) E061 Skin 4.55
Ever smoked E069 Brain 2.28
Autism spectrum E003 ESC 2.49
Lupus E116 Blood (LCL) 5.03
Celiac E042 Blood (CD4) 5.61

We report the fold excess overlap with TF ChIP-seq peaks from six tissues and cell lines from ENCODE. We test sequence-based TF-binding annotations, cell type-
specific chromatin annotations and cell type-specific TF-binding annotations.

type-specific chromatin and cell type-specific TF-binding anno-
tations, conditional on the baseline-LD model (see Materials
and Methods). Statistical significance for combined τ∗ was
assessed by jackknifing the difference between combined τ∗
and corresponding chromatin τ∗. Statistical significance for
enrichment was assessed by comparing the enrichment of
TF-binding annotations and corresponding chromatin anno-
tations [see Eq. (2) of (42)].

Results of the meta-analysis across 49 traits are reported
in Figure 3 (6 cell type-specific TF-binding annotations; 3
sequence-based TF predictions × 2 chromatin types, with best
window size for each) and Table 1. The sequence-based TF-
binding annotations alone attained relatively low enrichment
and τ∗, corresponding to the relatively low overlap with TF ChIP-
seq. We therefore compare to chromatin annotations, which
performed much better, for the remainder of our analyses. We
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note that imputed chromatin consistently attained slightly
smaller heritability enrichment but slightly higher τ∗ than
measured chromatin. (The fitCons2 annotations exhibited
smaller enrichment and slightly smaller τ∗ than the chromatin
annotations; see Supplementary Material, Table S3. This,
combined with our earlier results, indicates that they are
indeed capturing unique disease-relevant information, but they
are not ideal for capturing TF binding.) Since the imputed
chromatin data performed well and are complete for all 127
Roadmap cell types, we focused on imputed chromatin for
subsequent analyses. The Chromatin∩MotifMap100 annotations
performed best, with a 59% higher heritability enrichment than
Chromatin (11.6× vs. 7.3×, P = 9 × 10−14 for difference) and
a 20% higher combined τ∗ (2.01 vs. 1.67 τ∗; P = 8 × 10−11 for
difference); these improvements are statistically significant
after correcting for 24 hypotheses tested. The τ∗ values,
reflecting information unique to these annotations, were very
large relative to analogous values (τ∗ up to 0.52) that we recently
estimated for non-cell-type-specific LD-related annotations (5)
and molecular QTL annotations (43); as such, the �τ∗ of 0.20
is a substantial improvement. Chromatin∩Kheradpour20 and
Chromatin∩CisBP attained slightly worse results. Using smaller
window sizes increased the disease heritability enrichment
(Supplementary Material, Table S2), indicating that there is a
concentration of activity in the predicted TF-binding sites. How-
ever, Chromatin∩MotifMap100 and Chromatin∩Kheradpour20
attained larger τ∗ values than the corresponding annotations
without windows. Since the median feature size of annotations
without windows was quite small (7–15 base pairs), our results
indicate that the regions surrounding core TF-binding sites also
contain important sequences. Finally, we tested an annotation
of Chromatin intersected with the union of the three best TFBS
annotations, which attained a lower enrichment and τ∗ than
Chromatin∩MotifMap100 (8.8× enrichment and 1.89 τ∗).

Results of targeted meta-analyses across 6 autoimmune, 5
blood, and 11 brain-related traits (see Materials and Methods)
are reported in Figure 4 and Supplementary Material, Table
S3. For the six autoimmune traits, Chromatin∩MotifMap100
attained a much higher heritability enrichment than Chromatin
(23.6× vs. 11.1×; P = 0.001 for difference) and a substantially
higher combined τ∗ (3.11 vs. 2.61; P = 0.004 for difference).
Chromatin∩MotifMap100 also outperformed TF-binding annota-
tions from ENCODE ChIP-seq (heritability enrichment = 23.6× vs.
5.32×; τ∗ = 3.11 vs. 1.75). Results were similar for the five blood
traits, though enrichments were slightly smaller and differences
less significant. On the other hand, the 11 brain-related traits
attained substantially smaller enrichments, consistent with
the previous work (4,5). However, Chromatin∩MotifMap100 still
attained substantial improvements in heritability enrichment
(7.04 vs. 4.98; P = 0.002 for difference) and τ∗ (1.17 vs. 1.07;
P = 0.003 for difference). We also considered an annotation
constructed from the union of all ENCODE ChIP-seq TF-
binding experiments. Notably, this annotation underperformed
Chromatin∩MotifMap100 for all trait classes and performed
particularly poorly for the brain-related traits (heritability
enrichment = 1.31, τ∗ = 0.07). This is likely because very few of
the ENCODE ChIP-seq experiments were conducted in brain
tissues, highlighting the importance of methods to create
cell type-specific TF annotations when ChIP-seq data are
unavailable.

Finally, we compared the heritability enrichments of Chro-
matin and Chromatin∩MotifMap100 for each individual trait
(Fig. 5 and Supplementary Material, Table S4). We determined
that 43 of 44 traits with significant enrichment for at least one

of these two annotations had higher heritability enrichment for
Chromatin∩MotifMap100. However, some traits show only mod-
est improvements in heritability enrichment, perhaps because
binding preferences for the relevant TFs are not well captured
by sequence-based predictions; alternatively, it is possible that
TF-binding sites play smaller roles for these traits.

Choice of baseline vs. baseline-LD model in cell
type-specific analyses

Our main analyses (Figs 3–5) used the recently updated baseline-
LD model (v2.0), which includes 6 LD-related annotations (5);
using a more complete model is appropriate when the goal
is to estimate heritability enrichment while minimizing bias
due to model misspecification (4,5). On the other hand, our
previous work (4,6) identified critical cell types for disease by
computing the statistical significance of τ∗ conditioned on the
baseline model, which does not include the LD-related anno-
tations. The LD-related annotations reflect the action of nega-
tive selection (5); some of the LD-related annotations are cor-
related with cell type-specific annotations—particularly brain
annotations, which show stronger signals of negative selection
(44). Thus, we hypothesized that cell type-specific signals might
be stronger when conditioning on the baseline model instead
of the baseline-LD model. To assess this, we compared the
statistical significance of the combined τ∗ for (Chromatin +
Chromatin∩MotifMap100) using the baseline (v1.1) vs. baseline-
LD (v2.0) models across 49 traits; in each case, we chose the
most significant of the 127 Roadmap cell types. We determined
that the baseline model generally produces more significant
combined τ∗ values than the baseline-LD model, particularly for
brain traits and cell types (Fig. 6 and Supplementary Material,
Table S5). Thus, we recommend that the baseline model should
be used when the goal is to identify critical cell types; however,
the baseline-LD model should still be used when the goal is to
obtain unbiased estimates of heritability enrichment.

Discussion
We explored a new strategy for constructing cell type-specific
TF-binding annotations by intersecting sequence-based TF
predictions with cell type-specific chromatin annotations. We
determined that the resulting cell type-specific TF-binding
annotations significantly outperformed cell type-specific chro-
matin annotations across 49 diseases and complex traits, with
highly significant improvements in both heritability enrichment
and τ∗; this strategy increased heritability enrichment for 43
of 44 traits with significant conditional signal for cell type-
specific chromatin and greatly outperformed non-cell-type-
specific sequence-based TF-binding annotations. These findings
are consistent with the higher overlap of our cell type-specific
TF-binding annotations with ENCODE TF ChIP-seq peaks. We
also determined that annotations constructed using imputed
chromatin (37) attained slightly higher τ∗ than annotations
constructed using measured chromatin; we recommend the use
of imputed chromatin annotations, since they are complete for
all 127 Roadmap cell types. We note that there exist many other
strategies for prioritizing disease-relevant cell types (3,4,6,45)
and that strategies based on specifically expressed genes tend
to identify similar cell types to the chromatin-based strategies
that we consider here (6).

Our results confirm that TF binding is important for diseases
and complex traits and provide a quantification of their
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Figure 3. Comparison of heritability enrichment and τ∗ across 49 diseases and complex traits. We report (A) heritability enrichment and (B) τ∗ for sequence-based

TF-binding annotations (blue bars), tissue-specific chromatin annotations (red bars) and tissue-specific TF-binding annotations (purple bars, including dark purple bars

for τ∗ in a joint model and light purple bars for combined τ∗). Error bars denote one SE. Single asterisk in (A) indicates > 2 SE difference in enrichment vs. corresponding

chromatin annotation (we note that differences have much smaller SEs) and in (B) P-value < 0.05 for combined τ∗ vs. τ∗ of corresponding chromatin annotation. Double

asterisks show > 4 SE difference and P-value <1e − 5. The percentage under each bar indicates the proportion of SNPs in each annotation. Numerical results are reported

in Supplementary Material, Table S2A and S2B.

contribution to heritability. In particular, a large proportion of
the heritability explained by active chromatin regions comes
from predicted TF-binding sites, particularly for autoimmune
diseases. The proportion of disease heritability explained by TF-
binding sites will only increase as our TF predictions improve.
We note the variation in performance of different TF-binding
prediction methods in our analyses. We hypothesize that this is
because combining annotations across TFs adds an additional
layer of complexity, as TF-binding predictions for different TFs
are not on the same scale; in particular, TF consensus sequences
vary in size and the number of sites bound by a TF varies greatly.
MotifMap, which attained the highest enrichment and τ∗ in
our comparisons, combines traditional position weight matrix
scoring systems with measures of evolutionary conservation
and Monte Carlo methods to estimate false discovery rate.
Kheradpour annotations, which attained moderate enrichment
and τ∗, were created by curating a diverse set of motifs based
on experimental validation with ChIP-seq. On the other hand,
CisBP, which has the most complete set of TF-binding motifs,
attained the lowest enrichment and τ∗ in our comparisons. This
is likely due to naïve combining across all TFs using P-values
for the match to the sequence at a specific location above the
background.

We recommend that our cell type-specific TF-binding
annotations should be incorporated into efforts to interpret
GWAS signals using functionally informed fine mapping

(3,26,46,47). For example, (47) reported an association between
the TT>A polymorphism at chr6: 138231039 and lupus. The
polymorphism was annotated as active chromatin in 14 of
the 127 Roadmap cell types, including LCL and 12 other blood
cell types. Furthermore, this polymorphism lies inside our
Chromatin∩MotifMap100 annotation for these 14 cell types,
whereas only 2 of the 37 common variants within a 10 kb
window lie in the Chromatin∩MotifMap100 annotation for LCL.
This example also demonstrates the potential for dissecting
generally acting vs. cell type-specific GWAS loci and identifying
active cell types for each locus. The cell type-specific TF-binding
annotations may also be useful in efforts to use functional
information to increase association power (48–50) and improve
polygenic risk prediction (51–53).

We note four limitations of our work. First, our cell type-
specific TF-binding annotations attain higher heritability
enrichment than cell type-specific chromatin annotations,
but explain less heritability in total due to their smaller
size. We evaluated this tradeoff using the τ∗ metric (5),
which demonstrated that our cell type-specific TF-binding
annotations attain a highly significant increase in cell type-
specific signal conditional on the baseline-LD model, compared
to cell type-specific chromatin annotations alone. Second,
we did not include sequence-based TF-binding predictions
produced by deep learning methods in our main analyses
(28–31). We investigated several strategies for combining
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Figure 4. Comparison of heritability enrichment and τ∗ for autoimmune, blood and brain-related traits. We report (A–C) heritability enrichment for each trait class and

(D–F) τ∗ for each trait class for cell type-specific chromatin annotations (red bars) and cell type-specific TF-binding annotations (purple bars, including dark purple

bars for τ∗ in a joint model and light purple bars for combined τ∗). We include coding regions (green bars) and an annotation constructed from the union of all ENCODE

ChIP-seq TF-binding experiments (green bars) for comparison purposes. Error bars denote one SE. Single asterisk indicates P < 0.05 for (A) enrichment vs. corresponding

chromatin annotation and (B) combined τ∗ vs. τ∗ of corresponding chromatin annotation. Double asterisks represent P-value <1e − 5. The percentage under each bar

indicates the proportion of SNPs in each annotation. Numerical results are reported in Supplementary Material, Table S3A and S3B.

TF-binding predictions produced by DeepBind (29) across TFs,
but we were unable to devise a strategy that attained perfor-
mance close to the strategies that we report here (see Materials
and Methods). In particular, combining DeepBind predictions
across TFs is a major challenge, as DeepBind was not designed
for performing a genome-wide scan for all TFs jointly. Third, the
sequence-based predictions that we incorporate are limited to

TFs that have sufficient data available to learn the underlying
consensus sequence. It is possible that TFs active in some cell
types (e.g. skin) are underrepresented, potentially explaining
why some traits (e.g. pigmentation traits) perform less well in our
analyses. Fourth, inferences about components of heritability
can potentially be biased by failure to account for LD-dependent
architectures (5,54–56). All of our main analyses used the



1064 Human Molecular Genetics, 2020, Vol. 29, No. 7

Figure 5. Comparison of heritability enrichment for each trait. We report the

heritability enrichment of cell type-specific chromatin annotations (x-axis) and

cell type-specific TF-binding annotations (y-axis). Results are displayed for 44

traits that have significant enrichment for at least one of these two annotations,

assessed using P = 0.05/127 (correcting for 127 cell types analyzed). Numerical

results are reported in Supplementary Material, Table S4.

Figure 6. Comparison of combined cell type-specific annotations (Chro-

matin + Chromatin∩MotifMap100) conditioned on the baseline vs. baseline-

LD models. We report the statistical significance (–log10P-value of com-

bined τ∗) of the combined cell type-specific annotations (Chromatin +
Chromatin∩MotifMap100) for the baseline (y-axis) vs. baseline-LD (x-axis) mod-

els, for each of 49 traits. In each case, we report results for the most significant

tissue/cell type. The red lines indicate the P = 0.05/127 significance threshold,

correcting for testing of 127 cell types. Numerical results are reported in Supple-

mentary Material, Table S5.

baseline-LD model, which includes six LD-related annotations
(5). The baseline-LD model is supported by formal model com-
parisons using likelihood and polygenic prediction methods,
as well as analyses using a combined model incorporating
alternative approaches (7); however, there can be no guarantee

that the baseline-LD model perfectly captures LD-dependent
architectures. Despite these limitations, our tissue-specific TF-
binding annotations significantly improve our understanding of
disease and complex trait heritability. All annotations have been
made publicly available (see Web Resources).

Materials and Methods
Constructing sequence-based TF-binding annotations

MotifMap: Predicted TF-binding sites for build hg19 were down-
loaded from the MotifMap website (http://motifmap.igb.uci.edu).

Kheradpour et al.: Predicted TF-binding sites for build hg19
were downloaded from http://compbio.mit.edu/encode-motifs/
matches.txt.gz

CisBP: Position weight matrixes for all human TFs were
downloaded from the CisBP website (http://cisbp.ccbr.utoronto.
ca/). Genome-wide matches were created using MEME FIMO soft-
ware (http://meme-suite.org/doc/fimo.html), which provides P-
values for the match of a given sequence to a motif above the
background genomic sequence. Matches with P-value <1e − 5
for each TF were kept.

DeepBind: We downloaded DeepBind and the human TF
models from the DeepBind website (http://tools.genes.toronto.
edu/deepbind). We then constructed fasta files spanning the
entire genome with overlapping 101 base pair lines of sequence
as input for a genome-wide DeepBind scan. We ran DeepBind
genome-wide for each TF as well as on a gold-standard set of
sequence from ChIP-seq data (also downloaded from the Deep-
Bind site). We then assigned each 101 base pair line a z-score
for binding based on (1) the mean and standard deviation of the
gold-standard sequences or (2) the mean and standard deviation
of the genome-wide scores. We constructed binding annotations
using various thresholds for both, but no combination yielded
positive results.

Assessing overlap with direct measurements
of ChIP-seq
We downloaded TF ChIP-seq data from ENCODE
(http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/
wgEncodeAwgTfbsUniform/). For each cell type with at least
30 experiments, we created a bed file with the union of ChIP-
seq peaks from all TFs assayed. We then calculated the excess
overlap between an annotation (A) and the ChIP-seq peaks (B) as

Excess overlap = Fraction of SNPs in A and B(
frac SNPs in A

) ∗ (
frac SNPs in B

) (1)

We calculated SEs using a block-jackknife, dividing the
genome into 200 blocks of equal genomic size.

Choosing best cell type for each disease
In order to identify the most relevant cell type for each dis-
ease, we applied S-LDSC conditional on the baseline-LD model
(v2.0) with ‘Chromatin.imputed’ annotations for each pair of 127
Roadmap cell types and 49 traits. For each disease, we chose the
most disease-relevant cell type based on significance of τ∗.

Calculating combined τ ∗

In order to calculate combined τ∗, we applied S-LDSC conditional
on the baseline-LD model and including both Chromatin and one

http://motifmap.igb.uci.edu
http://compbio.mit.edu/encode-motifs/matches.txt.gz
http://compbio.mit.edu/encode-motifs/matches.txt.gz
http://cisbp.ccbr.utoronto.ca/
http://cisbp.ccbr.utoronto.ca/
http://meme-suite.org/doc/fimo.html
http://tools.genes.toronto.edu/deepbind
http://tools.genes.toronto.edu/deepbind
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/
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Chromatin∩TFBS annotation at a time. We then calculated

τ ∗
comb = sqrt

(
τ ∗

1
2 + τ ∗

2
2 + 2 r τ ∗

1 τ ∗
2

)
(2)

where τ ∗
1 and τ ∗

2 are the τ∗ for Chromatin and Chromatin∩TFBS,
respectively, and r is the correlation between the Chromatin and
Chromatin∩TFBS annotations. We calculated SEs for τ ∗

comb using
a block-jackknife with 200 blocks. We also calculated P-values for
the difference between τ ∗

1 and τ ∗
comb by jackknifing on the value

(τ ∗
comb − τ ∗

1 ). With this metric, we measure the combined infor-
mation being captured by a set of cell type-specific annotations.

Meta-analyzing across autoimmune, blood,
and brain-related traits
In order to understand how heritability is localized across classes
of traits, we created three groups: autoimmune [autoimmune
traits (UKBB), ulcerative colitis, Crohn’s disease, rheumatoid
arthritis, lupus and celiac], blood-related [red blood cell
distribution (UKBB), red blood count (UKBB), white blood count
(UKBB), platelet count (UKBB) and eosinophil count (UKBB)]
and brain-related (depressive symptoms, schizophrenia, waist-
hip ratio (UKBB), BMI, BMI (UKBB), years of education, college
years (UKBB), age at menarche (UKBB), neuroticism (UKBB),
smoking status (UKBB) and ever smoked]. We used the previously
chosen most relevant cell type and meta-analyzed τ∗ using a
random effects meta-analysis implemented in R by the rmeta
package.

Web Resources
CisBP, http://cisbp.ccbr.utoronto.ca/
DeepBind, http://tools.genes.toronto.edu/deepbind
ENCODE, http://hgdownload.cse.ucsc.edu/goldenpath/hg19/
encodeDCC
Kheradpour et al., http://compbio.mit.edu/encode-motifs
LDSC software, https://github.com/bulik/ldsc/wiki
LDSC annotations, https://data.broadinstitute.org/alkesgroup/
LDSCORE/
MEME, http://meme-suite.org/doc/fimo.html

SUPPLEMENTARY MATERIAL
Supplementary Material is available at HMG online.
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