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Introduction. Gene signature has been used to predict prognosis in melanoma patients. Meanwhile, the efficacy of immunotherapy
was correlated with particular genes expression or mutation. In this study, we systematically explored the gene expression pattern
in the melanoma-immune microenvironment and its relationship with prognosis.Methods. A cohort of 122 melanoma cases with
whole-genome microarray expression data were enrolled from the Gene Expression Omnibus (GEO) database. +e findings were
validated using+e Cancer Genome Atlas (TCGA) database. A principal component analysis (PCA), gene set enrichment analysis
(GSEA), and gene oncology (GO) analysis were performed to explore the bioinformatic implications. Results. Different gene
expression patterns were identified according to the clinical stage. All eligible gene sets were analyzed, and the 8 genes (GPR87,
KIT, SH3GL3, PVRL1, ATP1B1, CDAN1, FAU, and TNFSF14) with the greatest prognostic impact on melanoma. A gene-related
risk signature was developed to distinguish patients with a high or low risk of an unfavorable outcome, and this signature was
validated using the TCGA database. Furthermore, the prognostic significance of the signature between the classified subgroups
was verified as an independent prognostic predictor of melanoma. Additionally, the low-risk melanoma patients presented an
enhanced immune phenotype compared to that of the high-risk gene signature patients. Conclusions. +e gene pattern differences
in melanoma were profiled, and a gene signature that could independently predict melanoma patients with a high risk of poor
survival was established, highlighting the relationship between prognosis and the local immune response.

1. Introduction

To date, many advancements in melanoma have elucidated
the positive and negative relationships between various
clinicopathological features and prognosis. For instance,
metastasis accounts for over 90% of cancer-specific mortality
in melanoma [1, 2]. According to recent whole-genome

mRNA expression profiling studies, melanoma can be di-
vided into molecular subtypes, and several subtypes share
clinical properties and gene expression patterns [3, 4]. Since
the survival rate of melanoma patients does not significantly
improve after standard treatment, the novel approach of
immunotherapy is currently under intensive investigation
[5, 6]. In addition, several gene patterns in melanoma have
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been reported to predict the strength of the antitumor re-
sponse [7, 8], further highlighting the importance of precise
gene signature stratification in predicting immunotherapy
outcomes. However, only a few studies have systematically
explored the gene expression pattern in the melanoma-
immune microenvironment and its relationship with
prognosis. Altogether, a better understanding of the mo-
lecular characteristics of melanoma is highly significant.

In this study, we profiled the gene expression patterns in
122melanoma patients using whole-genome expression data
from the Gene Expression Omnibus (GEO) database. Dis-
tinct degrees of phenotype enrichment were established
based on the clinical stage. Using the enriched gene sig-
nature in melanoma, we found a gene-related risk signature
by profiling the whole gene set, and this signature was
subsequently validated using +e Cancer Genome Atlas
(TCGA) database. Our gene-related risk signature can in-
dependently identify melanoma patients at high risk of
unfavorable clinical outcomes, and the expression intensity
of immune-related genes is severely reduced in these pa-
tients, thereby indicating that survival is closely associated
with the melanoma-immune microenvironment.

2. Materials and Methods

2.1. Patient Samples. In total, 581 melanoma samples from
the Gene Expression Omnibus (GEO) and +e Cancer
Genome Atlas (TCGA) database were included in our study
(Supplementary Tables 1 and 2) [9, 10].+e GEO and TCGA
gene expression profiles (RNA-Seq expression) and corre-
sponding clinical metadata were accessed from the GEO
(https://www.ncbi.nlm.nih.gov/geo/) and TCGA (https://
tcga-data.nci.nih.gov/tcga/dataAccess-Matrix.htm) public
access databases released before May 20, 2017. +e overall
survival (OS) was defined from the date of diagnosis until
death or the end of follow-up.

2.2. Standard Protocol Approval, Registration, and Patient
Consent. +is study was approved by the Ethics Committee
and Institutional Review Board of SYSUCC. All enrolled
patients signed informed consent forms.

2.3. Principal Components Analysis (PCA), Gene Set En-
richmentAnalysis (GSEA), andGeneOncology (GO)Analysis.
For each subject we used principal components analysis (PCA)
to recover a low-dimensional semantic space from category
model weights and classify the gene signature patterns in the
patients. As previously studies reported, participants’ scores in
all assessments were entered into the PCA with maximum
fluctuations [11]. Next, we use the degrees of freedom signif-
icance threshold (p< 0.05 for multiple comparisons uncor-
rected) to select all voxels that the model predicts significantly
[12].We then applied PCA to the categorymodel weights of the
selected voxels. A GSEA (http://www.broadinstitute.org/gsea/
index.jsp) was conducted to determine whether the identified
sets of genes significantly differed between the groups [13]. A
GO enrichment analysis of the differentially expressed genes in
the gene expression network was conducted. +e DAVID

database (Database for Annotation, Visualization and Inte-
gration Discovery, http://david.abcc.ncifcrf.gov/) was used to
conduct a functional enrichment analysis in our study [14, 15].
Furthermore, the normalized enrichment score (NES) and false
discovery rate (FDR) were applied to determine the significant
differences. A p-value <0.05 was set as the threshold.

2.4. Statistical Analysis. Using the RNA-Seq database, the
log 2 expression values were calculated for each probe [16].
For genes with several probes, the median was calculated for
further analysis. A univariate Cox regression analysis was
performed to evaluate the significance of the prognostic
value of the genes in melanoma. We found 8 genes that were
highly correlated with the OS (p< 0.01), and these genes
were either associated with risk or protective based on their
hazard ratio (HR). An 8-gene risk signature model was
established for the prediction of survival, a univariate Cox
regression analysis was conducted and a linear combination
of their expression levels weighted using the regression
coefficients was determined with the OS as the dependent
variable [17]. Next, the melanoma patients from both the
GEO and TCGA datasets were divided into high- and low-
risk groups based on their median protection value. Both
univariate and multivariate Cox regression analyses were
performed to identify the independent prognostic factors.
+e primary endpoint was calculated using the
Kaplan–Meier method, and the survival curves were com-
pared using a 2-tailed log-rank test. Additionally, the dif-
ferences in the clinicopathological features between the
groups were evaluated using Fisher’s exact test or χ2 tests. All
statistical analyses were conducted using SPSS software
(Version 19.0, SPSS Inc.) and GraphPad Prism (Version 5.0,
GraphPad Software Inc.). A 2-sided p-value < 0.05 was
considered statistically significant. +e PCA and the gen-
eration of the heatmap and Circos diagrams were performed
using R software (Version 3.4.2).

3. Results

3.1. Enhanced Gene Expression in Primary and Metastatic
Melanoma. We analyzed 122 primary and metastatic mel-
anoma cases obtained from the GEO database (GSE59455)
using mRNA expression and clinical data (Supplementary
Table 1). A clinical diagnosis was achieved and defined in 37
and 85 patients in primary and metastatic status, respec-
tively. We downloaded all gene sets (hallmark and C1 to C7)
from the Molecular Signatures Database (http://software.
broadinstitute.org/gsea/downloads.jsp) and combined the
gene sets to obtain a total gene set containing more than
20000 genes [18].

Because the clinical and biological differences have been
well established (Supplementary Table 3), we objected to
further explore the different gene patterns between primary
and metastatic melanoma. All gene sets were used to per-
form a GSEA analysis. A significantly different enrichment
in the DNA binding-related, metastasis-related, and other
gene sets was observed (Figures 1(a), 1(b), and Supple-
mentary Tables 4 and 5), revealing an entirely different gene
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Figure 1: Different gene expression patterns between primary and metastatic melanoma. (a, b) Gene set enrichment analysis (GSEA) was
performed to compare the gene expression between metastatic and primary tumors. FDR� false discovery rate; NES�normalized en-
richment score. (c) Principal components analysis of the whole genome between primary and metastatic melanoma. (d) Principal
components analysis of enriched genes between primary and metastatic melanoma.
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signature between the two groups. As shown in Figure 1(c),
the PCA based on the whole-genome expression data
showed a different intertwined pattern. Furthermore, a PCA
based on the enrichment gene set data showed a relatively
different distribution pattern (Figure 1(d)). Primary mela-
noma was distributed on the left side, while metastatic
melanoma was distributed on the right side, indicating
remarkably distinct gene expression patterns between the
clinical stages.

3.2. Identification of a Local Gene Signature to Predict Prog-
nosis in Melanoma Patients. Considering the enrichment
gene expression in primary and metastatic melanoma, we
attempted to establish a local gene signature as a predictor of
prognosis. Subsequently, we performed a univariate Cox
regression analysis to explore the prognostic value of these
enriched genes. In our study, fourteen genes (EREG,
GALNT8, GPR87, KIT, KLF5, SH3GL3, PVRL1, ATP1B1,
CDAN1, DNAJB6, EIF2AK4, FAU, GPX1, and TNFSF14)
were observed to predict survival in melanoma

(Supplementary Table 6, p< 0.01). +en, the risk score
method was used to establish a risk signature for melanoma
patients based on the gene expression levels [17]. As pre-
sented in Figure 2(a), we ranked the genes based on their
predictive power (regression coefficients). We excluded
several genes with relatively low predictive power
(−0.05< regression coefficient< 0.05). Finally, eight genes
(GPR87, KIT, SH3GL3, PVRL1, ATP1B1, CDAN1, FAU,
and TNFSF14) were identified to be closely associated with
the OS in melanoma. In addition, all identified genes were of
the following 2 types: risky or protective. An HR> 1 was
defined as risky (GPR87, KIT, SH3GL3, and PVRL1), and an
HR< 1 was defined as protective (ATP1B1, CDAN1, FAU,
and TNFSF14).

+e prediction model is based on the weighted ex-
pression of eight genes and is expressed by the following
equation: protection value score � (0.202 × TNFSF14) +
(0.091 × CDAN1) + (0.081 × FAU) + (0.071 × GPR87) +
(0.052 × ATP1B1) + (−0.094 × KIT) + (−0.179 × SH3GL3) +
(−0.250 ×PVRL1). All cases were divided into high-risk
(n� 61) and low-risk (n� 61) subgroups based on the
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Figure 2: An 8-gene local gene signature in patients with melanoma. (a) +e dashed lines represent an absolute regression coefficient of
±0.05. +e prediction model is based on the weighted expression of eight genes and is expressed by the following equation: Protection score
� (0.202 × TNFSF14) + (0.091 × CDAN1) + (0.081 × FAU) + (0.071 × GPR87) + (0.052 × ATP1B1) + (−0.094 × KIT) + (−0.179 × SH3GL3) +
(−0.250 × PVRL1). (b) Survival curves of overall survival in high- and low-risk groups classified by the local gene signature in the GEO
database. (c) Survival curves of overall survival in high- and low-risk groups classified by the local gene signature in the TCGA database.
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Table 1: Multivariate Cox regression analysis of clinicopathological factors and overall survival using the TCGA database.

Univariate Cox regression Multivariate Cox regression
Variable HR p value HR p value
Age
Increasing years 1.748 0.001 1.517 0.018
Sex
Female vs. male 0.784 0.979
BRAF status
Mutation vs. wild-type 1.174 0.035 1.142 0.089
NRAS status
Mutation vs. wild-type 0.957 0.580
Clinical stage
III + IV vs. <III 1.023 0.001 1.023 0.001
Local gene signature
High-risk vs. low-risk 1.318 <0.001 1.274 0.001
TCGA: +e Cancer Genome Atlas. HR: hazard ratio.
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Figure 3: Continued.
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Figure 3: Associations between the local gene signature and clinicopathological features in melanoma. (a) Survival curves of overall survival
in high- and low-risk groups classified by the local gene signature in metastatic melanoma patients (GEO database). (b) Survival curves of
overall survival in high- and low-risk groups classified by the local gene signature in primary melanoma patients (GEO database). (c)
Survival curves of overall survival in high- and low-risk groups classified by the local gene signature in AJCC stage I/II melanoma patients
(TCGA database). (d) Survival curves of overall survival in high- and low-risk groups classified by the local gene signature in stage III/IV
melanoma patients (TCGA database). (e) Associations between the protection value and the clinicopathological features (Primary vs.
Metastatic). (f ) Associations between the protection value and the clinicopathological features (Stage I/II vs. Stage III/IV).
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Figure 4: Application of the local gene signature in stratified melanoma cohorts. (a) Survival curves of overall survival in high- and low-risk
groups classified by the local gene signature in BRAF wild-type melanoma patients (GEO database); (b) survival curves of overall survival in
high- and low-risk groups classified by the local gene signature in BRAFmutation melanoma patients (GEO database); (c) survival curves of
overall survival in high- and low-risk groups classified by the local gene signature in NRAS wild-type melanoma patients (GEO database);
(d) survival curves of overall survival in high- and low-risk groups classified by the local gene signature in NRAS mutation melanoma
patients (GEO database); (e) survival curves of overall survival in high- and low-risk groups classified by the local gene signature in NRAS
wild-type melanoma patients (TCGA database); (f ) survival curves of overall survival in high- and low-risk groups classified by the local
gene signature in NRAS mutation melanoma patients (TCGA database).
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Figure 5: Immune signature differences between high- and low-risk groups in melanoma. (a, b) Significant enrichment of the immune-
related phenotype in low-risk patients compared to high-risk patients. TGGA�+e Cancer Genome Atlas; FDR� false discovery rate;
NES�normalized enrichment score; (c) associations between the protection value and the clinicopathological features and immune-related
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median protection value as the cut-off. Compared with the
low-risk patients, the high-risk patients are associated with a
shorter OS (High-risk vs. low-risk: median OS, 1.66 vs. 3.82
years; HR� 3.14, 95% confidence interval [CI] 2.07 to 4.78;
p< 0.0001; Figure 2(b)). To validate the prognosis prediction
of the 8-gene-based gene signature, we calculated the pro-
tection value of each patient in the TCGA database using the
same formula. Similarly, the patients were classified into
high- and low-risk groups using the same method. Ex-
pectedly, the OS in the high-risk group was shorter than that
in the low-risk group (High-risk vs. low-risk: median OS,
1.66 vs. 3.82 years; HR� 1.75, 95% CI 1.33 to 2.30;
p< 0.0001; Figure 2(c)).

3.3. Correlations between the Local Gene Signature and
Prognostic Features in Melanoma. +e baseline character-
istics of the GEO and TCGA cohort were compared based on
the local gene signature, and the comparisons are shown in
Supplementary Tables 7 and 8. Overall, in the TCGA cohort,
the age at diagnosis (High-risk vs. low-risk: mean age, 55.7
vs. 60.5 years, p � 0.002), advanced AJCC (American Joint
Committee on Cancer) stage (High-risk vs. low-risk: rate,
55.3% vs. 35.7%, p< 0.001), and NRAS mutation rate (High-
risk vs. low-risk: rate, 32.2% vs. 23.1%, p � 0.037) signifi-
cantly differed between the high- and low-risk groups
(Supplementary Table 7). +e GEO cohort exhibited a
similar distribution (Supplementary Table 8). Next, we
performed univariate and multivariate Cox regression an-
alyses using the TGGA database and revealed that the local
gene-related risk signature was independently correlated
with OS (Table 1). Furthermore, the local gene-related risk
signature was validated as an independent factor using the
GEO database (Supplementary Table 9), confirming that this
signature independently predicts prognosis with strong
power.

In addition, as shown by the Kaplan–Meier OS curves
(Figure 3(a)), the OS during early-stage melanoma signifi-
cantly differed between the high- and low-risk groups of
patients in the GEO datasets (High-risk vs. low-risk: median
OS, 2.15 vs. 4.84 years; HR� 3.50, 95% CI 2.00 to 6.13;
p< 0.0001). Additionally, although not statistically signifi-
cant, a divergence appeared to emerge in the OS curves prior
to 10 years of follow-up in patients at the advanced-stage
(High-risk vs. low-risk: median OS, 1.38 vs. 2.79 years;
HR� 1.75, 95% CI 0.88 to 3.48; p � 0.1081; Figure 3(b)).
Subsequently, we validated our novel findings using the
TCGA database. During both the early (High-risk vs. low-
risk: median OS, 5.56 vs. 12.61 years; HR� 1.82, 95% CI 1.27
to 2.60; p � 0.0012; Figure 3(c)) and advanced (High-risk vs.
low-risk: median OS, 2.86 vs. 5.76 years; HR� 1.78, 95% CI
1.16 to 2.75; p � 0.0085; Figure 3(d)) stages, the gene sig-
nature had prognostic significance. Furthermore, the sig-
nature protection value differed between patients stratified
by clinical and AJCC stages (Figures 3(e) and 3(f)).

3.4. Application of the Local Gene Signature in Stratified
Melanoma Cohorts. In this study, we evaluated the prog-
nostic value of the local gene signature in stratified cohorts.

+e melanoma patients were first classified according to the
status of BRAF and NRAS mutation. In the GEO cohort, the
high-risk patients had a significantly shorter OS than the
low-risk patients (Figures 4(a)–4(c)), except for the NRAS
mutation cohort (High-risk vs. low-risk: median OS, 3.34 vs.
3.57 years; HR� 1.82, 95% CI 0.69 to 4.81; p � 0.2267;
Figure 4(d)). Subsequently, we validated these new findings
using the TCGA database. Similarly, patients with BRAF and
NRAS status were selected to validate the local gene ex-
pression patterns, and the OS in the high-risk group was
shorter than that in the low-risk group in all cohorts
(Figures 4(e), 4(f) and Supplementary Figures 5(a) and
5(b)). Taken together, the gene risk signature-based classi-
fication could accurately identify patients with poor prog-
nosis regardless of the BRAF and NRAS status.

3.5. Low-Risk Melanoma Patients Exhibited an Enhanced
Local Immune Phenotype. Considering the distinct prog-
nosis based on gene signature, we explored the phenotypical
differences between the risk groups using genome expres-
sion data. Melanoma is known as the most common im-
mune-related malignancy, and melanoma patients were the
first to benefit from immunotherapy. Hence, the five most
common immune-related gene sets (adaptive immune re-
sponse M13847, activation of immune response M19789,
activation of immune innate response M15340, adaptive
immune response based on immune receptors M11342, and
primary immunodeficiency syndrome M7603) were
extracted from the Molecular Signatures Database, and an
immune-related gene set was created. Interestingly, com-
pared with the high-risk group, the GSEA revealed a highly
significant enrichment of immune-related phenotypes in the
low-risk group (Figures 5(a) and 5(b)), indicating that pa-
tients with the low-risk gene signature had an intense local
immune response microenvironment. Next, the patients in
the GEO database were divided into high- and low-risk
groups according to their protection values. As presented in
Figure 5(c), the genes forming the gene risk signature
exhibited distinct expression patterns that corresponded to
the protection value. +e low-risk patients exhibited high
expression levels of T cell activation-related genes
(TNFSF14, AIRE, CD2, and CD19), NK cell activation-re-
lated genes (SLAMF6 and NKTR), and autoimmune-related
genes (Figure 5(c)). Additionally, the low-risk patients had
higher expression levels of a crucial negative regulator of the
immune system (CTLA4) and a protective gene
(TNFRSF10B). However, the signature value did not differ
between the cases stratified by age at diagnosis, gender, and
molecular subtype. Furthermore, the Circos diagram of the
GO analysis illustrates the identical tendency of the im-
mune-related genes between the two groups (Figure 5(d)).

4. Discussion

In this study, we firstly identified a gene signature that was
significantly associated with OS in patients with melanoma
using gene expression data from the GEO and TCGA da-
tabases. Furthermore, different immune gene patterns were
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observed in high- and low-risk patients. In the patients with
the low-risk gene signature, the innate and adaptive immune
systems are capable of coordinating a robust immune re-
sponse, indicating a need for a distinct immunotherapy
strategy according to the gene expression pattern.

+e identification of molecular subtypes in other ma-
lignancies provided the impetus to utilize transcriptome
profiling to explore the gene expression patterns in mela-
noma. Previous studies have used mRNA expression pro-
filing to distinguish among the subtypes of lymphoma with a
high degree of accuracy [19, 20]. Importantly, parallel studies
in melanoma also revealed that patients could be grouped
into “molecular subtypes” with very different biological
properties that clinically behave as different disease entities
[3, 4, 7, 21, 22]. In the present study, a large sample of
melanoma cases from the GEO database, including 37
primary and 85 metastatic melanoma cases, was used as a
discovery set. In the preliminary analysis, markedly distinct
local gene phenotypes were observed based on the clinical
stage (primary vs. metastatic), particularly in telomere
maintenance, telomeric DNA binding, biosynthetic process,
and metastasis (Figures 1(a), 1(b) and Supplementary
Figures 1–4). Consistent results have been reported in
previous studies, in which telomere maintenance, cancer
metabolism, and DNA repair were highly associated with
malignancy progression, and poor clinical outcomes were
predominant in melanoma with high malignancy [23–25].
However, differences across the entire gene set have not been
identified in melanoma patients at different stages. Ac-
cordingly, we are the first to demonstrate that the overall
gene expression pattern in melanoma patients is positively
distinguished by the malignant grade (Figures 1(c) and
1(d)).

To the best of our knowledge, establishing precise sig-
natures to determine the status of patients is refreshing
because these signatures are powerful prognostic predictors
and, if correctly applied, can enable patient stratification to
achieve better immunotherapeutic outcomes. Numerous
studies have investigated both single prognostic biomarkers
and local immune parameters in patients with melanoma
[26, 27]. However, the prognostic value of systemic gene
signatures remains unclear. In our study, we identified two
gene expression patterns and generated an 8-gene-based
(GPR87, KIT, SH3GL3, PVRL1, ATP1B1, CDAN1, FAU,
and TNFSF14) gene signature that could recognize mela-
noma patients with a high risk of unfavorable clinical
outcomes. Next, we tested the signature using the GEO
database (for discovery) and validated the signature using
the TCGA database (Figures 2(a)–2(c)). Our signature
consists of diverse genes comprising protective (ATP1B1,
CDAN1, FAU, and TNFSF14)) and risky (GPR87, KIT,
SH3GL3, and PVRL1), which could be considered gene-
related protective and risk patterns in melanoma. Alto-
gether, our findings may prompt a novel treatment strategy
to improve prognosis by shaping the gene signature.
According to previous studies, the genes forming our sig-
nature could be considered promising therapeutic targets
due to their nature and prognostic impact. KIT, which is a
famous oncogene, is often mutated in advanced melanoma

and contributes to malignancy progression and an unfa-
vorable prognosis [28, 29], while highly expressed TNFSF14
in human melanoma cells and microvesicles may contribute
to the mediation of T cell responses to cancer cells [30].
Notably, although the available genomic and associated
clinical data have been verified, several genes constituting
our signature have not been studied in melanoma. However,
these genes appear to exert oncogenic or tumor suppressive
functions in other tumors. For instance, GPR87 plays a
critical oncogenic role in pancreatic cancer progression, and
SH3GL3 is a novel invasion-associated candidate gene that
likely contributes to the invasive genotype of malignant
gliomas [31, 32]. Furthermore, our gene risk signature
remained an independent prognostic predictor after
adjusting for the clinicopathological and molecular features
(Table 1).

To better understand the gene signature influencing
patient survival, we conducted a subgroup analysis and
mainly focused on tumor stage (clinical or AJCC stage) and
molecular characteristics (BRAF and NRAS status). In the
GEO database, more than 80 metastatic melanomas were
analyzed, and this sample size was sufficient to display the
power of the gene signature in predicting the outcome even
after adjusting for the clinical stage (Figures 3(a) and 3(b)).
Furthermore, the clinical implications according to mo-
lecular grading and staging were immediately validated
using the TCGA dataset (Figures 3(c) and 3(d)). Moreover,
as shown in the protection value pattern presented in
Figures 3(e) and 3(f), the advanced-stage melanomas un-
derwent a malignant course in our gene expression model.
In general, the BRAF and NRAS status defined the nature of
the proliferative apparatus, which has been well established
as a major molecular biomarker of melanoma [33, 34]. +e
gene-related risk feature might have contributed to the poor
prognosis in the patients regardless of BRAF status in both
the discovery and the validation databases (Figures 4(a), 4(b)
and Supplementary Figure 5). Similarly, despite the un-
certain results using the GEO dataset (Figures 4(c) and 4(d)),
a Kaplan–Meier analysis of TCGA patients suggested that
patients with the high-risk gene signature had a worse OS
than patients with the low-risk signature in both the NRAS
wild-type and mutant subgroups (Figures 4(e) and 4(f )).
Considering that BRAF and NRAS mutant melanomas are
prone to an ominous prognostic outcome [35, 36], the
similar gene expression signature pattern of the wild-type
and mutant melanomas indicates that our model-based
classification could accurately identify patients with unfa-
vorable prognoses regardless of the BRAF and NRAS status.
However, the exact mechanism remains unknown and
should be further examined.

Data from previous studies investigating the response of
melanoma to immune checkpoint inhibitors have illustrated
the need to develop a strategy to consider stratification based
on the gene signature. Due to its formation of related genes,
the signature was highly associated with the overall intensity
of the local immune response. +e designated low-risk
patients exhibited an enhanced local immune phenotype
compared to the low-risk patients (Figures 5(a) and 5(b)).
Interestingly, the local immune signature pattern was
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compatible with prognosis determination in patients at a
low- or high-risk, clearly suggesting that high-risk patients
share similar decreased immune abilities in determining
prognosis, even with the different intensity of T cell acti-
vation-related genes (TNFSF14, AIRE, CD2, and CD19), NK
cell activation-related genes (SLAMF6, and NKTR), and
autoimmune-related genes (HLA-DOB, HLA-DOA, IL7R,
and TNFRSF18) (Figures 5(c) and 5(d)). However, this result
is consistent with those of previous reports showing that the
immune response against tumors increased the survival time
of patients with advanced-stage tumors, such as melanoma,
lung cancer, and hepatocellular carcinomas [37–39]. In
addition, low-risk patients have higher expression levels of a
crucial negative regulator of the immune system (CTLA4)
and a protective gene (TNFRSF10B). According to pre-
liminary reports, melanoma patients can benefit from anti-
CTLA treatment [40, 41], highlighting the potential of our
signature to identify melanoma patients in which the use of
immune checkpoint inhibitors is effective.

Additionally, several limitations of this study must be
addressed. First, our study is limited since it is retrospective
and should be validated by prospective studies. Second, to
achieve better clinical application, the validity of our sig-
nature in predicting responses to immunotherapy and re-
lationship with hyperprogressive disease (HPD) should be
tested; as previously reported, local immune factors are
potentially involved in the formation of this signature [42].
Finally, functional and mechanistic studies should be per-
formed to investigate the 8 genes alone or in combination to
support the clinical application of our signature.

5. Conclusions

We identified an 8-gene signature (i.e., GPR87, KIT,
SH3GL3, PVRL1, ATP1B1, CDAN1, FAU, and TNFSF14)
with independent prognostic value on melanoma. Addi-
tionally, the gene expression pattern correlated with mela-
noma-immune microenvironment and immune-related
therapy.

Abbreviations

GEO: Gene Expression Omnibus
TCGA: +e Cancer Genome Atlas
PCA: Principal components analysis
GSEA: Gene set enrichment analysis, GO gene oncology

analysis
NES: +e normalized enrichment score
FDR: False discovery rate.

Data Availability

All the data supporting the conclusions of this article are
included in the article and its supplementary information
files.

Conflicts of Interest

+e authors have no conflicts of interest to declare.

Authors’ Contributions

Jing Wang, Peng-Fei Kong, and Hai-Yun Wang equally
contributed to this work.

Acknowledgments

+e authors thank Dr. Hao-Tu Zhu for the statistical advice
and reviewing the manuscript. +is study was partially
supported by the National Natural Science Foundation of
China (81602468) and Natural Science Foundation of Anhui
(1808085MH286).

Supplementary Materials

Supplementary Table 1: the characteristics of patients from
the GEO database. Supplementary Table 2: the character-
istics of patients from the TCGA database. Supplementary
Table 3: comparison of clinicopathologic characteristics
between primary and metastatic melanoma in GEO data-
base. Supplementary Table 4: biological processes enriched
in the metastatic group. Supplementary Table 5: biological
processes enriched in the primary group. Supplementary
Table 6: fourteen genes with prognostic value in CEO
melanoma patients. Supplementary Table 7: comparison of
clinicopathologic characteristics between high and low-risk
melanoma in the TCGA database. Supplementary Table 8:
comparison of clinicopathologic characteristics between
high and low-risk melanoma in the GEO database. Sup-
plementary Table 9: multivariate Cox regression analysis of
clinicopathologic factors for overall survival in the GEO
database. Supplementary Figure 1: gene set enrichment
analysis (GSEA) for comparing genotype between metastatic
and primary. FDR� false discovery rate; NES� normalized
enrichment score. Supplementary Figure 2: gene set en-
richment analysis (GSEA) for comparing genotype between
metastatic and primary. FDR� false discovery rate;
NES� normalized enrichment score Supplementary Fig-
ure 3: gene set enrichment analysis (GSEA) for comparing
genotype between metastatic and primary. FDR� false
discovery rate; NES� normalized enrichment score. Sup-
plementary Figure 4: gene set enrichment analysis (GSEA)
for comparing genotype between metastatic and primary.
FDR� false discovery rate; NES� normalized enrichment
score. Supplementary Figure 5: (a) survival curves of overall
survival for high and low-risk groups classified by the local
gene signature in BRAF wild-type melanoma patients
(TCGA database); (b) survival curves of overall survival for
high and low-risk groups classified by the local gene sig-
nature in BRAF mutation melanoma patients (TCGA da-
tabase). (Supplementary Materials)

References

[1] R. D. Zhang, J. E. Price, G. Schackert, K. Itoh, and I. J. Fidler,
“Malignant potential of cells isolated from lymph node or
brain metastases of melanoma patients and implications for
prognosis,” Cancer Research, vol. 51, no. 8, pp. 2029–2035,
1991.

Journal of Oncology 11

http://downloads.hindawi.com/journals/jo/2020/7526204.f1.pdf


[2] B. P. Jain, “Prognostic model for primary melanoma,” Annals
of Internal Medicine, vol. 126, no. 10, p. 832, 1997.

[3] K. Harbst, J. Staaf, M. Lauss et al., “Molecular profiling reveals
low- and high-grade forms of primary melanoma,” Clinical
Cancer Research, vol. 18, no. 15, pp. 4026–4036, 2012.

[4] G. Jonsson, C. Busch, S. Knappskog et al., “Gene expression
profiling-based identification of molecular subtypes in stage
IV melanomas with different clinical outcome,” Clinical
Cancer Research, vol. 16, no. 13, pp. 3356–3367, 2010.

[5] C. A. Barker, M. A. Postow, S. A. Khan et al., “Concurrent
radiotherapy and ipilimumab immunotherapy for patients
with melanoma,” Cancer Immunology Research, vol. 1, no. 2,
pp. 92–98, 2013.

[6] D. Black and L. Brockway-Lunardi, “+e melanoma research
alliance: the power of patient advocacy to accelerate research
and novel therapies,” Cancer Immunology Research, vol. 1,
no. 6, pp. 357–361, 2013.

[7] W. Hugo, J. M. Zaretsky, L. Sun et al., “Genomic and tran-
scriptomic features of response to anti-PD-1 therapy in
metastatic melanoma,” Cell, vol. 165, no. 1, pp. 35–44, 2016.

[8] K. Pilipow, A. Roberto, M. Roederer, T. A. Waldmann,
D. Mavilio, and E. Lugli, “IL15 and T-cell stemness in T-cell-
based cancer immunotherapy,” Cancer Research, vol. 75,
no. 24, pp. 5187–5193, 2015.

[9] Z. Wang, C. D. Monteiro, K. M. Jagodnik et al., “Extraction
and analysis of signatures from the gene expression Omnibus
by the crowd,”Nature Communications, vol. 7, no. 1, p. 12846,
2016.

[10] A. Chatterjee, P. A. Stockwell, E. J. Rodger, M. F. Parry, and
M. R. Eccles, “scan_tcga tools for integrated epigenomic and
transcriptomic analysis of tumor subgroups,” Epigenomics,
vol. 8, no. 10, pp. 1315–1330, 2016.

[11] S. K. Ratuapli, A. E. Bharucha, J. Noelting, D. M. Harvey, and
A. R. Zinsmeister, “Phenotypic identification and classifica-
tion of functional defecatory disorders using high-resolution
anorectal manometry,” Gastroenterology, vol. 144, no. 2,
pp. 314–322, 2013.

[12] A. G. Huth, S. Nishimoto, A. T. Vu, and J. L. Gallant, “A
continuous semantic space describes the representation of
thousands of object and action categories across the human
brain,” Neuron, vol. 76, no. 6, pp. 1210–1224, 2012.

[13] W. Cheng, X. Ren, C. Zhang et al., “Bioinformatic profiling
identifies an immune-related risk signature for glioblastoma,”
Neurology, vol. 86, no. 24, pp. 2226–2234, 2016.

[14] G. Dennis Jr., B. T. Sherman, D. A. Hosack et al., “DAVID:
Database for Annotation, Visualization, and Integrated Dis-
covery,” Genome Biology, vol. 4, no. 9, 2003.

[15] M. A. Harris, J. Clark, A Ireland et al., “+e Gene Ontology
(GO) database and informatics resource,” Nucleic Acids Re-
search, vol. 32, 32, no. 90001, pp. D258–D261, 2004.

[16] J. Yao, O. L. Caballero, Y. Huang et al., “Altered expression
and splicing of ESRP1 in malignant melanoma correlates with
epithelial-mesenchymal status and tumor-associated immune
cytolytic activity,” Cancer Immunology Research, vol. 4, no. 6,
pp. 552–561, 2016.

[17] I. S. Lossos, D. K. Czerwinski, A. A. Alizadeh et al., “Prediction
of survival in diffuse large-B-cell lymphoma based on the
expression of six genes,” New England Journal of Medicine,
vol. 350, no. 18, pp. 1828–1837, 2004.

[18] A. Subramanian, P. Tamayo, V. K. Mootha et al., “Gene set
enrichment analysis: a knowledge-based approach for inter-
preting genome-wide expression profiles,” Proceedings of the
National Academy of Sciences, vol. 102, no. 43, pp. 15545–
15550, 2005.

[19] A. A. Alizadeh,M. B. Eisen, R. E. Davis et al., “Distinct types of
diffuse large B-cell lymphoma identified by gene expression
profiling,” Nature, vol. 403, no. 6769, pp. 503–511, 2000.

[20] T. R. Golub, D. K. Slonim, P. Tamayo et al., “Molecular
classification of cancer: class discovery and class prediction by
gene expression monitoring,” Science, vol. 286, no. 5439,
pp. 531–537, 1999.

[21] C. April, B. Klotzle, T. Royce et al., “Whole-genome gene
expression profiling of formalin-fixed, paraffin-embedded
tissue samples,” PLoS One, vol. 4, no. 12, Article ID e8162,
2009.

[22] A. A. Tarhini, Y. Lin, H.-M. Lin et al., “Expression profiles of
immune-related genes are associated with neoadjuvant ipi-
limumab clinical benefit,” Oncoimmunology, vol. 6, no. 2,
Article ID e1231291, 2017.

[23] E. Gaude and C. Frezza, “Tissue-specific and convergent
metabolic transformation of cancer correlates with metastatic
potential and patient survival,” Nature Communications,
vol. 7, p. 13041, 2016.

[24] K. J. Ransohoff, W. Wu, H. G. Cho et al., “Two-stage genome-
wide association study identifies a novel susceptibility locus
associated with melanoma,” Oncotarget, vol. 8, no. 11,
pp. 17586–17592, 2017.

[25] N. Viceconte, M.-S. Dheur, E. Majerova et al., “Highly ag-
gressive metastatic melanoma cells unable to maintain telo-
mere length,” Cell Reports, vol. 19, no. 12, pp. 2529–2543,
2017.

[26] F. Donskov, “Immunomonitoring and prognostic relevance
of neutrophils in clinical trials,” Seminars in Cancer Biology,
vol. 23, no. 3, pp. 200–207, 2013.

[27] J. J. Luke, K. T. Flaherty, A. Ribas, and G. V. Long, “Targeted
agents and immunotherapies: optimizing outcomes in mel-
anoma,” Nature Reviews Clinical Oncology, vol. 14, no. 8,
pp. 463–482, 2017.

[28] C. M. Lovly, K. B. Dahlman, L. E. Fohn et al., “Routine
multiplex mutational profiling of melanomas enables en-
rollment in genotype-driven therapeutic trials,” PLoS One,
vol. 7, no. 4, Article ID e35309, 2012.

[29] K. T. Montone, P. van Belle, R. Elenitsas, and D. E. Elder,
“Proto-oncogene c-kit expression in malignant melanoma:
protein loss with tumor progression,” Modern Pathology,
vol. 10, no. 9, pp. 939–944, 1997.

[30] R. Mortarini, A. Scarito, D. Nonaka et al., “Constitutive ex-
pression and costimulatory function of LIGHT/TNFSF14 on
human melanoma cells and melanoma-derived micro-
vesicles,” Cancer Research, vol. 65, no. 8, pp. 3428–3436, 2005.

[31] S. Delic, N. Lottmann, K. Jetschke, G. Reifenberger, and
M. J. Riemenschneider, “Identification and functional vali-
dation of CDH11, PCSK6 and SH3GL3 as novel glioma in-
vasion-associated candidate genes,” Neuropathology and
Applied Neurobiology, vol. 38, no. 2, pp. 201–212, 2012.

[32] L. Wang, W. Zhou, Y. Zhong et al., “Overexpression of G
protein-coupled receptor GPR87 promotes pancreatic cancer
aggressiveness and activates NF-kappaB signaling pathway,”
Molecular Cancer, vol. 16, no. 1, p. 61, 2017.

[33] S. M. C. Broekaert, R. Roy, I. Okamoto et al., “Genetic and
morphologic features for melanoma classification,” Pigment
Cell & Melanoma Research, vol. 23, no. 6, pp. 763–770, 2010.

[34] G. V. Long, A. M. Menzies, A. M. Nagrial et al., “Prognostic
and clinicopathologic associations of oncogenic BRAF in
metastatic melanoma,” Journal of Clinical Oncology, vol. 29,
no. 10, pp. 1239–1246, 2011.

[35] L. N. Kwong, J. C. Costello, H. Liu et al., “Oncogenic NRAS
signaling differentially regulates survival and proliferation in

12 Journal of Oncology



melanoma,” Nature Medicine, vol. 18, no. 10, pp. 1503–1510,
2012.

[36] A. Viros, J. Fridlyand, J. Bauer et al., “Improving melanoma
classification by integrating genetic and morphologic fea-
tures,” PLoS Medicine, vol. 5, no. 6, p. e120, 2008.

[37] D. Sia, Y. Jiao, I. Martinez-Quetglas et al., “Identification of an
immune-specific class of hepatocellular carcinoma, based on
molecular features,” Gastroenterology, vol. 153, no. 3,
pp. 812–826, 2017.

[38] B. A. Weir, M. S. Woo, G. Getz et al., “Characterizing the
cancer genome in lung adenocarcinoma,” Nature, vol. 450,
no. 7171, pp. 893–898, 2007.

[39] K. Yoshihara, M. Shahmoradgoli, E. Martinez et al., “Inferring
tumour purity and stromal and immune cell admixture from
expression data,” Nature Communications, vol. 4, p. 2612,
2013.

[40] Trial watch: Ipilimumab success in melanoma provides boost
for cancer immunotherapy,” Nature Reviews Drug Discovery,
vol. 9, no. 8, pp. 584-585, 2010.

[41] E. M. Van Allen, D. Miao, B. Schilling et al., “Genomic
correlates of response to CTLA-4 blockade in metastatic
melanoma,” Science, vol. 350, no. 6257, pp. 207–211, 2015.

[42] S. Champiat, L. Dercle, S. Ammari et al., “Hyperprogressive
disease is a new pattern of progression in cancer patients
treated by anti-PD-1/PD-L1,” Clinical Cancer Research,
vol. 23, no. 8, pp. 1920–1928, 2017.

Journal of Oncology 13


