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Abstract

Tetranuclear Fe clusters have been synthesized bearing a terminal FeIII-oxo center stabilized by 

hydrogen bonding interactions from pendant tert-butyl amino pyrazolate ligands. This motif was 

supported in multiple Fe oxidation states, ranging from [FeII
2FeIII

2] to [FeIII
4]; two oxidation 

states were structurally characterized by single crystal X-ray diffraction. The reactivity of the 

FeIII-oxo center in proton coupled electron transfer (PCET) with X–H (X = C, O) bonds of various 

strengths was studied in conjunction with analysis of thermodynamic square schemes of the 

cluster oxidation states. These results demonstrate the important role adjacent metal centers have 

on modulating the reactivity of a terminal metal-oxo.
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Terminal metal-oxo moieties are invoked as key intermediates in both natural and synthetic 

catalysts of mid-first-row transition metal ions (Mn, Fe, and Co).1 For example in 

photosynthesis, water is oxidized in photosystem II by a CaMn4O5 cluster known as the 

oxygen evolving complex (OEC);2 numerous computational studies of the catalytic 

mechanism have proposed a high-valent Mn-oxo playing a key role in O–O bond formation.
3 Similarly, a number of synthetic water oxidation catalysts employing various multinuclear 

scaffolds have been reported, where a terminal metal-oxo is implicated as a key intermediate 

(Figure 1).1e–g, 4

Studies of synthetic transition metal-oxo complexes have been integral for understanding 

these reactive moieties in catalytic systems.1a, 5 However, there is a paucity of literature 

concerning multinuclear complexes bearing well-characterized terminal metal-oxo motifs.6 

In a rare example where the effects of a neighboring metal oxidation state on a terminal 

metal-oxo could be interrogated, Que and coworkers reported that the spin state of an FeIV-

oxo center would change depending on the oxidation state of a neighboring Fe in a μ2-O 

bridged bimetallic complex (L’2OFe2(OH)(O)2+/3+).6c The authors demonstrated that 

structural and spin-state changes due to reduction of this secondary Fe leads to a thousand-

fold activation of the [Fe2] complex towards C–H oxidation.

To gain further insights into these multimetallic effects, our group has examined well-

defined tetranuclear clusters of Fe and Mn, which facilitate intramolecular oxygen atom 

transfer reactions; however, a terminal metal-oxo intermediate could not be observed.7 

Inspired by reports of mononuclear terminal metal-oxo motifs stabilized by second 

coordination sphere hydrogen bonding interactions,8 our group has previously used this 

strategy to access a terminal MnIII–OH moiety as part of a [Mn4] cluster.9 Herein, we 

describe the synthesis, structural characterization, and reactivity studies of clusters bearing a 
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terminal FeIII-oxo motif, stabilized by tert-butyl-amino-pyrazolates, to probe the 

significance of a multinuclear scaffold on structural and reactivity aspects of a terminal 

metal-oxo.

Treating the reported LFe3(OAc)(OTf)2 cluster (−OTf, triflate = trifluoromethane 

sulfonate)10 with three equivalents of potassium tert-butyl-amino-pyrazolate (KPzNHtBu) 

and iodosylbenzene (PhIO), followed by addition of iron (II) triflate bis-acetonitrile 

(Fe(OTf)2 • 2 MeCN) and excess potassium hydroxide in tetrahydrofuran produces the 

neutral [FeII
3FeIII] cluster, 1 (Scheme 1). Single crystal X-ray diffraction (XRD) studies of 1 

reveal a structure similar to our previously reported [Mn4] cluster bearing a terminal 

hydroxide ligand (Figure 2A);9 the apical metal displays a trigonal bipyramidal geometry, 

with the terminal hydroxide ligand hydrogen bonded to each amino-pyrazolate (N–O 

distances of 2.826(1), 2.765(1), 2.789(1) Å for 1). The relatively short distance between the 

apical Fe and the interstitial μ4-O (Fe4–O1), 1.837(1) Å, is consistent with an FeIII in the 

apical position of the cluster, with the remaining Fe centers being FeII.7b, 11

The electrochemistry of the [Fe4] hydroxide clusters in THF features three quasi-reversible 

events assigned to the [FeII
3FeIII]→[FeII

2FeIII
2] (−1.53 V; all potentials vs. Fc/Fc+), 

[FeII
2FeIII

2]→[FeIIFeIII
3] (−0.68 V), and [FeIIFeIII

3]→[FeIII
4] (−0.10 V) redox couples 

(Figure S36). Each of the corresponding oxidation states of the cluster could be isolated 

(Scheme 1). Mössbauer spectra of the oxidized clusters 2, 3, and 4 are consistent with 

oxidations occurring at the FeII centers in the tri-iron core and the Fe–OH moiety remaining 

FeIII (Figures 2C, S42, S46, and S47).

Access to a terminal FeIII-oxo moiety was achieved by deprotonation of the [FeII
2FeIII

2] 

hydroxide cluster, 2, with potassium tert-butoxide (KOtBu; Scheme 1). The resulting 

compound, 5, was crystallographically characterized (Figure 2B); deprotonation of the 

hydroxide ligand leads to structural changes to the apical Fe in 5. The Fe4–O2 distance 

contracts to 1.817(2) Å, compared to the distances in 1 (1.937(1) Å) and the precursor 2 
(1.907(3) Å); this bond length matches closely with the structurally characterized FeIII-oxo 

complexes reported by Borovik and Fout.8e, 8h, 8i Compound 6, prepared by deprotonating 3, 

also displays a short Fe4–O2 distance (1.795(8) Å). Furthermore, the apical Fe-μ4-O 

distance (Fe4–O1) elongates to 1.965(2) Å in 5 and 2.049(7) Å in 6, from 1.890(3) Å in 2 
and 1.948(2) Å in 3, which is consistent with a greater trans influence exerted by the 

terminal oxo ligand. The Mӧssbauer spectra of 5 and 6 are consistent with the [FeIII
2FeII

2] 

and [FeIII
3FeII] oxidation state assignments, respectively (Figure 2D and S54). The 

quadrupole doublet assigned to the apical FeIII-oxo centers in 5 and 6 have parameters 

distinct from the other previously reported data for [(H3beau)Fe(O)]2-, and most other 

terminal Fe-oxo complexes (Table 1).8e, 12 Further spectroscopic studies of these FeIII-oxo 

clusters are underway to understand the source of their atypical Mӧssbauer parameters.

Terminal FeIII-oxo complexes are rare, and typically stabilized through hydrogen bonding 

interactions.8e, 8h, 8i, 13 The structures of 5 and 6 display comparable hydrogen bonding 

distances to other structurally characterized FeIII-oxo complexes, [(H3beau)Fe(O)]2- and 

[N(afaCy)3Fe(O)]+, along with similar equatorial Fe–N distances (Table 1). However, the 

μ4-O distances in 5 (1.965(2) Å) and 6 (2.049(7) Å) are significantly shorter than the Fe–N 
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distances for the amine trans to the oxo in the mononuclear systems (~2.27 Å). This is likely 

a result of greater ligand flexibility in the mononuclear systems; the geometry of these FeIII-

oxo complexes display greater deviations from ideal trigonal bipyramidal geometry 

compared to the apical Fe in 5 and 6, based on a structural index parameter (τ; ideal trigonal 

bipyramidal geometry = 1.0). For the clusters reported here, the rigid geometry of the 

pyrazolate ligands prevents significant distortion of the apical Fe out of the equatorial plane.

The hydroxide ligand in 2 was determined to be very basic in THF (pKa = 30.1; Table S1). 

Analogous equilibrium studies were performed on 3 and, as expected, oxidation of the 

cluster reduces the basicity of the FeIII-oxo moiety (pKa = 23.0 for 3; Table S2). Attempts to 

deprotonate 4 with various bases, even at low temperatures, only resulted in decomposition, 

so a pKa value for this oxidation state was not measured. These data were combined with 

electrochemical information for clusters 1 (vide supra) and 5 (Figure S38), to produce 

thermodynamic square schemes according to equation 1 (Figure 3):14

BDEO−H = 23.06 E° + 1.37pKa + C (1)

Similar to our previously reported studies on [Fe3Mn] hydroxide and aquo clusters, the bond 

dissociation enthalpy of the O–H bond (BDEO–H) increases upon oxidation of the distal Fe 

centers, ranging from 72 kcal/mol in 1 to 84 kcal/mol in 3.15

The three distal Fe oxidation states have a dramatic effect on the reactivity of the FeIII-oxo 

center through modifying the pKa and BDEO–H values. For example, 5 is incapable of 

performing proton coupled electron transfer (PCET) reactions16,17 with substituted phenols 

over a range of phenol BDEO–H values (79 – 85 kcal/mol); only proton transfer to generate 2 
is observed as expected from the combination of low BDEO–H for 1 and high pKa of 2 
(Figure 3, Table 2 and Figure S13). Oxidation of the remote Fe centers in 6 and 7 enables 

PCET reactivity with these phenols (Figures S14 and S16), resulting in the formation of 2 
and 3, respectively.

31P NMR and GC/MS analyses suggest that 7 is capable of transferring an oxygen atom to 

trimethylphoshine (PMe3), where the other FeIII-oxo clusters display no reaction towards the 

phosphine on similar timescale (see SI). The difference in reactivity is likely due to the low 

reduction potentials of 5 and 6 precluding efficient oxygen atom transfer reactivity. A more 

oxidizing cluster, through oxidations of the distal Fe centers, 7 can undergo OAT.

The kinetics of C–H activation by these clusters was investigated. The reaction between 5 
and 9,10-dihydroanthracene (DHA; BDEC–H = 78 kcal/mol)14c displays an expected first 

order dependence on substrate concentration, with an overall second order rate constant of 

87 M−1 s−1, and a considerable kinetic isotope effect (KIE) of 7 with d4-DHA. These data 

are consistent with a rate-limiting C–H bond activation for the PCET process to form 1 and 

anthracene. The second-order rate constants between 5 and C–H bonds of varying BDEC–H 

and pKa values were measured and display a linear dependence of the PCET reaction rate on 

the pKa of the organic substrate (Figure 4), suggesting either a concerted or stepwise pKa-

driven process.18 Reactions between DHA and 6 or 7 produce the corresponding hydroxide-

clusters and anthracene in yields comparable to 5 (Table S3) indicating PCET processes, but 
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complex kinetics precluded the determination of rate constants and further insights into the 

mechanism of these reactions.

Overall, this report offers a rare systematic study of the effects of neighboring redox active 

metals on structural and reactivity aspects of a terminal metal-oxo. Because it is part of a 

cluster, the reactivity of the terminal metal-oxo motif can be tuned without changing the 

formal redox state of the metal supporting it; however, redox events at distal centers have 

significant effect on the acidity and BDE of the corresponding O-H bond. Clearly, the cluster 

as an assembly is essential for reactivity beyond the structural aspects of the isolated metal-

oxo motif. Further development of multinuclear model systems is necessary to fully 

understand the nature and amplitude of these effects.
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Figure 1. 
Multinuclear catalysts with proposed terminal metal-oxo intermediates (top), and 

structurally characterized terminal FeIII-oxo complexes (bottom)
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Figure 2. 
Crystal structures of tetranuclear Fe hydroxide cluster, 1 (A), and oxo cluster, 5 (B). 

Ellipsoids shown at the 50% probability level with solvent molecules, and hydrogen atoms 

(except for N–H moieties) omitted for clarity. (C) Mӧssbauer spectrum of 2 (black dots) 

with simulated parameters: (i) δ = 1.12 mm/s, |ΔEq| = 3.20 mm/s (solid blue), (ii) δ = 1.10 

mm/s, |ΔEq| = 2.76 mm/s (dashed blue), (iii) δ = 0.52 mm/s, |ΔEq| = 0.81 mm/s (orange), (iv) 

δ = 0.41 mm/s, |ΔEq| = 2.17 mm/s (green). (D) Mӧssbauer spectrum of 5 (black dots) with 

simulated parameters: (i) δ = 1.12 mm/s, |ΔEq| = 3.14 mm/s (solid blue), (ii) δ = 1.10 mm/s, |
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ΔEq| = 2.87 mm/s (dashed blue), (iii) δ = 0.52 mm/s, |ΔEq| = 1.13 mm/s (orange), (iv) δ = 

0.43 mm/s, |ΔEq| = 3.04 mm/s (green).
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Figure 3. 
Thermodynamic cycles to evaluate the BDEO–H values of the hydroxide clusters 1 – 3. 

Reduction potentials (horizontal lines) are references to Fc/Fc+. pKa values (vertical lines) 

are based on relative pKa values of cationic acids in THF. Diagonal lines are the BDEO–H 

values calculated from these parameters according to the Bordwell equation (eq 1). 

Approximate values (~) have been extrapolated from the Bordwell equation.
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Figure 4. 
Plot of log k2 (normalized to number of reactive C-H bonds) versus reported pKa values of 

the organic substrates in DMSO for PCET reactions with 5.
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Scheme 1. 
Synthesis of [Fe4] clusters. (Inset) 1,3,5-triarylbenzene ligand platform (L3-) and tert-butyl 

amino pyrazolate ligand (PzNHtBu−).
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Table 2.

Reactivity of the [Fe4]-Oxo Clusters, 5 – 7.

BDE (kcal/mol) Reactivity Observed
a

5
(FeII

2FeIII
2)

6
(FeIIFeIII

3)
7

(FeIII
4)

9,10-dihydroanthracene 78 PCET PCET PCET

fluorene 82 PCET PCET PCET

2,4,6-tBu3-PhOH 82 PT PCET PCET

PMe3 - NR NR OAT

a
PT = proton transfer, PCET = proton-coupled electron transfer (based on cluster products), OAT = oxygen atom transfer, NR = no reaction 

observed.

b
Second-order rate constant.
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