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Supergenes, or linked groups of alleles that are inherited together, present
excellent opportunities to understand gene–behaviour relationships.
In white-throated sparrows (Zonotrichia albicollis), a supergene on the second
chromosome associates with a more aggressive and less parental phenotype.
This supergene includes the gene for vasoactive intestinal peptide (VIP), a
neuropeptide known to play a causal role in both aggression and parental
behaviour. Here, using a free-living population, we compared the levels of
VIP mRNA between birds with and without the supergene. We focused on
the anterior hypothalamus and infundibular region, two brain regions contain-
ing VIP neurons known to play a causal role in aggression and parental
behaviour, respectively. First, we show that the supergene enhances VIP
expression in the anterior hypothalamus and that expression positively
predicts vocal aggression independently of genotype in both sexes. Next, we
show that the supergene reduces VIP expression in the infundibular region,
which suggests reduced secretion of prolactin, a pro-parental hormone.
Thus, the patterns of VIP expression in these two regions are consistent with
the enhanced aggression and reduced parental behaviour of birds with the
supergene allele. Our results illustrate mechanisms by which elements of
genomic architecture, such as supergenes, can contribute to the evolution
of alternative behavioural phenotypes.
1. Introduction
To understand how behaviour evolves, we must understand how it is genetically
inherited. The relationships between genes and behaviours are complicated,
however, because behaviour is multiply determined. White-throated sparrows
(Zonotrichia albicollis) exhibit genetically based alternative behavioural phenotypes,
making this species a good model for studying gene–behaviour associations. Two
plumagemorphs (figure 1), white-striped and tan-striped, occur in both sexes and
are equally prevalent. Within each sex, white-striped birds express higher levels
of vocal and physical aggression in response to territorial intrusions than do
tan-striped birds [1,3]. By contrast, tan-striped birds provision nestlings at higher
rates than do white-striped birds; this morph difference in parental effort is most
evident in males [1,4].

The plumage morphs in this species are determined by a series of inversions
on the second chromosome,1 called ZAL2m [7]. White-striped birds are heterozy-
gous for this rearrangement, which constitutes a ‘supergene’ in that it is inherited
together as a unit [6]. Tan-striped birds are homozygous for the standard arrange-
ment, called ZAL2. Because mating pairs are almost exclusively made up of one
white-striped and one tan-striped bird [8], ZAL2m exists in a near-constant state
of heterozygosity; ZAL2m/ZAL2m homozygotes are extremely rare [9,10].
This situation results in suppression of recombination between ZAL2 and
ZAL2m, causing genetic differences such as single-nucleotide polymorphisms
to accumulate inside the supergene [6].
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white-striped morphtan-striped morph

Figure 1. White-throated sparrows occur in two plumage morphs, tan-
striped and white-striped. The morphs differ with respect to endocrine pro-
files and social behaviour [1]. Photo credit B. Horton. Reprinted with
permission of the Society for Integrative and Comparative Biology (see
[2]). (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20200196

2

Because the behavioural differences between the morphs
are ultimately attributable to this genetic differentiation, each
gene inside the supergene is a potential candidate for mediat-
ing the behavioural phenotypes. Included among those genes
captured by the ZAL2m rearrangement is the one encoding
vasoactive intestinal peptide (VIP), a neuropeptide that has
been associated with a variety of social behaviours in birds,
including parenting and aggression [11,12]. There are no non-
synonymous changes between the ZAL2 and ZAL2m alleles
of VIP [13]; in other words, the protein sequences do not
differ. It is thus unlikely that the function of the protein itself,
for example, its activity or affinity for receptors, differs between
the morphs. Cis-regulatory regions, on the other hand, contain
polymorphisms [13] that could affect the level of gene
expression and thus the abundance and/or distribution of
VIP mRNA in tissues. We therefore hypothesized that VIP
mRNA is differentially expressed between the morphs.
Because of the clear causal role of VIP in both territorial aggres-
sion and parental care in other avian species (reviewed by
[11,14]), such a findingwould connect differentiation of genetic
sequence and differentiation of the behavioural phenotypes.

We quantified VIP mRNA expression in two populations of
VIP cells, the anterior hypothalamus and the infundibular region
of the hypothalamus, which are thought to play key roles in ter-
ritorial aggression and parental provisioning, respectively, in
other avian species. VIP immunoreactivity in the anterior hypo-
thalamus is positively correlated with aggression in song
sparrows (Melospiza melodia) and field sparrows (Spizella pusilla)
[15]; VIP knockdown in this cell population inhibited aggression
in violet-eared waxbills (Uraeginthus granatinus) [16]. The infun-
dibular region contains a population of VIP neurons that
project to the median eminence and stimulate the hypophyseal
secretion of prolactin [17–19], which has been shown to play a
causal role in parental behaviour in birds (reviewed by [14]).

Here, we tested the hypothesis that white-striped and
tan-striped white-throated sparrows, which differ with
respect to their VIP allelic genotype, also differ with respect
to VIP expression in the anterior hypothalamus and infundib-
ular region. We tested this hypothesis by measuring gene
expression and behaviour in free-living birds during two
breeding stages. The first group of birds was studied early
in the breeding season when behavioural responses to terri-
torial intrusions are high [1]. The second group was studied
during the second half of the nestling stage, when parental
demands are high. Morph differences in VIP expression
during these stages in the anterior hypothalamus and
infundibular region, respectively, would suggest that differ-
ential regulation of the VIP gene may contribute to morph
differences in social behaviour in this species.
2. Material and methods
(a) Behavioural observations and tissue collection
Ourmethods of behavioural observation and tissue collection have
been published elsewhere [1,20–22] and are described in detail in
the electronic supplementary material. Briefly, we studied free-
living white-throated sparrows in the Hemlock Stream Forest
near Argyle, Maine, USA, in two consecutive breeding seasons.
We characterized behaviour and collected tissues from birds
during two phases of breeding, hereafter referred to as the ‘early
breeding’ and ‘nestling’ stages. The early breeding stage coincides
with the highest levels of territorial aggression in white-throated
sparrows [1,23]. During early breeding, we quantified song rate
in response to simulated territorial intrusions according to the
methods described by Horton et al. [1]. Singing in this context is
a component of territorial aggression, and in this study population,
song rates in response to simulated territorial intrusions are higher
in white-striped birds than tan-striped birds in both sexes [1].
During the nestling stage, and on different territories than those
studied during early breeding,we quantified nestling provisioning
rates (the number of feeding trips per hour) by parental adults
when nestlings were five and six days old according to the
methods described by Horton et al. [1]. In this study population,
parental white-striped males provision nestlings at lower rates
than do parental tan-striped males; white-striped and tan-striped
females provision young at similar rates [1]. Our sample during
both stages consisted entirely of opposite morph pairs, the typical
pair type for this species [8].

We captured focal birds on the day following their last behav-
ioural observation. Blood samples were collected and analysed
for gonadal steroid concentrations according to the methods
described by Horton et al. [1]; time to capture and to acquire the
blood sample did not vary according to morph in either sex or
stage [22]. Immediately after capture and blood sampling, whole
brains were extracted and rapidly frozen on powdered dry ice at
the site.

(b) Labelling and quantification of vasoactive intestinal
peptide mRNA

We labelled VIP mRNA expression in sets of 20 µm sections using
in situ hybridization with an 35S-labelled riboprobe (see the elec-
tronic supplementary material and [24]). Tissue from each sex
and breeding stage was run separately; that is, we performed sep-
arate runs of in situ hybridization on tissue from early breeding
males, early breeding females, nestling stage males and nestling
stage females. With the exception of the early breeding females,
each group was further divided into two separate runs of in situ
hybridization with year and morph balanced across them. Thus,
the tissue was processed in a total of seven runs of in situ
hybridization.

To quantify VIPmRNA,we used IMAGEJ tomeasure the average
grey value of VIP mRNA signal in high-resolution scans of the
autoradiographic films (see the electronic supplementary material
Methods). We quantified signal in the anterior hypothalamus and
infundibular region bilaterally (see the electronic supplementary
material, figure S1). Grey values for VIP signal in each of two
to four sections containing the region were corrected for back-
ground by subtracting the grey value of a nearby region with no
discernable VIP signal. For each region of interest, these corrected
grey values were then averaged across hemispheres and sections
for each individual.



Table 1. Results (F and p-values) for analyses of the effects of colour morph on VIP mRNA expression in the anterior hypothalamus (AH) and infundibular
region (INF) of breeding white-throated sparrows. (For the MANCOVAs (left), which consider gene expression in both brain regions, values are shown for the
overall effect of morph and the region × morph interaction. For the ANCOVAs (right), values for the main effects of morph within regions are shown. Separate
analyses were conducted for each sex and study (breeding stage). Significant effects are shown in italics; sample sizes are shown in figure 2.)

sex

MANCOVAs (both regions) ANCOVAs (effect of morph within region)

study

morph region × morph

region

early breeding nestling stage

F p F p F p F p

males early breeding 9.05 0.008 1.00 0.330 AH 6.42 0.021 20.35 <0.001

nestling stage 3.87 0.069 42.92 <0.001 INF 1.92 0.182 13.13 0.003

females early breeding 1.84 0.233 6.86 0.047 AH 13.52 0.010 6.25 0.027

nestling stage 8.04 0.015 5.26 0.041 INF 0.65 0.458 0.51 0.490
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(c) Data analysis
VIP mRNA expression was quantified for 38 birds (n = 12 tan-
striped males, 13 white-striped males; seven tan-striped females,
six white-striped females) collected during early breeding, and
41 birds (n = 11 tan-striped males, 10 white-striped males;
nine tan-striped females, 11 white-striped females) collected
during the nestling stage. VIP expression in the anterior hypothala-
mus was quantifiable for all birds, but damage to the infundibular
region prohibited reliable quantification of VIP expression in this
region for two early breeding tan-striped females and one nestling
stage white-striped female. We recorded reliable behavioural data
for all birds in which VIP expression was measured except for one
early breeding tan-striped male, one nestling stage tan-striped
male and one nestling stage white-striped male; spontaneous
song rates were recorded during the nestling stage for n = 15
males (eight tan-striped, seven white-striped).

We tested formorphdifferences inVIPmRNAexpression using
a two-step approach. We first conducted one-way MANCOVAs to
examine the main effect of morph on VIP expression in both brain
regions (anterior hypothalamus and infundibular region). Then, if
a significant main effect of morph or region ×morph interaction
was found, we proceeded with one-way ANCOVAs to examine
the main effect of morph on VIP expression within regions. MAN-
COVAs and ANCOVAs included year, Julian day, run of in situ
hybridization, plasma testosterone level and plasma oestradiol
level as covariates. Separate analyses were conducted for each sex
and breeding stage. Gene expression and hormone data were
square root transformed to address heteroscedasticity and non-
normality.

When morph differences in gene expression and behaviour
were found within a sex and breeding stage, we looked for
relationships between VIP expression in the anterior hypothala-
mus and song rate, or between VIP expression in the
infundibular region and nestling provisioning rate, as appropri-
ate. We first examined zero-order correlations between gene
expression and behaviour. Then, we conducted multivariate ana-
lyses to examine the extent to which gene expression, morph or
hormone level (testosterone in males, oestradiol in females) pre-
dicted individual variation in behaviour when controlling for the
effects of all other variables. These multivariate models also
included year, Julian day, and run of in situ hybridization as pre-
dictor variables. For zero-order correlations, we present Pearson
correlation coefficients (r) and associated p-values. For multi-
variate analyses, we present partial correlation coefficients (r)
and associated p-values. Data for gene expression, hormone
level and behaviour were square root transformed for correlation
analyses to address heteroscedasticity and non-normality. Ana-
lyses were performed using JMP® v. 14 (SAS Institute).
3. Results
When VIPmRNA expression in both the anterior hypothalamus
and infundibular regionwas examinedusingomnibusMANCO-
VAs, there was clear evidence of morph-dependent variation in
expression in both sexes during both breeding stages (table 1).
In males, there was a significant main effect of morph on VIP
expression during early breeding (F1,18 = 9.1, p= 0.008) and a sig-
nificant brain region ×morph interaction during the nestling
stage (F1,18 = 42.9, p< 0.001). In females, there was a significant
interaction between region and morph during early breeding
(F1,5 = 6.9, p= 0.047), a significant main effect of morph (F1,12 =
8.0, p= 0.015) and a significant region ×morph interaction
(F1,12 = 5.3, p= 0.041) during the nestling stage.
(a) Vasoactive intestinal peptide mRNA expression in
the anterior hypothalamus

Region-specific ANCOVAs showed morph differences in VIP
expression in the anterior hypothalamus in both sexes during
both breeding stages (table 1 and figure 2). In males, there
was a significant main effect of morph in the anterior hypo-
thalamus during early breeding (F1,18 = 6.4, p = 0.021) and
during the nestling stage (F1,14 = 20.4, p < 0.001). During
both breeding stages, VIP expression in the anterior hypo-
thalamus was significantly higher in white-striped males
than in tan-striped males (figure 2a).

In early breedingmales, therewas a significant andpositive
zero-order correlation between VIP expression in the anterior
hypothalamus and song rate during simulated territorial
intrusions (r = 0.49, p = 0.014; figure 3a). Indeed, a multivariate
analysis revealed that when VIP expression in the anterior
hypothalamus, morph, and testosterone were included in the
same model, VIP expression significantly predicted individual
variation in male song rate (r = 0.50, p = 0.014; figure 3b), but
morph (r = 0.27, p = 0.205; figure 3c) and testosterone (r = 0.18,
p = 0.389; figure 3d ) did not. In parental males, however, VIP
expression in the anterior hypothalamus was not directly cor-
related with spontaneous song rate during the nestling stage
(zero-order correlation r = 0.14, p = 0.178), and a multivariate
analysis revealed that spontaneous song rate during the nest-
ling stage was predicted by testosterone (r = 0.81, p = 0.019),
but not VIP expression (r = 0.03, p = 0.933) or morph (r = 0.38,
p = 0.323).
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Figure 2. Variation in VIP mRNA expression in the anterior hypothalamus (a,
c) and infundibular region (b,d) in the brains of male (a,b) and female (c,d)
white-throated sparrows according to colour morph and breeding stage.
Please refer to panels (c) and (d) for the full x-axis labels. Within each
region, values were normalized to the series mean, such that 1.0 on the
y-axis represents the mean corrected grey value within sex and breeding
stage; mean normalized values ± s.e. are shown. Asterisks denote significant
differences between morphs (table 1). TS, tan-striped morph; WS,
white-striped morph; numbers in parentheses denote sample sizes.
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In females, there was a significant main effect of morph on
VIP expression in the anterior hypothalamus during early
breeding (F1,6 = 13.52, p = 0.010) and during the nestling stage
(F1,13 = 6.3, p = 0.027). As was seen in males, VIP expression
was significantly higher in white-striped than in tan-striped
females during both breeding stages (figure 2c). There was
no apparent zero-order correlation between VIP expression in
the anterior hypothalamus and song rate during simulated
territorial intrusions for females (r = 0.28, p = 0.362; figure 3e).
A multivariate analysis revealed that VIP expression in the
anterior hypothalamus (r = 0.80, p = 0.001), morph (r = 0.70,
p = 0.007) and oestradiol (r = 0.70, p = 0.007) were each signifi-
cantly and positively related to song rate in females when all
three variables were included in the same model (figure 3f–h).
(b) Vasoactive intestinal peptide mRNA expression in
the infundibular region

In males, morph differences in VIP expression in the infundib-
ular region depended on breeding stage (table 1 and figure 2b).
Therewas no effect ofmorph onVIP expression in the infundib-
ular region during early breeding (F1,18 = 1.9, p = 0.182), but
during the nestling stage, VIP expression in this region was sig-
nificantly higher in parental tan-striped males than in parental
white-striped males (F1,14 = 13.1, p = 0.003). VIP expression in
the infundibular region was not, however, directly correlated
with male nestling provisioning rate (zero-order correlation
r = 0.22, p = 0.377). The multivariate analysis showed that
male nestling provisioning rate was predicted by morph (r =
0.58, p = 0.031), but not VIP expression in the infundibular
region (r = 0.42, p = 0.135) or testosterone (r = 0.01, p = 0.828).

In females, VIP expression in the infundibular region did
not vary according to morph during early breeding (F1,5 = 0.7,
p = 0.458) or during the nestling stage (F1,12 = 0.5, p = 0.490;
table 1 and figure 2d ).
4. Discussion
In this study, we showed that the expression of VIP in
the white-throated sparrow brain is a potential mediator of
alternative behavioural phenotypes. In both breeding stages,
expression in the anterior hypothalamus of the more aggres-
sive phenotype (white-striped) exceeded that of tan-striped
birds (figure 2a,c). This expression predicted aggressive behav-
iour, independently of morph and plasma sex steroids, in both
sexes (figure 3). In addition, we showed that the expression of
VIP in the infundibular region, which regulates prolactin
secretion, is higher in the more parental (tan-striped) morph.
The latter effect was noted only in parental males, which fits
with previous reports that the morph difference in nestling
provisioning is most pronounced in males [1,4].

The strongest evidence that VIP expression in the anterior
hypothalamus is causal for aggression in songbirds comes
from a series of studies in the violet-eared waxbill, a highly
territorial estrildid finch. During resident-intruder tests,
FOS immunoreactivity was induced in an area of the anterior
hypothalamus that precisely overlaps the VIP cell population
[15]. When VIP expression in the anterior hypothalamus was
experimentally knocked down via antisense oligonucleotides,
aggressive behaviour was profoundly inhibited in both sexes
[15]. The latter result strongly suggests that VIP expression,
specifically in the anterior hypothalamus, is required for the
expression of territorial aggression. Although VIP expression
in the anterior hypothalamus has not been experimentally
manipulated in sparrows, VIP immunoreactivity in this
region is positively correlated with aggression in song spar-
rows and field sparrows [16]; this result suggests that the
behavioural function of VIP cells in the anterior hypothala-
mus may be conserved in white-throated sparrows.

Ventral to the anterior hypothalamus, in the tuberal
hypothalamus, lies another population of VIP neurons. This
cell group, which we refer to as the infundibular region, pro-
jects to the median eminence and releases VIP into the portal
vasculature [18,19]. From there, VIP enters the anterior pitu-
itary and stimulates the production of the peptide hormone
prolactin [17,25], which has been strongly and positively
associated with parental behaviour across vertebrates.
Although much of the research on this association in birds
has been correlational in design, there is clear experimental evi-
dence of a causal effect of prolactin on parental behaviour
(reviewed by [14]), including nestling provisioning. In zebra
finches (Taeniopygia guttata), for example, the pharmacological
inhibition of prolactin synthesis dramatically reduced the
amount of time parents spent feeding nestlings [26]. VIP
manipulations in poultry have shown effects on parental be-
haviour; immunization against VIP reduced nesting activity
in turkeys [27] and increased nest abandonment in incubating
bantamhens [28]. In the current study, althoughVIPexpression
was higher in the more parental morph, it did not correlate
directly with nestling provisioning rate. This result may be
owing to the fact that the effects of infundibular VIP expression
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on parental behaviour aremost likely indirect andmediated by
prolactin, which could introduce variation and obscure
relationships between gene expression and behaviour. In
future work, it will be important to measure prolactin levels
in the plasma when considering the potential relationship
between VIP and parental behaviour.

Our results are consistent with experimental evidence of a
role for VIP in parental provisioning specifically. In zebra
finches, exogenous treatment with VIP did not increase feed-
ing behaviour in all animals; rather, it altered the division of
labour within pairs. In saline-treated pairs, females did more
provisioning than did males. By contrast, VIP-treated pairs
shared provisioning responsibilities more equally [29]. This
finding is interesting in the context of white-throated
sparrows because in pairs with a white-striped male and a
tan-striped female, females do the majority of provisioning.
By contrast in pairs with a tan-striped male and a white-
striped female, provisioning is shared equally between the
sexes [1]. Perhaps morph differences in the division of
labour can be attributed, at least in part, to altered VIP
secretion, whereby higher infundibular VIP expression pro-
motes greater provisioning effort by tan-striped males
compared with white-striped males.

Themorph differences in VIP expression in both the anterior
hypothalamus and infundibular region are probably caused by
differentiation of cis-regulatory regions of theVIP gene. The 2 kb
region upstream of the transcription start site, for example, con-
tains dozens of polymorphisms [30]. Cis-regulatory variation
can impact transcription via several mechanisms (see [31]),
such aswhen polymorphisms occur in transcription factor bind-
ings sites, enhancers or DNA sequences that could be
methylated. Given the robust morph differences in VIP
expression observed in this study, we hypothesize that the
ZAL2 and ZAL2m alleles are differentially regulated and prob-
ably show allelic imbalance in both the anterior hypothalamus
and infundibular region. The fact that the morph differences in
VIP expression go in different directions in these two regions
suggests further that cis-regulation could depend on epigenetic
modifications or local availability of transcription factors that
binddifferentially to the two alleles. These possibilities represent
directions for future research.

The behaviours that we hypothesize are affected by VIP,
aggression and parental behaviour, are also affected by
plasma sex steroids in this and related species [32,33]. In the
current study, VIP mRNA in the anterior hypothalamus pre-
dicted territorial singing even when controlling for plasma
testosterone and oestradiol in males and females, respectively
(figure 3). These results suggest that morph differences in
these sex steroids [1] cannot, alone, explain morph differences
in territorial singing. Our findings from an earlier study also
support this claim; when levels of sex steroids were experi-
mentally equalized, morph differences in vocal aggression
persisted [34]. We note here, however, that there was a positive
correlation between plasma oestradiol and territorial singing in
females even when the VIP signal in the anterior hypo-
thalamus was held constant (figure 3), so at least part of the
effect of sex steroids on aggression cannot be completely
explained by VIP expression.
5. Conclusion
Thewhite-throated sparrow is an importantmodel with which
we can understand how genome architecture contributes to
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social behaviour and vice versa [35]. The ZAL2m rearrangement
in this species has captured a number of genes that contribute
to social behaviour [6,13,20,36] and therefore represents a clas-
sic example of a supergene with the potential for important
coadaptation. Here, we have shown that the neuropeptide
VIP is a potential mediator of morph differences in both
territorial singing and provisioning, which are the two most
well-known morph differences in behaviour. Because the
neuroendocrine and hormonal control of these behaviours is
well-studied and excellent genomic resources are available
[13,21,30], this species is likely to provide much additional
insight into how differentiation of specific genetic sequence
can have profound effects on behaviour.
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