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Abstract

Predicting evolution of expanding populations is critical to control biological threats such as 

invasive species and cancer metastasis. Expansion is primarily driven by reproduction and 

dispersal, but nature abounds with examples of evolution where organisms pay a reproductive cost 

to disperse faster. When does selection favor this ‘survival of the fastest?’ We searched for a 

simple rule, motivated by evolution experiments where swarming bacteria evolved into an 

hyperswarmer mutant which disperses ~ 100% faster but pays a growth cost of ~ 10% to make 

many copies of its flagellum. We analyzed a two-species model based on the Fisher equation to 

explain this observation: the population expansion rate (v) results from an interplay of growth (r) 
and dispersal (D) and is independent of the carrying capacity: v = 2 rD. A mutant can take over 

the edge only if its expansion rate (v2) exceeds the expansion rate of the established species’ (v1); 

this simple condition (v2 > v1) determines the maximum cost in slower growth that a faster mutant 

can pay and still be able to take over. Numerical simulations and time-course experiments where 

we tracked evolution by imaging bacteria suggest that our findings are general: less favorable 

conditions delay but do not entirely prevent the success of the fastest. Thus, the expansion rate 

defines a traveling wave fitness, which could be combined with trade-offs to predict evolution of 

expanding populations.
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Introduction

Biological threats often come in the form of expanding populations: A cancerous tumor 

spreads into a healthy tissue; bacteria colonize a clean surface and form a biofilm; exotic 
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species occupy a new territory. Predicting the evolution of expanding populations, however, 

is a complex problem. Expansion can be a combination of many organismal traits, so 

evolutionary trajectories can occur in a multi-dimensional phenotypic space.

For the sake of simplicity, we can reduce phenotype into two traits: dispersal and growth. 

Individuals move and they consume local resources; resource availability is highest outside 

the population range, which creates an advantage to being at the population margin (Murray 

2007). Therefore, there are two possible favorable evolutionary strategies: dispersing faster 

or growing faster. Fast-dispersing individuals take advantage of this spatial heterogeneity: 

they take over the edge, cutting-off competitors’ access to growth-limiting resources (Nadell 

et al. 2010; Phillips et al. 2010). In contrast, faster-growth individuals outcompete the rest of 

the population regardless of their location. Of course, simultaneously improving both traits

—dispersal and growth—is even better. It is more delicate, and perhaps more interesting, to 

predict what could happen when one trait is improved at the expense of the other, which is 

often the case if organisms live with limited resources. For instance, if a mutant appears with 

better dispersal but has a lower growth rate because it spends too much energy on moving, 

will this mutant take over the population by reaching the edge, or will it be out-competed by 

the faster growing but slower dispersing wild-type?

There are many examples suggesting that population expansion selects for better dispersal, 

even at the cost of slower growth (Chuang and Peterson 2016). The invasion of the cane 

toads in Australia, a human-introduced species, is led by faster long-legged individuals with 

lower birth rates (Hudson et al. 2015); the South African mountain fynbos is threatened by 

invasive pine trees with lighter pine seeds that disperse better (Richardson et al. 1990) but 

produce weaker seedlings (Reich et al. 1994); metastatic cancer cells are more invasive due 

to a loss of contact inhibition of locomotion (Carmona-Fontaine et al. 2008) that also lowers 

their cellular proliferation rates (Biddle et al. 2011; Gerlee and Nelander 2012; Kim et al. 

2017; Widmer et al. 2012). Additional field examples of invasive populations, where margin 

individuals acquired greater dispersal and slower growth, include other plants (Ganeshaiah 

and Shaanker 1991; Huang et al. 2015; Williams et al. 2016), fish (Agostinho et al. 2015), 

crickets (Simmons and Thomas 2004), butterflies (Hughes et al. 2003), and fungi 

(Garbelotto et al. 2015). Laboratory experiments with populations expanding towards a 

virgin territory with freshwater ciliates (Fronhofer and Altermatt 2015), beetles (Ochocki 

and Miller 2017; Weiss-Lehman et al. 2017), plants (Williams et al. 2016), and bacteria 

(Fraebel et al. 2017; Ni et al. 2017) led to similar results: population expansion can favor 

faster dispersal at the expense of slower growth.

Yet, previously proposed models suggest that faster growth is not always selected for. 

Growth can be traded off with competitive ability as in the r-K selection theory (Pianka 

1970) and, in a spatially structured environment, the competition-colonization trade-off 

theory aims to explain the coexistence of interacting species (Tilman 1994). Nonetheless, 

these findings suggest that a better definition of fitness is required to understand evolution in 

expanding populations. Other questions ensue: Are there general conditions for favoring 

dispersal over growth? And how much cost can a fast-dispersing individual pay in terms of 

slower growth and still be favored by natural selection?
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Here, we based our analysis on a well-established framework of spatial expansion in 

growing populations: the traveling wave derived from the Fisher-Kolmogorov-Petrovsky-

Piscunov (F-KPP) equation. The F-KPP equation, in its original form, describes a 1-D 

monospecies population (Fisher 1937; Giometto et al. 2014; Kolmogorov et al. 1937). We 

expanded the F-KPP equation to investigate the conditions favoring faster dispersal or faster 

growth rate, and we solved the resulting two-species system to produce a simple rule 

governing the evolutionary outcome. Somewhat surprisingly, this rule had not been proposed 

before to the best of our knowledge, despite much theoretical and experimental work in this 

field. We then conducted simulations to delineate the conditions at which the rule is 

applicable, and the time-scales necessary for a full sweep of the population in biologically 

relevant situations. This rule allowed us to calculate the maximum cost in term of growth 

rate that a faster-dispersal mutant can pay and still win the competition. If the loss of growth 

rate is greater than this maximum cost, then better dispersal should no longer be favored. 

When a physiological trade-off between growth and dispersal is considered as well, then it is 

possible to predict the phenotype favored by natural selection.

It is often challenging to test the predictions of theoretical models with field studies, and 

experimental manipulation of natural ecosystems is often impractical. But we can use 

laboratory experiments with microbes to rigorously test our mathematical models (Dai et al. 

2013; Gandhi et al. 2016; Hallatschek et al. 2007; Jessup et al. 2004; Mitri et al. 2016). 

Microbial model have the advantages of large populations sizes, short generation times, 

affordable DNA sequencing and—in many cases—tools for genetic engineering. We 

recently discovered that experimental evolution in swarming colonies of the bacterium 

Pseudomonas aeruginosa leads to the spontaneous evolution of hyperswarmers (van 

Ditmarsch et al. 2013). We used DNA sequencing and genetic engineering to show that 

hyperswarmer mutants have a single point mutation in a gene called fleN, which gives them 

multiple flagella and makes them more dispersive, and we confirmed that this evolution is 

reproducible in dozens of replicate experiments. Importantly, the many flagella always came 

at the cost of a slower growth (Table 1). P. aeruginosa wild-type individuals outcompete 

hyperswarmers in well-mixed liquid media where faster dispersal is useless; hyperswarmers, 

on the other hand, swarm faster on agar gel (Deforet et al. 2014) and outcompete the wild-

type in this spatially structured environment where dispersal is key (van Ditmarsch et al. 

2013). Thus, the hyperswarmer-wild-type dynamics can be used as a laboratory model to 

study the evolution in expanding populations where faster better dispersal comes with a 

growth cost.

Here we exploited the differences in growth rate and dispersal between the wild-type P. 
aeruginosa and its hyperswarmer mutant to experimentally test our model using time-course 

experiments with bacteria engineered to express fluorescent labels. The quantitative 

experiments supported our model, suggesting that the theory—despite its simplicity—

provides a general way to predict the evolution of expanding populations in a range of 

biological species and systems.
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Methods

Theoretical model

One dimensional one species F-KPP—We modeled P. aeruginosa swarming 

population as a clonally reproducing population, expanding along a one-dimension axis 

towards an open habitat, according to the F-KPP equation:

∂u
∂t = ru 1 − u

K + D ∂2u
∂x2 (1)

where x is space, t is time, u is the local population density, K is the carrying capacity, r is 

the maximum per-capita growth rate and D quantifies dispersal. Growth and dispersal can 

obey different laws in nature; for generality, the F-KPP equation assumes logistic growth, 

where the per-capita growth rate decreases linearly as the population density increases, and 

assumes Fickian diffusion for dispersal. The F-KPP equation suits the common scenario 

where regions with excess of nutrients lie outside the population and determine the direction 

of expansion. Resource availability, proxied by 1 − u/K, is highest outside the population 

range; per capita growth, represented by r(1 − u/k), is maximal at the edge of the population. 

Eq. 1 has a traveling wave solution, u(x, t) = u0(x − vt), where the population front travels at 

a constant expansion rate v = 2 rD, independent of the carrying capacity, and its density 

increases from the edge with a length-scale λ = D/r (Video 1 and Fig. S1) (Hallatschek and 

Nelson 2008; Murray 2007).

Edge of the population—The population density decays exponentially at the front. The 

range of the traveling wave is theoretically infinite. Therefore, in order to locate the front 

position, we arbitrarily defined the “edge” as the location where the density reaches 5% of 

the carrying capacity.

Two species F-KPP—The F-KPP equation is extended to a two-species system with 

coupled equations:

∂u1
∂t = r1u1 1 − u1 − u2 + D1

∂2u1
∂x2

∂u2
∂t = r2u2 1 − u1 − u2 + D2

∂2u2
∂x2

(2)

Species 1 has density function u1(x, t), disperses with coefficient D1 and grows with a rate 

r1; species 2 has u2(x, t), D2, and r2. Species 1 and 2 interact only by competing for the same 

resources, a feature implemented by the factor 1 − u1 − u2.

Competition—In competition situations, we define the winning species as the resident 

species at the edge, namely the species whose frequency exceeds 50% at the edge of the 

population (defined at the location where the total population becomes lower than 5% of the 

carrying capacity).
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Numerical simulations—The deterministic numerical simulations (used for Fig. 1B, Fig. 

2C, and Fig. 3A) were performed in MATLAB (The MathWorks) following Euler’s method, 

with dx = 0.1, dt = 0.001, D1 = 1, r1 = 1, and total spatial range of 400. For stochastic 

simulations (used in Fig. 2B), the model was expanded as explained in Appendix C: 

Stochastic Modeling.

Experimental Methods

We used swarming motility in P. aeruginosa as a laboratory model to study dynamics of 

expanding populations. Swarming plates (such as the one used for Fig. 1A) were made as 

previously described (Xavier et al. 2011). They consist of soft agar gel supplemented with 

casamino acids and salts.

Transplantation experiments—P. aeruginosa strain PA14 genetically modified to 

constitutively express DsRed proteins were grown in LB overnight, washed twice in 

Phosphate Buffered Saline (PBS), then diluted in PBS to OD600=0.01. Each plate is seeded 

with 2 μL of bacterial solution and kept at 37°C for 20h. An overnight culture of 

hyperswarmers (clone 4) (van Ditmarsch et al. 2013) genetically modified to constitutively 

express GFP proteins was washed twice in PBS and concentrated 100-fold by centrifugation. 

For each plate, the location of the tip of every branch of the colony was marked on the 

bottom side of the Petri dish. The implant sites were marked as well. A small volume of 

hyperswarmers culture (0.1–0.8 μL) was implanted at each implant site. From 6 to 11 

branches were implanted per swarming colony. The entire procedure took less than 5 

minutes per plate, which means the colony did not move significantly during the process. 

Immediately after implantation, each plate was placed inside a 37°C incubator containing a 

custom-made fluorescence imaging device. Two images were taken with the same light 

source (Blue LED equipped with a 500nm excitation filter): one with a 510nm emission 

filter (GFP channel), one without emission filter (brightfield channel). The camera dark 

noise and illumination unevenness were canceled out using this formula:

Final image = GFP–dark noise
brightfield–dark noise

The size of each implant was manually evaluated from the total GFP signal within a region 

defined by thresholding. In order to make the experimental results comparable with 

simulations, this size was divided by the area of a circle of diameter of λWT. This gives the 

density of GFP as if the implant sites were λWT in diameter. Then we divided this density by 

the wild-type carrying capacity. To evaluate the local carrying capacity of the wild-type 

colony (Kexp), we grew a swarming colony with a wild-type mutant constitutively 

expressing GFP proteins, took an image using the same imaging device and performing the 

same post-acquisition treatment, and measured the average intensity of the branches. Six 

hours after implantation, plates were imaged with a plate scanner (GE Healthcare Typhoon) 

in DsRed and GFP channels. The distance between the implant site and the location of the 

tip of the branch at the time of implantation was measured with ImageJ. The outcome was 

estimated visually. The amount of hyperswarmers at the front of the branch was visually 

ranked in four levels: (i) ”No trace”: no visible trace of hyperswarmers at the edge of the 
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colony (red dots in Fig. 3); (ii) ”A few traces”: a streak of hyperswarmers reached the edge 

(orange dots in Fig. 3); (iii) ”Partial sweep”: hyperswarmers settled at the tip and along the 

edge of the branch (yellow dots in Fig. 3); (iv) ”Full sweep”: hyperswarmers took over the 

ancestral population and disrupted the branch pattern (green dots in Fig. 3).

Growth curves—Overnight cultures of wild-type and hyperswarmer cells were washed in 

PBS and diluted in minimum media with casamino acids (it is the same recipe as the one 

used for swarming plates except agar is removed). Cells were grown in a 96-well plate in a 

plate scanner (Tecan) with 37°C incubation and agitation.

Competition experiments—Overnight cultures of wild-type DsRed and hyperswarmer 

GFP cells were washed in PBS and mixed to an approximate 1:1 ratio. To evaluate the pre-

competition ratio, a sample of this mix solution was serially diluted in PBS and inoculated 

on a minimum media hard agar plate for CFU counting. 1 mL of the mix solution was 

poured on a fresh swarming plate. Once the plate was dry, it was incubated at 37°C for 4 

hours. Finally, to evaluate the post-competition ratio, a small sample of the gel was scooped 

out using the wide end of a 1 mL sterile pipette tip to punch through the gel. The sample was 

placed in an Eppendorf tube with 0.5 mL of PBS, pipetted up and down 10 times to break 

the agar gel apart, vortexed for 10 seconds, then serially diluted in PBS and inoculated on a 

minimum media hard gar plate for CFU counting. CFU plates were scanned 24 hours later 

on a flatbed fluorescence scanner (Typhoon, GE Healthcare). Three competition plates per 

color combination were made per day (technical replicates). This experiment was performed 

three times (biological replicates).

Data Availability—All experimental data (shown in Fig. 1 and Fig. 3), and simulation 

results for Fig. 1 and Fig. 2 (as well as MATLAB scripts to generate them), are available in 

the Dryad Digital Repository (Deforet et al. 2019).

Results

Modeling swarming in P. aeruginosa with the F-KPP equation

P. aeruginosa populations swarm across agar gels containing nutrients and form branched 

colonies. Bacterial populations at the branch tips spread at a nearly constant rate (Table 1) by 

dividing and dispersing (Deforet et al. 2014). Knowing that cell sizes have a positive 

correlation with growth rates (Deforet et al. 2015) we compared the sizes of cells collected 

from the tip of a branch with the sizes of cells collected behind the tip; cells at the tip were 

longer, indicating faster growth at the edge of the population (Fig. S1). Each growing tip 

consumes resources in its vicinity and thus forms a nutrient gradient (Mitri et al. 2016) that 

drives a resource-limited growth similar to the F-KPP model.

A simple rule for the evolution of faster dispersal

Hyperswarmers grow ~ 10% slower in well-mixed liquid media due the cost of synthesizing 

and operating multiple flagella (Table 1), but, thanks to their ~ 100% faster dispersal on agar 

gel, they can outcompete the wild-type in spatially structured environments (Deforet et al. 

2014; van Ditmarsch et al. 2013). On agar gel lacking spatial structure, hyperswarmers are 
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outcompeted, as expected (Fig. S2). At the micrometer scale, an expanding population of 

hyperswarmers displays patterns of active turbulence typical of dense bacterial suspensions, 

which is different from the wild-type where cells remain nearly static even at the tips of 

swarming tendrils (Video 2).

To gain a better understanding of the competition dynamics in expanding swarming colonies 

we mixed wild-type bacteria (labeled with the red fluorescent protein DsRed Express) with 

hyperswarmers (labeled with the green fluorescent protein GFP) at 10:1 ratio. We then used 

time-lapsed florescence imaging to film the swarming competition (Fig. 1A). The time-lapse 

showed that hyperswarmers quickly reached the population edge, increasing their 

dominance as the colony expanded to win the competition (Video 3).

To determine the conditions favoring evolution of faster dispersal, we used an extension of 

the F-KPP equation for a two-species system, where u1 represents the wild type and u2 

represents the hyperswarmer (See methods and models section). For simplicity, and 

according to data for the hyperswarmer system (van Ditmarsch et al. 2013) (Fig. S3), we 

assumed that both species have the same carrying capacity, which we normalized to 1. We 

assumed that their dispersal rates, determined by D1 and D2, are independent. This 

framework is well established and it has been used before to investigate competition in 

various contexts of range expansion (Lewis et al. 2002; Okubo et al. 1989; Pigolotti et al. 

2013), including in a scenario with a linear trade-off between dispersal and growth (Reiter et 

al. 2014). It has been used also as a basis to elaborate more complex models (Bouin et al. 

2012; Bénichou et al. 2012; Gandhi et al. 2016; Guo and Wu 2014; Holzer and Scheel 2014; 

King and McCabe 2003; Lehe et al. 2012; Perkins et al. 2016; Ramanantoanina et al. 2014). 

However, previous studies did not continue to derive a general rule for the evolutionary 

outcome of all possible values of dispersal and growth.

To derive a general rule, we first investigated the conditions that allow an introduced 

population to thrive and replace the resident population at the expansion front. We could 

determine analytically that, in the moving reference frame traveling at the speed v1, the 

frequency of species 2 at the edge grows at the rate

r =
v2

2 − v1
2

4D2
(3)

which defines the relative fitness of species 2 within a population of species 1 (see Appendix 

A: Analytical solution for the condition of success). Species 2 outcompetes species 1 at the 

edge only if the relative fitness of species 2 is positive, which corresponds to:

v2 > v1 (4)

where v1 = 2 r1D1 and v2 = 2 r2D2 are the expansion rates of each species when grown 

alone.

Eq. 4 sets the conditions for success at the expansion edge. The intuition behind these 

evolutionary dynamics is well illustrated in a simulation of the competition between an 

established species (species 1) and a species with faster dispersal but slower growth (species 
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2), which we simulated (Fig. 1B) by numerically solving the system in Eq. 2 with 

parameters corresponding to the hyperswarmer system (r2/r1 = 0.9 and D2/D1 = 2, Table 1). 

Species 2, initially homogeneously mixed with species 1, outcompetes species 1 once it 

reaches the leading edge: its faster dispersal enables it to reach the low-density edge where it 

can take advantage of the resources available, despite a disadvantage in growth rate. Once 

species 2 dominates the edge, species 1 is left behind in the high-density region where 

growth has stopped. Over time, the global frequency of species 1—blocked by species 2 

from reaching the edge and incapable of growing further—decreases whereas species 2 

frequency keeps increasing thanks to its edge domination (Fig. 1C, left). These simulation 

results are consistent with experimental tests conducted here (Fig. 1C, right) and also with 

the original experiment that led to evolution of hyperswarmers (van Ditmarsch et al. 2013), 

which clearly showed that fleN mutants would outcompete the wild-type to extinction given 

sufficient competition time on swarming plates.

According to the condition for success (Eq. 4) the evolutionary outcome is entirely 

determined from the growth and dispersal rates. Importantly, and similar to the expansion 

rate obtained for a monospecies traveling wave, the evolutionary outcome is independent of 

the carrying capacity of each species (See Fig. S4 for confirmation with numerical 

simulations).

The success condition leads to a diagram that delineates a growth-dispersal space (Fig. 2A, 

where the condition is expressed as r2/r1 > 1
D2/D1

). This diagram shows two trivial domains: 

when both growth and dispersal of species 2 are lower (D2 < D1 and r2 < r1), species 2 

cannot outcompete species 1 because v2 is always lower than v1. Numerical simulations 

illustrate that for very low values of D2 and r2 species 1 continues to expand and travel at 

constant expansion rate whereas species 2 spreads out and stalls (Video 4, bottom left panel, 

and Fig. S5A). When growth and dispersal of species 2 are greater (D2 > D1 and r2 > r1), 

species 2 takes over because v2 is always higher than v1: species 2 grows rapidly, moves to 

the front where it reaches the active layer and outcompetes species 1 (Video 4, top right 

panel, and Fig. S5B).

The two domains where one trait is higher and the other is lower are less trivial, but arguably 

more relevant. Because of the trade-off between dispersal and growth commonly found in 

nature (Chuang and Peterson 2016), a higher growth does not necessarily yield to 

evolutionary success: If species 2 grows faster than species 1 but disperses much slower (r1 

< r2 and D2 < D1r1/r2), then species 2 does not outcompete species 1. In other words, species 

2 cannot take over the edge if its growth rate is not high enough to compensate a loss in 

dispersal (r1 < r2 < r1D1/D2). Domain 1 of Fig. 2A shows that takeover occurs when species 

2 disperses slower than species 1 only if its growth rate is sufficiently higher (r2 > r1D1/D2, 

Video 4, top left panel, and Fig. S5C). Conversely, a slower growth does not mean takeover 

is impossible. If species 2 grows slower than species 1 but disperses sufficiently faster (r2 < 
r1 and D2 > D1r1/r2), then it outcompetes species 1. In other words, there is takeover by 

species 2 if its growth rate is not too low (r1D1/D2 < r2 < r1) so the gain in dispersal can 

compensate the loss in growth. (Video 4, bottom left panel, and Fig. S5D). Note that when 
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species 2 replaces species 1 at the edge, the slope of the front changes accordingly (the 

length scale ranges from λ1 = D1/r1 to λ2 = D2/r2, see Fig. S6).

In the model, the winning species takes over the front and replace the ancestor in the 

advancing front. However, the core of the population is not affected by the replacement that 

occurred at the edge. This results in the coexistence of two populations: the ancestor that 

remains in the initial spatial range and the competitor that occupies the newly extended 

range.

The simple condition for success, v2 > v1, makes quantitative predictions of evolutionary 

outcome; those predictions hold true in our experimental system despite intricacies such as 

the large-scale branching and small-scale turbulence. Hyperswarmers have a ~ 100% 

increase in dispersal (D2/D1 ~ 2) that comes at a ~ 10% growth rate cost (r2/r1 = 0.9) (Video 

2 and Table 1). Therefore, the experimental system falls into domain 2 of the evolutionary 

outcome diagram (cross symbol in Fig. 2A).

We measured the frequency of hyperswarmers within the first millimeter of the colony from 

video frames; it increased exponentially with a rate of 0.39 ± 0.08h−1 (SD), which is in 

quantitative agreement with the theoretical expression of the relative fitness (Eq. 3 and Fig. 

S7). Hyperswarmers introduced into an expanding wild-type colony spread within a wild-

type branch (Fig. S8), reach the tip of the branch, and take over the population (Video 5A) 

resembling our simulations (Fig. S5D).

Hyperswarmers evolved from a wild-type swarming colony (van Ditmarsch et al. 2013) and 

could take over the ancestral population thanks to a greater dispersal. To test our model, we 

asked whether this process was reversible: Could wild-type cells dominate the edge of an 

expanding hyperswarmer colony thanks to their greater growth rate? Our model predicted 

that wild-type cells would be unable to take over the hyperswarmer population edge since in 

this case v2 < v1 (D2/D1 = 0.5 and r2/r1 = 1.1, see star symbol in Fig. 2A). This was 

confirmed experimentally: wild-type cells introduced in a hyperswarmer colony simply 

spread out and were rapidly outpaced at the edge by the hyperswarmers (Video 5B). Note 

that if v2 < v1, species 2 cannot replace the species 1, not even by forming a block at the 

front. According to the model some individuals of species 1 will diffuse through and reach 

the edge to eventually take over (See simulations of this process in Fig. S9).

Success rule valid despite phenotypic variability

Even in mono-species systems, individuals with identical and defined genotypes can still 

display phenotypic variation, such as a varying number of flagella (Deforet et al. 2014; 

Waite et al. 2016). To study whether phenotypic variation had an effect on evolutionary 

outcome, we introduced non-heritable fluctuations in birth and death events as well as in the 

dispersal processes. These phenotypic variations were modeled as stochastic distributions 

around the mean population value, which is determined by the strain’s genotype (see 

Appendix C: Stochastic Modeling).

Our simulation results suggest that the success rule, v2 > v1, despite having been derived 

from deterministic assumptions, holds even in stochastic situations. The transition at v2 = v1 
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was, however, more gradual (Fig. 2B, Fig. S10, Fig. S11): the zone of transition broadened 

as stochasticity increased because, as expected from other stochastic studies (Gillespie 2010; 

Otto and Whitlock 1997), stochasticity allowed for a non-zero probability of deleterious 

mutants (v2 < v1) to take over and beneficial mutants (v2 > v1) had a non-zero probability of 

failing to take over. Larger carrying capacities lessened the stochastic effects and sharpened 

the transition zone, again as expected from previous stochastic analyses (Gillespie 2010; 

Otto and Whitlock 1997). Importantly, however, the rule v2 > v1 could still predict takeover 

of the population edge even with different carrying capacities (Fig. S11C).

We confirmed the generality of the success rule further by carrying out evolutionary 

simulations where mutations randomly arise at division. We considered two schemes: i) 

mutations that change growth and/or dispersal relative to the ancestor phenotype but do so in 

an uncorrelated way; ii) mutations that change growth and dispersal considering that the two 

traits are linearly correlated (linear trade-off) but independent of the ancestor phenotype. In 

the case of uncorrelated mutations, populations evolved—on average—towards a greater 

expansion rate v = 2 rD (Fig. S12C). When the two traits were constrained by a trade-off, 

evolution converged to the value along the trade-off line that maximized the expansion rate 

v = 2 rD (Fig. S12D–G). In summary, the several types of stochastic simulations conducted 

all supported that evolution of the population edge obeys the rule v2 > v1.

The role of spatial structure and founder effect

We then investigated whether our model would account for other factors that could affect 

competition in biologically relevant scenarios. For example, in most evolutionary scenarios 

where competition starts with a mutation, the size of the mutant population is initially very 

low (1 individual) whereas a competing species introduced by external processes (e.g. 

human intervention) can start at higher densities. Also, the initial location of the mutant 

species matters because resources are not evenly distributed in nature, and a mutant species 

may take over faster if it is introduced in the resource-rich leading edge than if it is 

introduced in deprived regions where it will take longer to grow to domination. In summary, 

species 2 should take longer to take over (i) when it is introduced further from the edge 

where resources are already limited or (ii) when its initial size is small. Our model sets the 

conditions for whether species 2 can successfully take over (Eq. 4, Fig. 2A) but does not 

give us the time necessary for establishing at the edge.

To investigate how the time to takeover depends on the location and initial size of the 

introduced population, we modeled the introduction of species 2 into a traveling wave 

formed by species 1. We assumed an initial density S across a small interval at a distance L 
from the edge for species 2 (Fig. B1), and we determined the time needed to outnumber (full 

sweep) species 1 at the front. Numerical simulations revealed that the general rule, v2 > v1, 

holds for all initial conditions given sufficient time (Fig. 2C). The time required, however, 

depends on the initial conditions, increasing approximately linearly with the distance L from 

the front and decreasing sub-linearly with the initial density S (Fig. S13 and S14).

To better distinguish the factors that influence the time required for takeover we considered 

two steps: first, we considered that species 2 disperses until it reaches the active layer. The 

time for species 2 to reach the edge depends on the distance from the introduction point to 
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the front—a distance that increases constantly because species 1 is itself advancing—and 

also on the initial width of species 2. Second, once species 2 reaches the active layer it must 

grow to outnumber species 1. When the introduction is sufficiently far from the edge the 

time of takeover, tt, is:

tt ∼ αL − βlog(S) (5)

where α and β depend on the parameters D1, D2, r1 and r2 (see Appendix B: Approximate 

predictions). This analysis confirmed simulation results that the time to takeover depends 

linearly on L but only sub-linearly on S (Fig. S13 and S14), highlighting that the distance to 

the edge is key to evolutionary success.

Experimental validation

We then tested these findings in our experimental system. We manipulated the distance to 

the edge (L) and the density (S) of a small population of hyperswarmers introduced into an 

expanding wild-type population, and we compared the experimental results to the 

corresponding simulations. In simulations, the evolutionary outcome was calculated as the 

frequency f of species 2 at the edge of the population 6 hours after implantation (Fig. 3A). In 

the experiments, we ranked the evolutionary outcome after 6 h of expansion as no trace, few 

traces, partial sweep and full sweep according to the amount of hyperswarmers visible at the 

edge (Fig. 3B, see details in Methods and Models section). The experiments confirmed the 

dominant role of L compared to S in determining the time of takeover (Eq. 5), which is 

evident from the concave shape of the evolutionary scores (Fig. 3C, see Appendix D: 

Statistical analysis).

The intuition behind the concave shape is that when the initial distance from the edge is too 

long then the mutant may not be able to take over within biologically relevant time, even if 

its initial size is large. The shape of the iso-frequency contour lines can be calculated from 

the simplified two-step model of takeover described above and is given by

S ∼ eL/L0 (6)

where L0 = 4D2v1/ 3v1
2 + v2

2  is the characteristic length of these lines. In the case of P. 

aeruginosa and its hyperswarmers, L0 = 1.1 ± 0.07 mm (SD). The results from our 

hyperswarmer experiments agree with the theoretical model (Fig. 3A and C; compare to 

lines of constant mutant frequency), indicating that the two-species F-KPP model, in spite of 

its simplifying assumptions and despite any intricacies of the experimental system (e.g. the 

swarming population is tri-dimensional; bacterial cells tend to lose motility as they lose 

access to resources inside the population, which freezes the spatial organization), is 

sufficiently general to describe evolutionary dynamics in swarming colonies.

Discussion

We showed that the multiple-species extension of the F-KPP equation (Lewis et al. 2002; 

Okubo et al. 1989; Pigolotti et al. 2013) produces a simple mathematical rule that predicts 

the evolutionary outcome in an expanding edge depending on the growth and dispersal rates 
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of the competing species. The problem of evolution in an expanding population have been 

investigated before both theoretically (e.g Burton et al. (2010); Phillips (2015) and 

empirically (e.g. Phillips et al. (2006)), but its simple solution, the inequality v2 > v1, had 

not been—to the best of our knowledge—presented this way before.

Our model relies on the assumption that per-capita growth rate is maximal at the edge, 

where the population density is the lowest, and that dispersal ability is independent of 

population density. This assumption is valid within the first centimeters of our experimental 

swarming colony, where bacteria are quite motile and active. However, deep inside the 

colony, various processes at play hinder a quantitative analysis of population dynamics: the 

colony can progress from swarming colony into a biofilm-like mode that greatly lowers 

dispersal, starved bacteria

Our model makes a key conclusion: the outcome at the edge of expanding population can be 

independent of the system’s carrying capacity, because there the competition dynamics rely 

on the low-density of the population at the expanding edge. The success rule v2 > v1 allows 

determination of the maximal cost in growth |Δr|max that a mutant can afford to pay for faster 

dispersal and still be able to dominate the edge of the expanding population (Fig. 4A):

|Δr |max = r1 1 − D1
D1 + ΔD (7)

where ΔD is the difference between dispersal rate of the mutant and its ancestor. Eq. 7 

quantifies exactly what the trade-off between r and D would need to be in order to evolve 

greater dispersal at the front. While this is not something that is easily confronted with data 

it is worth noting that there must be general mechanisms to sustain this in populations that 

have exhibited such evolutionary increases in dispersal. The evolutionary experiment that 

originally created the hyperswarmers always produced single point mutations in fleN, a gene 

that regulates flagella synthesis, and all had slower growth that the wild type (van Ditmarsch 

et al. 2013). We never observed mutants that evolved faster dispersal without a growth cost, 

even though we repeated the experiment dozens of times. Perhaps other mutants could 

increase dispersal even more, but were not favored because they either carried costs higher 

than |Δr|max or because they required evolution through more mutational steps.

Hyperswarmer mutants paid a growth cost for synthesizing and operating their multiple 

flagella but—without affecting their competitive ability—dispersed faster than wild-type 

bacteria (domain 2 of Fig. 2A). It seems plausible that the supplemental flagella are 

functional, and their operation adds a cost, but we cannot provide evidence on this point. 

Extensive work showed that the mutation in fleN increases the number of flagella and slows 

down the growth rate (van Ditmarsch et al. 2013), but that growth cost could be due to the 

burden of synthesizing extra flagella or to the extra energetic burden of their operation. 

Untangling the two remains an interesting problem, but solving it requires molecular biology 

work beyond the scope of this paper.

The success rule v2 > v1 is the adaptive function that could be combined with a fitness set 

(de Mazancourt and Dieckmann 2004) to predict the co-evolution of growth and dispersal in 

expanding populations. For example, if the quantitative knowledge on the molecular, 
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cellular, or physiological mechanisms of a trade-off between growth and dispersal can be 

represented by a line in (r, D) space the slope of that line, dr/dD, represents the cost of 

dispersal. When the trade-off is subtle, the slope is shallow and we predict that the 

population will evolve to disperse faster with a lower growth rate (Fig. 4B). Conversely, 

when the trade-off is strong, the slope is steep and we predict that the population will evolve 

a higher growth rate and slower dispersal (Fig. 4C). According to this model, the P. 
aeruginosa system has a subtle trade-off: the improved dispersal advantage of 

hyperswarmers is ~ 100% but costs only ~ 10% of their growth rate relatively to wild-type 

(van Ditmarsch et al. 2013).

Nature abounds with examples of trade-off between growth and dispersal (Chuang and 

Peterson 2016). Evolution in expanding populations often selects for better dispersal and 

slower growth (see examples cited in the introduction). Our model predicts that a species 

with faster growth but slower dispersal should be able to take over (domain 1 of Fig. 2A), 

but we never observed these cases in our experimental system. And, beyond observations by 

another group in laboratory experiments with Escherichia coli (Fraebel et al. 2017), we 

could not find examples in nature either. The reason for not finding evolution of rapid 

growers that disperse slower may be population history: Empirical and theoretical studies of 

range expansions suggest that only dispersal can be improved in expanding populations 

(Burton et al. 2010; Hallatschek and Fisher 2014; Perkins et al. 2013; Travis and Dytham 

2002); invasion of new niches is possibly a rare event, whereas competition within a 

confined, but relatively homogenous environment is more common. In such situations, 

selection is not on dispersal but on growth, which means that—in most species—growth 

rates may already be close to their physiological maximum (Fig. 4D). Individuals challenged 

to overcome spatial structure may only have dispersal-related traits left to improve. 

Moreover, while the trade-off between growth and dispersal may be found and seem logical, 

a comparative analysis of dispersal in terrestrial and semi-terrestrial animals suggested that 

dispersal and fecundity may be positively correlated (Stevens et al. 2014).

Margins of an expansion front, with low population density and strong density gradient, are 

prone to dramatic evolutionary processes such as spatial sorting and expansion load, which 

can be generalized using the rule v2 > v1: (i) A mutant with a higher v will take over the 

population margin. This is a generalisation of the spatial sorting effect, where better 

dispersers (D2 > D1, with r2 = r1) accumulate at the population margins (Shine et al. 2011). 

(ii) Genetic drift in marginal populations can promote accumulation of deleterious mutations 

in the form of an expansion load (Hallatschek and Nelson 2008; Peischl et al. 2013). In our 

framework, this corresponds to the stochastic case where a mutant takes over the margin 

with a lower growth rate r2 < r1 and D2 = D1). We demonstrated that stochasticity can allow, 

more generally, a mutant with lower v to take over. This model suggests that the fitness (net 

balance between growth and death) can be replaced with a traveling wave fitness v, which 

combines growth rate and dispersal rate. An increase in v leads to spatial sorting, and 

stochastic effects can lead to accumulation of low v mutants at the edge (expansion load).

Our results produced a general and simple relationship that determines the maximum growth 

cost allowed for faster dispersal. This appealing simple rule is bound to our model 

assumptions, which apply more directly to microbial systems. Future work should address 
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how more complex biological systems deviate, or not, from those assumptions. Possible 

expansions include situations where the growth rate is not maximal at the edge (Korolev 

2015; Perkins et al. 2013), or where uncertainty about the quality of resources beyond the 

edge front factor in. The only interaction we considered here lies in the shared carrying 

capacity. Extension to more complex systems could also include explicit interactions 

between individuals, such as in competition-colonization models, introduced to address the 

question of coexistence in spatially structured environments (Tilman 1994).

In conclusion, our study provides theory to determine the evolutionary outcome of 

competition in an expanding population, which can be extended with trade-off constraints 

observed for each particular system. Every model requires simplifying assumptions, and 

ours is certainly not an exception. In systems that respect those assumptions, the success rule 

could be used to predict evolution in expanding populations. Systems in this category may 

include the growth of cancer tumors and invasion of non-native species in ecosystems.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A:: Analytical solution for the condition of success

Formulation of the mathematical model

The traveling wave solution of the F-KPP equation is driven by growth at the edge of the 

population range. In the figure A1, the population density u is represented in red, the growth 

limiting resources (proxied by the difference between the carrying capacity and the 

population density) 1 − u in light blue, the growth ru(1 − u) in dark blue. The black arrow 

depicts the direction of expansion.
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Figure A1: 
Diagram of the traveling wave solution of the F-KPP equation.

We model the density of the two species (densities u1 and u2) by two coupled F-KPP 

equations with different growth rates (r1 and r2) and different diffusion rates (D1 and D2). 

The two species interact only by competing for common resources.

∂u1
∂t = r1u1 1 − u1 − u2 + D1

∂2u1
∂x2

∂u2
∂t = r2u2 1 − u1 − u2 + D2

∂2u2
∂x2

(A1)

We aim to define the range of parameters (D1, D2, r1, r2) that allows the takeover of an 

established traveling wave (species 1) by another species (species 2).

Eigenvalue problem

We reproduce the same arguments as in Korolev (2015) but with r1 ≠ r2. We introduce the 

functions u(t, x) = u1(t, x)+ u2(t, x), g1(t, x) = r1(1 − u(t, x)) and g2(t, x) = r2(1 − u(t, x)).

∂u1
∂t = g1(u)u1 + D1

∂2u1
∂x2

∂u2
∂t = g2(u)u2 + D2

∂2u2
∂x2

(A2)

To find the condition of takeover, we search for the condition of divergence of the fraction of 

secondary species:

f(t, x) = u2(t, x)
u1(t, x) + u2(t, x) (A3)

Korolev (2015) assumes f ≪ 1 and demonstrates that the condition of takeover can be found 

by solving an eigenvalue problem. Following the exact same steps, we find that in the 

moving reference frame (where the space variable is ξ = x − v1t) traveling at the velocity 

v1 = 2 r1D1 the eigenvalue problem is the following:
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rf = D2f′′ + v1 + 2D2
c′
c f′ + D2 − D1

c′′
c f + g2 − g1 f (A4)

where primes denote the derivative with respect to ξ, and r is an eigenvalue. After another 

change of variables established by Korolev, equation A4 becomes

rψ = D2ψ′′ + g2(c) −
v1

2

4D2
ψ (A5)

Condition of takeover

Following Korolev’s reasoning (Korolev 2015), we find that the largest eigenvalue is found 

at large ξ, and its value is given by the maximal value of g2(c):

rmax = r2 −
v1

2

4D2

=
v2

2 − v1
2

4D2

(A6)

If rmax < 0 then the secondary species will never take over the primary species. If rmax > 0
then the secondary species will eventually take over the primary species. Therefore, the 

condition of takeover corresponds to

v2 > v1 (A7)

with v1 = 2 r1D1 and v2 = 2 r2D2.

Appendix B:: Approximate predictions

The equation A7 gives the condition of takeover, but not the time of takeover, which depends 

on the size S of the introduced population and the location of the introduction (distance L 
from the front).

Definitions of S and L

We first consider a traveling wave formed by the species 1. Then the species 2 is introduced 

at a distance L from the population front, as depicted in the figure below.

Deforet et al. Page 16

Am Nat. Author manuscript; available in PMC 2020 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure B1: 
Diagram of the invasion scheme: the species 2 is implanted at a distance L from the edge, 

with a density S.

The front position is defined as the location where u1 is equal to 5% of the carrying capacity, 

without loss of generality. This threshold is arbitrarily selected but it is not essential for later 

conclusions. The position of the front at the time of introduction can be taken as the origin 

of the x-axis, and the time of the introduction sets the origin of time (i.e. u1(0, 0) = 0.05). 

The introduction imposes a density u2(x, 0) = S for −L −λ1 < x < −L + λ1, and u2(x, 0) 

everywhere else. Then we consider the F-KPP processes for both species simultaneously. We 

set r1 = 1 and D1 = 1 by rescaling space (x → x/λ1) and time (t → r1t): the remaining 

parameters are D2 and r2. The time ti at which the species 2 takes over the species 1 at the 

front is defined by:

u2 xf, ti > u1 xf, ti (B1)

with the position of the front defined as

u1 xf, t + u2 xf, t = 0.05 (B2)

An approximate time of takeover can be calculated by considering two consecutive steps. 

First, the introduced individuals of species 2 spread through spatial diffusion until the 

density f of species 2 at the edge reaches a maximum. During this step we assume that 

species 2 does not grow. Then, the individuals of species 2 that reached the edge follow the 

traveling wave. They have access to the resources and therefore they proliferate until they 

take over the species 1.

Diffusive spreading

The introduction is initially spatially limited, and performed at x = 0, at distance L from the 

edge. Then species 2 diffuses out, and its density is:
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u2(x, t) = N2
0 e− x2

4D2t
4πD2t

(B3)

where N2
0 is the total size of the introduced population. To compare the theoretical and 

experimental results, we rescale the total size of the introduced population using its spatial 

extension:

N2
0 = 2λ1S (B4)

The density of species 2 at the edge of the traveling wave formed by species 1 is u2(x = v1t + 

L, t) and it reaches a maximum at

t = tdiffusion ≡
D2

2 + v1
2L2 − D2

v1
2 (B5)

At this time, the density of species 2 at the edge is

u2, diffusion = 2λ1S e−
v1tdiffusion + L 2

4D2tdiff
4πD2tdiff

(B6)

Since the edge of the population range is defined as the location where the total density is 

5% of the carrying capacity, the fraction of species 2 at the edge is

fdiffusion = 2λ1S
0.05

e−
v1tdiffusion + L 2

4D2tdiffusion
4πD2tdiffusion

(B7)

Growth at the edge

At the edge, the densities of species 1 and species 2 are much smaller than the carrying 

capacity, so we consider that they grow exponentially. If species 1 and 2 grow exponentially 

with growth rates r1 and r2, respectively, then the evolution of the frequency f is given by the 

logistic equation with a growth rate r2 − r1. We study the early times of takeover, hence f 
remains much smaller than 1. Therefore, we simply write:

∂f
∂t = r2 − r1 f (B8)

Here, we study the dynamics of the frequency f in the moving reference frame (see 

Appendix A) at short times, so we can assume that f follows the dynamics given by the 

eigenvalue equation A4 and therefore grows at a rate corresponding to the maximal 

eigenvalue given in equation A6. Then we can replace r2 −r1 with rmax in equation B8.
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The dynamics of f is therefore:

f(t) = fdiffusionermaxt
(B9)

Frequency of species 2 at the edge

If the introduction is performed far enough from the edge (L > D2/v1), then equation B5 

becomes simply tdiffusion ≃ L/v1 and equation B7 becomes:

fdiffusion ≃ 2λ1S
0.05

e−
Lv1
D2

4πD2L/v1

≃ S
0.05

1
π

D1
D2

v1
r2Le−

Lv1
D2

(B10)

Since the L evolves much more slowly then e−
Lv1
D2 , we consider that L is constant in this 

term (we use L = L = 5mm for the experimental validation):

fdiffusion ≃ S
0.05

1
π

D1
D2

v1
r2Le−

Lv1
D2 (B11)

The frequency of species 2 after a time t is given by equation B9 but using the shifted time t 
−tdiffusion that accounts for the time required for species 2 to reach the edge.

f(t) ≃ S
0.05

1
π

D1
D2

v1
r2Le−

Lv1
D2 ermax t − tdiffusion

≃ S
0.05

1
π

D1
D2

v1
r2Le

v2
2 − v1

2

4D2
te−

3v1
2 + v2

2

4D2v1
L

(B12)

Hence the iso-frequency lines in Fig. 3A are given by S ~ eL/L0, with L0 =
4D2v1

3v1
2 + v2

2  (equation 

5 of the main text).

The iso-frequency for f = 0.25 is plotted in the figure below (red dashed line), together with 

the numerical results. The disagreement with the numerical results is mostly due to the 

simplicity of the model: first the species 2 diffuses out and reaches a maximum density at 

the edge, then it grows at the edge. In reality, species 2 starts growing as soon as it reaches 

the edge and gains access to resources. To account for this neglected growth term, we 

propose a simple correction: we replace the frequency at the edge fdiffusion with fdiffusion(1 + 

tdiffusionr2/2) in equation B9. The term fdiffusiontdiffusionr2/2 comes from the approximate 

integration of the growth of the frequency f at the edge from t = 0 (f = 0) to t = tdiffusion (f = 

fdiffusion). Including this growth term improves the agreement with the numerical simulations 

(red solid line of the figure below).
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Time of takeover

If L > D2/v1, the time of diffusion from implantation to the edge is

tdiffusion ≃ L/v1 (B13)

The time of growth tgrowth to reach a certain frequency f is:

tgrowth ≃ 1
rmax

log f
fdiffusion

≃ 1
rmax

log(0.05f /S) + 1
2log(πr2LD2

D1v1
) + Lv1

D2

(B14)

Overall, the time of takeover tt = tdiffusion + tgrowth scales as (equation 5 of the main text):

tt ∼ αL − βlog(S) (B15)
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Figure B2: 
Comparison between numerical and theoretical results. The color scale represents the 

simulated score (the ratio f of species 2 density over total population density) at the front of 

the expansion range, at t = 6 hours after implantation. The secondary species is characterized 

by D2 = 2D1 and r2 = 0.9r1. The white lines are iso-frequency contour lines for simulated 

score f = 0.25, 0.5, and 0.75. The red dashed line is the f = 0.25 contour line from equation 

B12. The red solid line is the f = 0.25 contour line corrected for growth.

with

α = 4v1
v2

2 − v1
2

β = 4D2
v2

2 − v1
2

(B16)

Appendix C:: Stochastic modeling

The model presented above is deterministic. We introduce stochasticity by updating species 

counts N1 and N2 using distribution functions based on equations A1.
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Logistic Growth

At each time step, the counts of species 1 and 2 are updated to account for logistic growth:

N1(x, t + dt) N1(x, t) + Poisson r1 dt N1(x, t) K − N1(x, t) − N2(x, t) /K
N2(x, t + dt) N2(x, t) + Poisson r2 dt N2(x, t) K − N2(x, t) − N2(x, t) /K (C1)

where Poisson(λ) is the Poisson distribution function, with parameter λ.

Exponential Growth + Death

To introduce a net death rate, we develop the expression of the deterministic logistic growth 

into a (positive) exponential growth term and a (negative) density dependent death term.

r1N1 . * K − N1 − N2 /K = r1N1 − r1/KN1 N1 + N2
r2N2 . * K − N1 − N2 /K = r2N2 − r2/KN2 N1 + N2

(C2)

Therefore, at each time step, species counts are updated in the following way:

N1(x, t + dt) N1(x, t) + Poisson r1 dt N1(x, t)
N1(x, t + dt) N1(x, t) − Binomial N1(x, t), r1 dt /K N1(x, t) + N2(x, t)
N2(x, t + dt) N2(x, t) + Poisson dt r2N2(x, t)
N2(x, t + dt) N2(x, t) − Binomial N2(x, t), r2 dt/K N1(x, t) + N2(x, t)

(C3)

where Binomial(n, p) is the binomial distribution function, with parameters n (number of 

trials) and p (success probability in each trial).

Diffusion

At each time step, a random fraction of individuals of species 1 in deme x are randomly 

moved into demes x + dx and x − dx. All demes are processed sequentially in a random 

order with the following scheme:

• draw B = Binomial(N1, p = D1 dt / dx2)

• draw Bleft = Binomial(B, p = 0.5)

• update N1(x, t + dt) → N1(x, t) − B

• update N1(x − dx, t + dt) → N1(x − dx, t)+ Bleft

• update N1(x + dx, t + dt) → N1(x + dx, t)+(B − Bleft)

Diffusion is performed in a similar way for species 2.

In practice, we set dt = 1 and dx = 1 without loss of generality. We also keep r1, r2, D1, and 

D2 small enough to ensure that the probabilities in binomial distributions remain smaller 

than one.
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Evolutionary simulations without trade-off

At each time point, each division gives rise to a mutation, with a probability of 5%. Each 

new phenotype are randomly drawn from a normal distribution centered on the ancestor 

phenotype, with a standard deviation of 0.1 times the phenotype in each direction. To speed 

up the simulations, subpopulations that did not reach a certain size after a certain time since 

they appeared are cleared up and their counts are randomly distributed over the remaining 

populations.

Evolutionary simulations with trade-off

At each time point, each division gives rise to a mutation, with a probability of 1%. Each 

new phenotype randomly falls on the trade-off line (uniform distribution), which is splitted 

into 500 bins within the first quadrant of the space (r, D).

Appendix D:: Statistical analysis

Figure 3C

To study the shape of the four classes of outcomes in the density-distance space (Figure 3C), 

we performed a classification with a multinomial logistic regression. Each boundary 

between two adjacent classes is tested independantly. In practice, we used the function 

mnrfit of MATLAB to fit the data with a power law model.

Class = a0 + a1log(Density) + a2log(Distance) (D1)

where Class is 0 or 1 for each of the two tested classes.

The boundary between the two classes is defined by Class = 0.5:

Distance = exp(0.5 − a0
a2

)Density−a1/a2 (D2)

The exponent (−a1/a2) is lower than 1 (with statistical significance reported in the table 

below, the brackets represent 95% confidence intervals which are calculated from standard 

deviations calculated by the multinomial logistic regression and combined using Fieller’s 

theorem) in the three cases indicating that boundaries between classes have a concave shape, 

in agreement with the 2-species FKPP model.

Boundary exponent [95% confidence interval]

no trace - few traces 0.24 [0.11, 0.38]

few traces - partial sweep 0.43 [0.22, 0.63]

partial sweep - full sweep 0.57 [0.27, 0.88]
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Figure S2

Figure S2 shows the results of the competition wildtype vs hyperswarmer on a plate when 

the spatial structure is suppressed. The wildtype outcompetes the hyperswarmer mutant. The 

significance of this result is estimated using a generalized linear model for binomial data 

(function fitglm.m in MATLAB). We used the formula c ~ 1 + f +(1|R)+(f|S), where c is the 

wildtype count, f is the categorical variable ‘before competition’ or ‘after competition’, R is 

the replicate index, and S is the color index (we performed the two types of experiments: 

wildtype GFP vs. hyperswarmer DsRed, and wildtype DsRed vs. hyperswarmers GFP). The 

fit gave a p-value = 5.8 × 10−5.
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Figure 1: 
Evolutionary dynamics in an expanding population of swarming P. aeruginosa bacteria. A: 

Fluorescence time-lapse imaging shows a swarming competition in a mixed population of 

wild-type and hyperswarmers at 10:1 ratio and on a soft-agar gel. Leftmost panels: 

Monoclonal swarming colonies of wild-type (top) and hyperswarmer (bottom) imaged at T = 

12h (scale bars 1 cm). B: Snapshots of numerical simulations of Eq. 2 modeling competition 

of P. aeruginosa (red lines) and the hyperswarmer mutant (green lines) with initial ratio 10:1, 

using parameters extracted from experiments (Table 1). Left panel shows time points 

represented in panel A. Right panel shows later time points, where the wild-type population 

stalls while the hyperswarmer population keeps expanding. C: Ratio of hyperswarmer 

biomass over wild-type biomass. The experimental data is extracted from fluorescence 

signals in panel A (black squares represent time points shown in A).
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Figure 2: 
Faster-dispersing species take over expanding populations despite having a slower growth as 

long as v2 > v1. A: Phase diagram of evolutionary outcome in r2/r1,D2/D1 space, with 2 

subdomains of interest in the success domain: (1) is the domain of success with higher 

growth rate and slower dispersal. (2) is the domain of success with faster dispersal but lower 

growth rate. The (+) symbol represents the hyperswarmer phenotype with respect to wild-

type phenotype, as measured in the experimental conditions (Table 1). The (*) symbol 

represents the wild-type phenotype with respect to the hyperswarmer phenotype. B: Fixation 

probability obtained from the stochastic model with death rate (stochastic simulations 

performed with S = 1, K = 100, L = 2λ1). C: Takeover time obtained from the deterministic 

model (simulations performed with L = 2λ1 and S = 0.2). The empty orange circles 

represent the conditions where species 2 fails to takeover within the duration of the 

simulation (r1t = 180). In A-C, the red dot depicts the reference point (D2 = D1 and r2 = r1).
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Figure 3: 
Likelihood of fixation increases with the initial size of the introduced population and its 

proximity to the population edge. A: Simulation results of introducing species 2 into an 

expanding species 1. The color scale represents the simulated sweep score, i.e. the frequency 

f of the introduced species (species 2 with D2 = 2D1 and r2 = 0.9r1) at the population edge T 
= 6 h after introduction. White lines are iso-frequency lines for f = 0.25, 0.5, and 0.75. The 

red line is from Eq. 6 for f = 0.25. B: Laboratory experiments where the hyperswarmer (in 

green) was introduced at varying initial densities and distances to the edge of an expanding 

swarm of wild-type P. aeruginosa (in red). Scale bar is 5 mm. Leftmost marks depict the 

location of the hyperswarmer introduction; rightmost marks locate the position of the front 

of the P. aeruginosa population at the time of hyperswarmer implantation. The four 

snapshots represent four experimental replicates. C: Experimental sweep success evaluated 

visually at 6 hours after hyperswarmer introduction. Background colors represent results 

from multinomial logistic regression (see details in Appendix D: Statistical analysis). In 

agreement with the theory, sweep success is lower for large distances from the front and 

smaller initial densities. D: Comparison of simulated and experimental sweep scores for 

each experimental replicate. The grey vertical lines represent the average simulated sweep 

score and the p-values are < 10−3 (Kruskal-Wallis test). secrete molecules that are auto-
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fluorescent, and the long-term maturation kinetics of the fluorescent proteins used (GFP and 

DsRed) can vary. Therefore, the situation may start to differ from the idealized model. Once 

the edge has passed the dynamics can be quite different: in the resource-depleted region, the 

population is denser and covers the entire available area (Fig. S2). The spatial structure and 

dispersal are less relevant and the evolutionary fate of a new mutant is determined by high-

density dynamics. The faster growing wild-type can catch up or new mutants carrying 

compensatory mutations that thrive in low resource environments may even appear (Yan et 

al. 2017). These successional dynamics may be a natural product of evolution, so long as 

there is someplace for the faster disperser to utilize.
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Figure 4: 
Evolutionary predictions from success rule in four scenarios. A: Illustration of the maximal 

cost of an increased dispersal. B and C: Linear trade-off between growth and dispersal that 

corresponds to a low cost of dispersal (B) and high cost of dispersal (C). D: The growth rate 

is bounded by physiology.
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Table 1:

Experimental swarming traits of P. aeruginosa and its hyperswarmer mutant

Strain Growth rate r (measured in 
Deforet et al. (2015))

Expansion rate v (measured 
in Deforet et al. (2014))

Diffusion rate D 
(calculated)

Decay length λ 
(calculated)

Wild-type 1.1 ± 0.05h−1 3.0 ± 0.1mm/h 2.0 ± 0.15mm2/h 1.4 ± 0.07mm

Hyperswarmer 1.0 ± 0.04h−1 4.0 ± 0.15mm/h 4.0 ± 0.27mm2/h 2.0 ± 0.11mm

Note: Errors are standard deviations. Errors on calculated parameters are inferred from the formula of propagation of errors.
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