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Summary
Resistance breeding is crucial for a sustainable control of leaf rust (Puccinia triticina) in wheat

(Triticum aestivum L.) while directly targeting functional variants is the Holy Grail for efficient

marker-assisted selection and map-based cloning. We assessed the limits and prospects of

exome association analysis for severity of leaf rust in a large hybrid wheat population of 1574

single-crosses plus their 133 parents. After imputation and quality control, exome sequencing

revealed 202 875 single-nucleotide polymorphisms (SNPs) covering 19.7% of the high-

confidence annotated gene space. We performed intensive data mining and found significant

associations for 2171 SNPs corresponding to 50 different loci. Some of these associations

mapped in the proximity of the already known resistance genes Lr21, Lr34-B, Lr1 and Lr10, while

other associated genomic regions, such as those on chromosomes 1A and 3D, harboured several

annotated genes putatively involved in resistance. Validation with an independent population

helped to narrow down the list of putative resistance genes that should be targeted by fine-

mapping. We expect that the proposed strategy of intensive data mining coupled with validation

will significantly influence research in plant genetics and breeding.

Introduction

Wheat (Triticum aestivum L.) is the world’s second most cultivated

cereal after maize and provides one-fifth of the calories intake of

human population (FAO, 2019). Leaf rust, caused by Puccinia

triticina f. sp. tritici, is one of the most widespread wheat diseases,

which can cause up to 40% loss of wheat yield mainly by reducing

kernel weight and decreasing the number of kernels per spike

(Khan et al., 2013). Resistance breeding, an economic and

environment friendly approach, is critical for the sustainable

control of wheat leaf rust (Oliver, 2014). Many researchers have

studied the genetic architecture of leaf rust in order to efficiently

increase the resistance level of cultivars. For instance, more than

70 leaf rust resistance genes (Lr) have been identified in wheat

(Kassa et al., 2017) and a few of them have been cloned, including

the seedling stage resistance genes Lr1, Lr10 and Lr21, as well as

the adult plant resistance Lr34 and Lr67 loci (Cloutier et al., 2007;

Feuillet et al., 2003; Huang et al., 2009; Krattinger et al., 2011;

Moore et al., 2015). Most of the discovered Lr genes confer all-

stage resistance and are race-specific, with only a few exceptions

like Lr34, Lr46 and Lr67 which confer non–race-specific resistance
during adult plant stages (da Silva et al., 2018). Race-specific

resistance proves to be ineffective after a few years of introduction

because of the high mutation rate or virulence dynamics of

pathogen populations (Lowe et al., 2011; McCallum et al., 2016).

Thus, researchers and breeders are trying to understand the

diversity of resistance genes currently used in elite breeding

populations and are continuously searching for novel Lr genes.

Genome-wide association mapping is often used to dissect the

genetic architecture of important agronomic traits (Gong et al.,

2017) such as leaf rust resistance of wheat (Gao et al., 2016;

Juliana et al., 2018; Kertho et al., 2015; Maccaferri et al., 2010).

Association mapping can provide a high mapping resolution,

particularly in genetically diverse populations, and in some cases

facilitates the detection of functional quantitative trait nucleo-

tides (Yano et al., 2016). The high resolution, however, requires

the characterization of the mapping population with a high

density of markers. Given the advances in next-generation

sequencing techniques and reduced sequencing costs, whole

genome sequencing (WGS) has been suggested as a method to

characterize the genetic variants of mapping populations (Sch-

neeberger, 2014). Nevertheless, the price of WGS in wheat

remains high due to the large genome and its allohexaploid

nature, making it necessary to have enough coverage to

distinguish homologs and homeologs (Appels et al., 2018).

Therefore, resistance gene enrichment sequencing (RenSeq)

focusing on genes exclusively encoding intracellular nucleotide-

binding/leucine-rich repeat immune receptor proteins has been

suggested. In fact, combining RenSeq with association genetics

allowed to clone four stem rust resistance genes in wheat (Arora

et al., 2019). Exome capture sequencing is an alternative solution

to dramatically reduce sequencing costs by focusing on gene
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coding regions (Mo et al., 2018). The potential of using exome

sequencing has been demonstrated in a pioneering study in

wheat where genes underlying wheat improvement and envi-

ronmental adaptation could be identified (He et al., 2019).

Our study is based on a large elite wheat population (Longin

et al., 2013; Zhao et al., 2013) including ~1800 single-cross

hybrids and their 135 parental lines adapted to the growing

conditions of Central Europe: The population was phenotyped in

multi-environmental field trials for leaf rust resistance and

fingerprinted using exome capture sequencing. Extensive data

mining facilitated to broaden our insights into the diversity of leaf

rust resistance genes currently used in wheat breeding in Central

Europe. Resistance genes Lr1, Lr10, Lr21 and Lr34-B are already

exploited by breeders but also novel candidate regions on

chromosome 1A or 3D were detected. The latter were validated

in an independent population of 128 single-cross hybrids, which

facilitated to narrow down the list of putative resistance genes.

We expect that the outcomes will benefit marker-assisted

selection of leaf rust resistance and represent promising targets

to clone novel resistance genes.

Results

Exome sequencing revealed a broad nucleotide and
haplotype diversity

Since two female parents failed to produce meaningful read

coverage during exome capture sequencing and enough seed

was available for 1604 of the potential 120 9 15 = 1800 single-

cross hybrid combinations, our study is based on 1574 hybrids

generated by crossing 118 female and 15 male elite winter wheat

lines. The 133 wheat lines were selected to cover a broad range

of diversity currently exploited in elite breeding in Central Europe

(Zhao et al., 2015). We performed exome capture sequencing of

the 133 parental lines based on the NimbleGen array (Winfield

et al., 2012) and using an Illumina HiSeq 2500 platform. This

resulted in 10.6 billion 100 bp reads (10.4 billion paired-end and

200 million single-end) that were mapped against the reference

genome of ‘Chinese Spring’ (Appels et al., 2018), unravelling

7 253 398 single-nucleotide polymorphism (SNP) sites. Only

0.37% (about 40 million reads) of the reads could not be

mapped to the reference sequence. The mean coverage of called

sites amounted to 1.5 (Figure S1). After imputation using FILLIN

(Swarts et al., 2014), we selected SNPs with minor allele

frequency (MAF) larger or equal than 0.05 and missing rate

smaller than 0.05, resulting in 202 875 SNPs used for subsequent

analyses. Although rare resistance/susceptible loci may be

underdetected by using a MAF threshold of 0.05, this filtering

criteria should avoid the increased false-positive rate expected for

rare variants in large-scale exome association studies of human

diseases (Akle et al., 2015). Prediction of the functional effect

revealed that 22 166 SNPs induced non-synonymous variants and

144 687 out of the 202 875 SNPs (71.32%) were located in

genic regions flanked by an upstream and downstream window

of 1kb (Table S1). We identified SNPs for 21 249 genes (about

19.7% of all 107 891 high-confidence genes, Figure S2), with

13 399 genes (63.1%) exhibiting at least two SNPs.

Principal coordinate analysis (PCoA) on the pairwise Rogers’

distances suggested an absence of obvious subpopulations

among the 133 parents (Figure 1d), which is in line with previous

findings based on a 90k SNP array (Wurschum et al., 2013). These

results were further supported by the tight positive correlation

(Pearson’s r = 0.911, P < 0.001 using a Mantel test, Figure S3)

between the genetic distances estimated using the exome

sequencing and those estimated based on the 90k SNP array.

Molecular and nucleotide diversity was greater for the B than

for the A genome and these two genomes, in turn, have a much

higher diversity than the D genome (Figures S4 and S5). Analysis

of linkage disequilibrium (LD) showed that the LD decay varied

among subgenomes and chromosomes. On average, the esti-

mated LD decayed to an r2 = 0.2 at a distance of 7 Mb (Figure 1

and Table S2). LD decayed faster in the A genome than in B and D

genomes, while LD curves were virtually the same for B and D

genomes (Figure S6). Even though most studies have reported

that LD decays slower for the D genome (e.g. Chen et al., 2012;

Liu et al., 2017; Lopes et al., 2015; Sukumaran et al., 2015), there

have been also some studies showing LD decay values for the D

genome that are similar to or even lower than those of the A and/

or B genomes (Sehgal et al., 2017; Zhang et al., 2013). One

possible explanation for this discrepancy are the differences in

number of marker pairs as a function of physical distance

observed in our study (Figure S7). In this sense, a great proportion

(~27%) of marker pairs in the D genome is located within very

short physical distances, whereas this percentage is clearly smaller

for the A and B genomes. This higher density of marker pairs at

short physical distances for the D genome can cause a leverage

effect that artificially forces the LD curve to be fitted towards the

origin of the plot. Therefore, LD comparisons among genomes

should take this issue into consideration. Chromosomes 1D and

6D presented the slowest and fastest decay, respectively, and fell

below the r2 = 0.2 threshold at 1 and 20 Mb, correspondingly.

This rapid decay revealed the broad haplotype diversity in the

underlying mapping population. Considering that a gene is the

basic physical and functional unit of heredity, we estimated the

LD within genes and found that the LD varied between SNPs

within the same gene. In this respect, about 25% of the

estimated LD values were less than r2 = 0.5 (Figure 1e) while

some marker pairs even approached linkage equilibrium.

Bimodal distribution of the hybrid performance for leaf
rust severity

The 1574 hybrids and their 133 parents were phenotyped for leaf

rust severity in 5 environments, that is year 9 location combina-

tions (Table 1). Correlations between the performances of

different environments ranged between 0.37 and 0.89, which

suggests the existence of genotype 9 environment interaction

effects influencing leaf rust severity. According to these

Figure 1 Linkage disequilibrium decay and diversity analysis in a wheat population composed by 1574 hybrids plus their 118 female and 15 male parent

lines. Linkage disequilibrium (LD, as r2) decay plots as a function of physical distance (Mb) within each chromosome for subgenomes A (a), B (b) and D (c).

(d) Diversity among the 133 parent lines of the studied hybrid wheat population portrayed in a biplot of the first two principal coordinates from a principal

coordinate analysis on the pairwise Rogers’ distance matrix calculated using exome capture single-nucleotide polymorphisms (SNPs) profiles. (e) Boxplot

charts showing the distributions of average LD within a gene and of LD between adjacent SNPs. Bins in the lower x-axis correspond to the region defined by

a gene or to regions defined by adjacent SNPs separated by certain physical distance (100 Kb). The upper x-axis shows the number of SNP pairs belonging to

each corresponding bin in the lower x-axis.
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estimates, the most abrupt changes in phenotype rankings are

expected for HHOF2012 when compared with ROS2012 and

ROS2013. We adjusted for the effects of environments and

obtained best linear unbiased estimations (BLUEs) for the 1707

genotypes. The BLUEs were widely distributed ranging from 0.5

to 7.4 for leaf rust severity assessed by using a 1 (fully resistant) to

9 (fully susceptible) scoring scale (Figure 2a). The heritability

amounted to 0.81 for hybrids and 0.82 for parent lines, while

variation due to general combining abilities (GCAs) was 16.12

times the variance attributed to specific combining abilities (SCAs)

(Table S4). Overall, the male parents were more susceptible than

the female parents, while the severity of hybrids followed a

bimodal distribution (Figure 2a). We decided to look in more

detail into this bimodal distribution and split the hybrids into two

subpopulations according to the resistance of the female parents:

The hybrids based on crosses involving the top 25% resistant

female parents form the Top25% subpopulation and the hybrids

from the remaining 75% female parents formed the Inferior75%
subpopulation. In this regard, the BLUEs of these two subpop-

ulations followed two different normal distributions with a mean

of 1.42 and 3.61, respectively (Figure 2b). This trend was also

visible – but less pronounced – when splitting the population into

a Top50% and Inferior50% subpopulation. Interestingly, we

observed much more pronounced average midparent heterosis

for Top25% with �39.5% compared to 4.69% for Inferior75%
(Figure 2c). Hierarchical cluster analysis was used to search for

genetic similarities among the parents of the Top25% and

Inferior75% population. The phylogenetic tree revealed a tendency

for female parents from Top25% to cluster together, with the

exceptions of lines F004, F011, F021, F029, F059, F086, F098,

F100, F101 and F112 (Figure 2d).

Detection of subpopulation specific marker-trait
associations pointing to known resistance genes

Using a mixed linear model to correct for population stratification,

we firstly performed association mapping for leaf rust in the total

population (Figure 3a, d). In this scan, 1565 SNPs exceeded the

significant threshold of �log10(P-value) = 5.44, defined by apply-

ing the multiple-test correction suggested by Gao (Gao et al.,

2008; Figure S8). The 1565 SNPs trace back to 45 independent

loci. The most significant SNPs were located on chromosome 4A

and mapped as close as 7.2 Mb from the previously described

resistance gene Lr34-B; a homolog of Lr34 (Krattinger et al.,

2011). Lr34maps on chromosome 7D (Dakouri et al., 2010; Dyck,

1987) and functions in adult plants by encoding an ATP-binding

cassette (ABC) transporter. Interestingly, Lr34-B does not map on

chromosome 7B as it would be expected due to chromosome

homology, which is explained by a translocated segment from

7BS to the 4A chromosome in Chinese Spring (Krattinger et al.,

2011). In addition to Lr34-B, several significantly associated loci

on chromosome 1D mapped approximately 0.4Mb away from

another previously described causal gene: Lr21 (Huang et al.,

2009; Figure 3d, Table 3).

We explored whether the phenotypic structure of our mapping

population – as indicated by the bimodal distribution of the

phenotypic values – has an effect on our association mapping

results (Figure 3a). To do so, we divided the total population into

resistant (Top25%, Top50%) and susceptible subpopulations (Infe-

rior75%, Inferior50%) as outlined in detail above (Figure 3). The

amount of markers differed in the subpopulations owing to the

quality control of minor allele frequency (MAF, Table 2) with

following ranking: Total > Inferior75% > Top50% � Inferior50%-

> Top25%. Among the significant SNPs that were detected in

the total population, 429 (27.4%) were detected again as

significantly associated in at least one of the four subpopulations

(Figure S8). In particular, SNP S15_2077073, which is located

proximal to Lr21, was significant again in the subpopulation

Top25% while significant associations for loci mapping as close as

7.1 Mb away from Lr34-B were also successfully identified in

subpopulation Inferior75% and Top50% (Table 3 and Figure 3h, j).

Interestingly, for both of the resistant subpopulations Top25% and

Top50%, we detected new marker-trait associations mapping as

close as 1.4 Mb away from the known leaf rust resistance gene

Lr1 (Cloutier et al., 2007), which is located on chromosome 5D

(Figure 3j, i). Moreover, a strong marker-trait association on

chromosome 1A was exclusively observed in the subpopulation

Inferior50%. The SNPs of this region were located 5.9 Mb away

from the CC-NBS-LRR type resistant gene Lr10 (Feuillet et al.,

2003; Table 3).

Validation of marker-trait associations in an
independent population

We used an independent wheat population, further denoted as

validation set that comprised 128 hybrids from crosses between

24 female and 16 male parents to validate the detected marker-

trait associations. Genomic data for the validation set were

obtained again by exome capture sequencing, resulting in

129 818 SNPs with MAF larger or equal than 0.05 and missing

rate smaller than 0.05. Out of the 1565 SNPs presenting

significant marker-trait associations in the mapping population

comprising the 1707 wheat genotypes, 466 were polymorphic in

the independent validation set. These polymorphic SNPs reflect

15 independent loci. From the 466 SNPs, 23 were significant in

the validation set at a threshold of P < 0.01 after applying the

method for correction for multiple testing suggested by Gao et al.

(2008). Marker effects for the 23 SNPs were estimated in the

population of the 1,707 hybrids and used to predict the leaf rust

severity of the hybrids in the validation set. The predicted and

observed phenotypic values were significantly (P-

value = 2.676 9 10�7) correlated with a Pearson correlation of

0.384.

Independent validation facilitates to narrow down the
list of putative resistance genes

We detected in the population of 1707 genotypes, a pronounced

peak spanning a 25 Mb region on chromosome 3D (590–
615 Mb). The SNPs were in high LD, which makes the identifi-

cation of the underlying candidate gene difficult (Figure S9a).

Interestingly, the diversity and pattern of LD among SNPs in this

region were different in the validation set (Figure S9b), which

Table 1 Correlations among environment-specific and across-

environment best linear unbiased estimations of leaf rust severity

scores of a hybrid population (1574 hybrids plus their 118 female and

15 male parent lines) tested in five environments

Correlation HAD2012 HHOF2012 ROS2012 ROS2013 BLUEs

BOH2012 0.66 0.45 0.71 0.71 0.89

HAD2012 0.42 0.52 0.52 0.75

HHOF2012 0.38 0.37 0.59

ROS2012 0.70 0.87

ROS2013 0.85
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allowed us to narrow down the list of candidate SNPs to 6 SNPs

that were significant in the validation set. Within the 1Mb

candidate region (597.1–598.1 Mb), four protein-coding genes

(TraesCS3D01G513000, TraesCS3D01G513200, TraesCS3D01

G513400 and TraesCS3D01G513500) were annotated as poten-

tial disease resistance-related genes and each of them encoded

the NB-ARC domain, an important part of many plant resistance

proteins (Van Ooijen et al., 2008). These four genes are a

promising target for further functional validation strategies such

as virus-induced gene silencing or overexpression.

Another example was the region around 532.5–533.2 Mb on

chromosome 1A. We identified 14 SNPs significantly associated

with leaf rust severity in the population of 1707 genotypes. In

Figure 2 Bimodal distribution of leaf rust severity in a wheat population of 1574 hybrids plus their 118 female and 15 male parent lines. Genotypes from

Top25% and Inferior75% subpopulations are indicated in blue and red, respectively. (a) Leaf rust severity scores (1 = fully resistant and 9 = fully susceptible)

shown according to the different groups (females, hybrids and males). (b) Histogram of leaf rust severity scores of hybrids. (b) Histogram of midparent

heterosis. (d) Dendrogram constructed by performing hierarchical clustering based on the pairwise Rogers’ distance matrix among 133 parent genotypes

calculated using exome capture single-nucleotide polymorphisms profiles. Solid and dashed lines represent the female and male parents, respectively.

Table 2 Composition, size and number of informative exome capture

sequencing single-nucleotide polymorphisms (SNPs) of each

population/subpopulation for genome-wide association analysis

Female Male Hybrids SNPs

Total population 118 15 1574 202 875

Top25% subpopulation 30 15 425 162 327

Inferior75% subpopulation 88 15 1149 191 377

Top50% subpopulation 59 15 788 180 942

Inferior50% subpopulation 59 15 786 184 498

Validation population 24 16 128 112 587
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total, 24 genes were located in this candidate region and the LD

among SNPs was very high (r2> 0.65). Interestingly, the extent of

LD decreased in the validation set and only 5 out of the 14 SNPs

surpassed the significance threshold in the validation set (Fig-

ure 4). These SNPs were located at 532.7Mb and were linked with

each other (r2 > 0.84). We detected three genes in this region,

which are putatively related with disease resistance. Two of them

(TraesCS1A01G345400 and TraesCS1A01G345500) were anno-

tated with protein kinase activity and the remaining one

(TraesCS1A01G345600) encodes the LRR receptor-like serine/

threonine-protein kinase domain. In more detail, annotated genes

TraesCS1A01G345400 and TraesCS1A01G345500 presented

Figure 3 Genome-wide exome association scans for additive effects underlying leaf rust severity in a hybrid wheat population and its different

subpopulations. Left panel: Histogram of leaf rust severity in: (a) a hybrid wheat population of 1574 hybrids plus their 118 female and 15 male parent

lines and its subpopulations (b) Top25%, (c) Inferior75%, (d) Top50% and (e) Inferior50%. Right panel: Manhattan plots of genome-wide exome

association scans for additive effects underlying leaf rust severity in: (f) total population, (g) subpopulation Top25%, (h) Inferior75%, (i) Top50% and (j)

Inferior50%. –log10(P-value)s of the significance test are plotted against physical positions on chromosome. Black horizontal dashed lines indicate the

genome-wide multiple test corrected significance threshold for association analysis. The candidate region of Lr10, Lr21, Lr1 and Lr34-B homologous

gene of Lr34 is marked with vertical dashed lines and triangles. Blue triangles mean that these loci were detected in total population and

subpopulations, while red triangles mean those are only significant in subpopulations.

Table 3 Significantly associated single-nucleotide polymorphisms (SNP)s from exome capture sequencing that map closest to already known leaf

rust resistant genes and located within a 10 Mb window away from the known candidate gene

Population SNP Chromosome Position (bp) P-value† Gene‡ Distance (Mb)

Total S15_2077073 1D 2 077 073 1.88E-07 Lr21 0.4

Total S4_669444522 4A 669 444 522 3.86E-11 Lr34-B 7.2

Top25% S15_2077073 1D 2 077 073 1.95E-06 Lr21 0.4

Top25% S19_554396794 5D 554 396 794 3.76E-08 Lr1 7.5

Inferior75% S15_99767 1D 99 767 2.80E-06 Lr21 2.4

Inferior75% S4_669441424 4A 669 441 424 1.09E-07 Lr34-B 7.1

Inferior75% S19_560500848 5D 560 500 848 1.94E-06 Lr1 1.4

Inferior75% S7_55412966 7A 55 412 966 3.21E-06 Lr34-B 5.4

Top50% S4_669444182 4A 669 444 182 7.17E-08 Lr34-B 7.2

Top50% S19_554396794 5D 554 396 794 3.46E-08 Lr1 7.5

Inferior50% S1_3668532 1A 3 668 532 2.45E-09 Lr10 5.9

*P-value of the significance test for additive effects.
†Resistance genes: Lr21 (Huang et al., 2009), Lr34-B (Krattinger et al., 2011), Lr1 (Cloutier et al., 2007) and Lr10 (Feuillet et al., 2003).
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SNPs with significant associations in both populations, while

TraesCS1A01G345600 has no significant SNPs in any of the

studied populations (Figure S18). Similarly, as for the narrowed-

down region on chromosome 3D, this region on chromosome 1A

carries promising targets for further detailed validation studies.

Discussion

Exploiting environmentally stable QTL for durable
resistance breeding

Our study showed that the phenotypic variation of leaf rust

resistance is influenced by major and minor-effect loci (Figure S10)

with the most important major effect loci located on chromo-

some 4A proximal to Lr34-B. Thus and as often suggested by

several authors (Nelson et al., 2018), a strategy combining major-

and minor-effect genes could provide durable resistance. More-

over, resistance loci, especially those with major effects, should

ideally provide race nonspecific resistance, because this type of

resistance has proven to be longer lasting as compared to the

race-specific one (Nelson et al., 2018). For instance, the Lr34 gene

has provided resistance against several pathogens, including leaf

rust, stem rust, stripe rust and powdery mildew, for over

100 years (Moore et al., 2015). Obviously, whether or not these

loci would provide durable resistance will be determined by the

evolution of leaf rust populations in the field, which is, to a

greater extent, determined by good and bad practices of

integrated pest management used by wheat growers (Mundt,

2014). Nonetheless, even though the term durability can only be

defined in a retrospective fashion (Nelson et al., 2018), analysing

the environmental stability of marker-trait associations may give

some insights into it. At this stage, loci whose associations are

environmentally unstable are obviously too risky to be used in

marker-assisted selection. Thus, we fitted a multiple linear

regression model for each marker on the environmental BLUEs

of genotypes that included main environment and marker effects

plus their interactions. Interestingly, these analyses revealed that

only for 3.4 % of the associated loci, the marker by environment

interaction components explained an equal or higher amount of

variation on leaf rust severity as compared to the main locus

effects (Figure S12). On the other hand, the most environmentally

stable locus was located in the 4A QTL region, with main effects

explaining 13.6-fold the amount of variation explained by the

interaction components. Moreover, this QTL region harboured 6

additional highly environmentally stable loci, with main effects

Figure 4 Candidate region associated with leaf rust resistance on chromosome 1A in a hybrid wheat population and narrowed down using an

independent validation population. Manhattan plots showing the significant exome associations for additive effects underlying leaf rust within a candidate

region on chromosome 1A found in: (a) a hybrid wheat population of 1574 hybrids plus their 118 female and 15 male parent lines and (b) a validation

population of 128 hybrids plus their 24 female and 16 male parent lines. –log10(P-value)s of the significance test of additive effects are plotted against

physical positions on chromosome 1A. Red horizontal dot-dashed lines indicate the multiple test-corrected significance thresholds for association analysis.

Single-nucleotide polymorphisms (SNPs) significantly associated in the two data sets are shown as blue points and other SNPs are shown as red points. The

genes with annotated resistance function and others are shown as vertical boxes in blue and grey, respectively. The upper-triangular halves of the linkage

disequilibrium (LD, as r2) matrices between SNPs within the candidate region are shown as heat maps below Manhattan plots. Blue stars in LD plots indicate

the physical positions of SNPs with significant associations.

ª 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 18, 1396–1408

Fang Liu et al.1402



explaining at least 10 times the amount of leaf rust severity

variation attributed to their interactions with the environment.

Considering that we could not find significant associations for

SNPs directly targeting Lr34-B in our population, our results point

to potentially new sources of resistance mapping on chromosome

4A. In fact, some of these strongly associated loci were located

within annotated genes with putative disease resistance activity

(Table S5). Interestingly, by sorting SNPs according to the physical

map positions of the reference sequence of Chinese Spring,

associated loci portrayed two regions on chromosome 4A

influencing leaf rust resistance, whose peaks were separated by

43 Mb (Figure S11). This observation was surprising considering

the very high LD (r2 = 0.9) between both peaks. One plausible

explanation for this discrepancy is a lack of structural collinearity

between the reference genome and those of our studied

population due to insertions and deletions, translocations, among

other genome rearrangements (Dvorak et al., 2018; Helguera

et al., 2015; Thind et al., 2018). Nonetheless, reverse and forward

genetic techniques would be necessary to elucidate if these highly

promising loci mapping on chromosome 4A confer new sources

of resistance against leaf rust or, to the contrary, belong actually

to Lr34-B.

Data mining broadened insights into the gene portfolio
currently used in wheat breeding in Central Europe

Factors influencing the statistical power for QTL detection in

association mapping are very well known (Myles et al., 2009).

Although the size of the association mapping population is

certainly the key factor influencing statistical power, the ability to

detect true QTL signals can also be improved by a decreased

correlation between genetic and phenotypic similarity as well as

by increased frequencies of rare alleles at functional loci. In this

respect, our strategy of subdividing the total hybrid population

into four different subpopulations based on the bimodal leaf rust

severity distribution of parents decreased the correlation between

genetic and phenotypic distances (rRD,PD) in subpopulations

Inferior75%, Top50% and Inferior50% as compared to that of the

total population (Table S3). Therefore, a general increment in QTL

detection power was expected for these three subpopulations,

obviously, at expenses of the general power achieved by an

increased size in the total population. Moreover, some associa-

tions found in the proximity of already known resistance loci such

as Lr1 and Lr10 were only detected in subpopulations (Figure 3,

Table 3), which further highlights the advantage of our strategy.

In addition, analysing subpopulations improved QTL detection

power by increasing MAF in some cases. For instance and

compared to the total population, �log10(P-value)s of loci on

chromosome 6A were higher in subpopulations Top25% and

Top50% (Figure 3g, i and Figure S15), while MAF of most of these

loci was concomitantly higher in both subpopulations. A similar

observation was done for loci on chromosome 6B in the Top50%
subpopulation (Figures 3i and S14). Nonetheless, there were

some increases in QTL detection power in subpopulations whose

causal factors could not be elucidated. For example, associations

in the proximity of Lr10 were only detected in the Inferior50%
subpopulation. However, neither the differences in MAF (Figures

3j and S17), nor the changes in rRD,PD nor the presence/absence

of a confounding genetic background (i.e. when genetic

distances are more/less correlated with those distances portrayed

by associated loci; Table S3), can explain the improved detection

ability for this QTL in this particular subpopulation (Figure 3f-j).

Although some driving forces underlying the improved QTL

detection ability remain hidden for some subpopulations, the

combined analysis of a large population plus its subpopulations

increased the number of associations by ~37% compared to the

total population (Figure S8), thus providing a robust strategy for

QTL detection in our study.

Exploiting dominance effects through hybrid wheat
breeding

The quantitative inheritance of leaf rust resistance is predom-

inantly of additive nature, although past studies have shown that

dominance effects at some loci also contribute to the genetic

variation (Ahamed et al., 2004; Jacobs and Broers, 1989; Navabi

et al., 2003). The additive nature is also supported by the

associations for leaf rust severity detected by our approach, with

2151 (45 independent loci, 90%) being of additive type

(Figure 3f-j). Despite this, 20 (5 independent loci, 10%) promi-

nent dominance association effects were detected. Among them,

a locus on chromosome 5A appeared as highly significant

(�log10(P-value) = 8) in the Top25% subpopulation (Figure S13).

In this respect, hybrid breeding provides a straightforward

manner for their exploitation. This is in particular attractive

considering that midparent heterosis reached desired negative

values of up to �82.89% (Figures 2c, S14).

Prospects of exome sequencing association studies in
resistance breeding: a critical view

Association mapping has gained much popularity in the plant

breeding community because it provides a very straightforward

and cheap way to discover new marker-trait associations that

could be exploited by means of marker-assisted selection.

Nevertheless, true genetic linkage to the functional causal

variant(s) underlying trait(s) is not always the cause of marker-

trait association(s). In this respect, linkage disequilibrium decay

between associated marker(s) and functional variant(s) in the

material under selection will reduce the efficiency of marker-

assisted selection (Lande and Thompson, 1990). Theoretically,

one way to overcome this limitation is to focus on protein-coding

regions (Hayes and Szucs, 2006), that is genes, by relying on

targeted sequence methods such as exome capture. In this sense,

whole-exome association mapping has proven to be beneficial for

dissecting human diseases in the past (Carter et al., 2014; Guo

et al., 2018; Kim et al., 2012) and lately, exome association

mapping has been also conducted using plant populations (He

et al., 2019; Henry et al., 2014; Looseley et al., 2017; Pont et al.,

2019; Russell et al., 2016). For instance, exome capture revealed

regions containing genes that are associated to traits involved in

adaptation and also subjected to selection due to domestication

and plant breeding in a population composed of 487 genotypes

of wheat and related species (Pont et al., 2019). Taking into

account the size of our association mapping population, we

expected to find associations that were narrowed down to the

level of true functional associations. It is important to consider

that due to the presence/absence nature of genetic variants

conferring resistance (Arora et al., 2019), insertions and deletions

may play a central role when detecting candidate resistance

genes based on a reference genome. In this sense, our candidate

search was confined to those resistance genes annotated for

Chinese Spring. In a first step, we considered already known Lr

genes (Table 3) as a kind of proof-of-concept and in the best case;

we were able to approach Lr genes as close as 0.4 Mb. As

discussed for the Lr34-B on chromosome 4A; a lack of structural

collinearity with the reference genome can explain an imprecise
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mapping of known leaf rust resistance loci and their associations

in our mapping population. In addition, limited allelic variation

and recombination rates are also plausible causes for this

restricted ability. For instance, even though 10 SNPs were found

and tested for significant associations within Lr1, their low MAF

values (MAF = 0.05–0.08) limited our detection ability. Particu-

larly, this gene was presumably almost fixed in all parent lines due

to selection and breeding. We were able to overcome some of

these challenges by using an independent population as a way to

narrow down and statistically validate new associations. This

strategy allowed us to increase mapping precision by, for

example, narrowing down an extensive 25-Mb region on

chromosome 3D found as associated in the population of 1707

genotypes to a 1-Mb region in the validation population

(Figure S8). Despite this and partly because regions harbouring

SNPs in strong LD and with similar allele frequency result in similar

P-values in association mapping, we were not able to validate and

narrow down associations to the level of one single gene. This last

ability may also be limited in our study by the overall low gene

coverage of exome capture (Figure S2, Table S1). On the other

hand and due to the evolution of resistance genes, many of them

lie together within clusters of highly linked resistance genes

(Dilbirligi et al., 2004; Liu et al., 2015); an issue that clearly

challenges the detection of single functional variants. At this

stage, we expect that deep next-generation sequencing

approaches or whole genome sequencing can shed some light

into this issue. Alternatively, if the goal is the detection of new

functional genes with resistance activity against biotrophic fungi,

RenSeq approaches (Steuernagel et al., 2018) targeting

sequences such as nucleotide-binding site–leucine-rich repeats

(NB-LRRs) with known participation in plant resistance should be

also appropriate.

Experimental procedures

Plant material and phenotypic data analyses

The phenotypic data are based on 1749 wheat genotypes

including 10 checks, 1604 F1 factorial hybrids, and their 120

female and 15 male parental lines (Longin et al., 2013; Zhao

et al., 2013). Leaf rust disease severities were evaluated based on

natural infection or deliberate inoculation in four locations

(B€ohnshausen, Hadmersleben, Harzhof and Rosenthal) in 2012

as described in detail elsewhere (Gowda et al., 2014; Longin

et al., 2013). An additional field trial was conducted based on

natural infection in Rosenthal during 2013 using the same

experimental procedures. The leaf rust disease severities were

scored at the date of flowering on the flag leaf using a scale from

1 (fully resistant) to 9 (fully susceptible) referring to the guidelines

of the German Federal Plant Variety Office (Bundessortenamt,

2000).

Best linear unbiased estimations (BLUEs) of genotypes, variance

components, and broad-sense heritabilities for parent lines and

hybrids were estimated as outlined in detail elsewhere (Zhao

et al., 2015).

Genotypic data and diversity analyses

The 135 elite parental lines were genotyped with exome capture

sequencing using an Illumina HiSeq 2500 platform. Sequencing

data were mapped to the reference genome of Chinese Spring

(Appels et al., 2018). This landrace is susceptible against leaf rust

at the seedling stage (Li et al., 2010), but carries adult plant

resistance (Dyck, 1991; Kerber and Aung, 1999). Details of the

bioinformatics pipelines used for read mapping and variant calling

are described in a previous study (Milner et al., 2019). Briefly,

BWA-MEM (Li, 2013) and SAMtools (Li et al., 2009) were used to

align reads to the reference sequence and convert them to binary

format (BAM), respectively. GATK (DePristo et al., 2011; version

v3.8) was applied to realign reads near indels. Variant calling was

performed with the SAMtools/BCFtools pipeline (version 1.6; Li,

2011).

A custom awk script was used for gentle filtering of variants,

retaining VCF file entries with a minimum number of reads set to

one for homozygous and two for heterozygous calls, respectively.

Minimum SNP quality was set to 40. The resulting VCF file was

imported into R statistical environment (version 3.4.3) for further

filtering. Applying the SeqArray package (Zheng et al., 2017) we

set polymorphisms detected on chrUn to missing and filtered

remaining SNPs for a minor allele count of at least one and a

minimum number of present calls of 0.05. Missing genotype calls

were imputed with FILLIN (Swarts et al., 2014) from the TASSEL5

(Bradbury et al., 2007) software suit.

After imputation with FILLIN (Swarts et al., 2014), only bi-allelic

variants with MAF ≥ 0.05 and missing rate < 0.05 were used for

subsequent analyses. Following quality control, two female

parental lines were excluded, resulting in SNP profiles for 118

female and 15 male parental lines. The genotypes of 1574 hybrids

were derived from the genotypes of their parental lines. Predic-

tion of the functional effect was performed with the tool SnpEff

version 4.3 (Cingolani et al., 2012) based on the IWGSC_v1.1

gene models of high confidence. Nucleotide diversity p was

calculated with 1Mb non-overlapping sliding window using the

software vcftools version 0.1.12b (Danecek et al., 2011). The

linkage disequilibrium (LD) of each chromosome was calculated

using the r2 statistic (Hill and Robertson, 1968). We applied a

non-linear regression model described by Hill and Weir (Hill and

Weir, 1988) to estimate the LD decay. We used the average r2 of

all SNPs within the same gene to represent LD of genes. LD within

a specific genomic region was calculated based on parental lines

and visualized with the R package LDheatmap (Shin et al., 2006).

Principal coordinate analysis and hierarchical cluster analysis were

performed based on pairwise Rogers’ distances among genotypes

(Reif et al., 2005). In a previous study (Wurschum et al., 2013),

parents were characterized by using a 90K Infinium SNP chip

(Wang et al., 2014) and pairwise Rogers’ distances based on

these marker profiles were also considered for comparative

purposes. These analyses were performed within R environment

(version 3.4.3).

Genome-wide association mapping

Genome-wide association mapping was implemented in R

environment (version 3.4.3) using a linear mixed model consid-

ering additive and dominance effects (Zhao et al., 2013). In brief,

the model can be described as follows:

y ¼ 1nlþ Aaþ Dd þ gþ e; (1)

where y are the observed phenotypic values, 1n corresponds to a

n-length vector of ones, µ denotes a common intercept term, a

and d represent the additive and dominance effect of the tested

SNP, respectively, while A and D stand for the design matrices

relating y to a an d, correspondingly, g is a vector of genotypic

effects or polygenic background effects and e indicates the error

term of the model. For each tested SNP, genotypes homozygous

for the first allele, heterozygous and homozygous for the
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alternative allele were coded as �1, 0 and 1, respectively, in the

case of the A matrix. In the D matrix, homozygous and

heterozygous genotypes were coded as 0 and 1, respectively.

For the model (1), we assumed that µ, a and d are fixed factors,

while g and e were considered random, with g�N 0;r2gK
� �

and

e�N 0; r2e I
� �

, where K is a marker-derived kinship matrix, I is an

identity matrix, r2g and r2e are the corresponding variance

components. Each kinship coefficient between two parent

genotypes within K was computed as twice the difference of

one minus the corresponding Rogers’ distance (Reif et al., 2005)

between them. In the case of hybrids, the additive polygenic

background is decomposed as the sum of the general combining

abilities of female (GCAF ) and male (GCAM) parents, thus, the

kinship matrices for hybrids model the covariance among GCA

effects of the respective female and male parents (Bernardo,

1994). Linear mixed models for the phenotypic data analyses as

well as for association mapping were solved using the ASReml-R

package (Butler et al., 2009).

Validation of marker-trait associations in an
independent population

The validation population is a fraction of another large hybrid

wheat population, which consists of 41 male lines, 189 female

lines and their 1815 single-cross hybrids produced using an

incomplete factorial mating design. The 230 parental lines were

tested together with 1815 hybrids and 11 commercial check

varieties in 7 environments in un-replicated field trials based on an

alpha design with block size equals to 11 plots. Infection of

genotypes with leaf rust occurred naturally and was scored at the

date of flowering on the flag leaf as described in detail above.

Across environments, BLUEs of lines and hybrids from valida-

tion population were obtained as outlined in detail elsewhere

(Zhao et al., 2015). For 24 female and 16 male parental lines,

exome capture data were obtained as already detailed in the

‘Genotypic data and diversity analyses’ section. The genotypes of

hybrids were deduced according to the genotypes of their

parents. The 40 lines served as parents for 128 hybrids, which

were denoted in the following as the validation population.

To validate the significant SNPs found in the population of the

1707 genotypes (133 parental lines and 1574 hybrids), we first

identified common markers between the two populations. Then,

all the common markers were used to predict the phenotype of

lines in the validation population using a linear model, in which

the markers were sorted by physical position on the chromosome.

Finally, we calculated the Pearson correlation coefficient between

the predicted and observed phenotypic values.

Narrow down candidate regions combining information
of the two populations and identification of candidate
genes

For the novel candidate regions, we used all the markers in those

regions that were found in the validation population and

performed association tests based on a linear regression model.

The detected potential disease resistance-related genes (R genes)

were annotated with the pipeline RGAugury (Li et al., 2016). R

genes were classified as CC (coiled-coil), NBS (nucleotide-binding

site), CN (CC-NBS), NL (NBS-LRR), CNL (CC-NBS-LRR), RLK

(receptor-like kinase), RLP (receptor-like protein) and TM-CC

(Transmembrane-CC). Moreover, we double-checked the func-

tional annotation of these genes in the candidate region IWGSC

(Appels et al., 2018).
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