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The method of oncotripsy, first proposed in Heyden &
Ortiz (Heyden & Ortiz 2016 J. Mech. Phys. Solids
92, 164–175 (doi:10.1016/j.jmps.2016.04.016)), exploits
aberrations in the material properties and morphology
of cancerous cells in order to ablate them selectively
by means of tuned low-intensity pulsed ultrasound.
We propose the dynamical model of oncotripsy that
follows as an application of cell dynamics, statistical
mechanical theory of network elasticity and ‘birth–
death’ kinetics to describe the processes of damage
and repair of the cytoskeleton. We also develop
a reduced dynamical model that approximates
the three-dimensional dynamics of the cell and
facilitates parametric studies, including sensitivity
analysis and process optimization. We show that
the dynamical model predicts—and provides a
conceptual basis for understanding—the oncotripsy
effect and other trends in the data of Mittelstein et al.
(Mittelstein et al. 2019 Appl. Phys. Lett. 116, 013701
(doi:10.1063/1.5128627)), for cells in suspension,
including the dependence of cell-death curves on cell
and process parameters.

1. Introduction
The method of oncotripsy, first proposed in [1], exploits
aberrations in the material properties and morphology
of cancerous cells (figures 1 and 2) in order to ablate
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MCF-10 MCF-7 ModMCF-7

Figure 1. Optical images showing the deformability of three breast cells due to a constant stretching laser power of 600 mW.
Deformability increases in the cancerousMCF-7 andModMCF-7 cells in comparisonwith the healthy cell, MCF-10. The black scale
bar is 10µm. Reprinted from [2,3], with permission from Elsevier. (Online version in colour.)
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Figure2. (a–d) Healthy lymphocyte cells fromnon-Acute Lymphoblastic Leukaemiapatients. (e–h) Probable lymphoblast cells
showingmarked differences in size andmorphologywith respect to the healthy cells. c© 2020 IEEE. Reprinted, with permission,
from [4]. (Online version in colour.)

them selectively by means of tuned low-intensity ultrasound. A wealth of observational evidence
reveals that a substantial size difference between normal nuclei, with an average diameter of
7–9 µm, and malignant malignant nuclei, which can reach a diameter of over 50 µm, often
characterizes malignancy [5]. Using atomic force microscopy (AFM), Cross et al. [6] reported the
stiffness of live metastatic cancer cells taken from the pleural fluid of patients with suspected
lung, breast and pancreatic cancer. They found that the cell stiffness of metastatic cancer cells is
more than 70% softer than the benign cells that line the body cavity. Swaminathan et al. [7] applied
a magnetic tweezer system to measure the stiffness of human ovarian cancer cell lines and found
that cells with the highest invasion and migratory potential are up to five times softer than healthy
cells [7]. Experimental investigations of hepatocellular carcinoma cells (HCCs) have also found
that an increase in stiffness of the extracellular matrix (ECM) promotes HCC proliferation [8] and
advances malignant growth [9].

Owing to these and other similar observed aberrations in material properties and morphology
attendant to malignancy, the eigenfrequencies at which cell resonance occurs are expected to differ
markedly between healthy and cancerous cells. In a numerical study, Heyden & Ortiz [1] showed
that HCC natural frequencies lie above those of healthy cells, with a typical gap in the lowest
natural frequency of about 37 kHz. For instance, they computed the fundamental frequency to be
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of the order of 80 kHz for HCCs and of the order of 43 kHz for healthy cells. Heyden & Ortiz [1]
posited that, by exploiting this spectral gap, cancerous cells can be selectively ablated by means
of carefully tuned ultrasound while simultaneously leaving normal cells intact, an effect that
they referred to as oncotripsy. Specifically, by studying numerically the vibrational response of
HCCs and healthy cells, Heyden & Ortiz [1] found that, by carefully tuning the frequency of
the harmonic excitation, lysis of the HCC nucleolus membrane could be induced selectively at
no risk to healthy cells. They also estimated that the acoustic density required for oncotripsy to
operate is in the low-intensity pulsed ultrasound (LIPUS) range. This low-intensity requirement
sets oncotripsy apart from high-intensity focused ultrasound, which acts via thermal ablation and
is non-specific, with no selectivity for cancer cells.

The first numerical calculations of Heyden & Ortiz [1] neglected viscoelasticity and damping in
the cell and ECM. Under these conditions, the resonant response of the cells exhibits rapid linear
growth in time and the cells are predicted to attain lysis relatively quickly. However, experimental
studies suggest that the material behaviour of the different cell constituents is viscoelastic [10–13].
In a subsequent study, Heyden & Ortiz [14] investigated the influence of viscoelasticity on the
oncotripsy effect. They assumed Rayleigh damping and estimated the damping coefficients from
dynamic AFM experiments on live fibroblast cells in buffer solutions [15]. They concluded that,
for these cells, the main effect of viscoelasticity is a modest reduction in the resonant natural
frequencies of the cells and an equally modest increase in the time to lysis of the cancerous cells.
On the basis of these results, they speculated that oncotripsy remains viable when viscoelasticity
is taken into account.

Following these leads, Mittelstein et al. [16] have endeavoured to assess the oncotripsy effect
in carefully designed laboratory tests involving a number of cancerous cell lines in aqueous
suspension. They have developed a system for testing oncoptripsy that includes a tunable
source of ultrasonic transduction in signal communication with a system that allows control
of several parameters, including frequency and pulse duration. Transducers were selected
to produce ultrasound pulses in the frequency range of approximately 100 kHz to 1 MHz, a
pulse duration range of 1 ms to 1 s, acoustic intensity up to 5 W cm−2 and output pressure
up to 2 MPa. The instrumentation of the system allows the measurement of estimated cell-
death rates as a function of frequency, pressure, pulse duration, duty cycle and number
of cycles.

In agreement with the original oncotripsy concept, the experiments confirm that the
application of LIPUS can indeed result in high death rates in the cancerous cell population
selectively, i.e. simultaneously with small or zero death rates among healthy cells. The death and
survival rates depend critically on the frequency of the ultrasound, indicative of a dynamical
response of the cells. The oncotripsy effect is maximum at a certain frequency, and diminishes at
both larger and smaller frequencies, also indicative of a resonant response of the cells. However,
under the conditions of the experiments, cell death is observed to require the application of a
much larger number of ultrasound cycles than anticipated by either [1] or [14], suggesting that
the dynamics of cells in aqueous suspension is much more heavily damped than estimated in
[14] based on the AFM measurements of Cartagena & Raman [15]. The observations reported
by Mittelstein et al. [16] suggest that, under the conditions of the experiment, cell death occurs
through a process of slow accumulation of damage over many cycles, instead of the rapid rupture
of one of the cell membranes, as hypothesized in [1].

A number of experimental investigations suggest a mechanistic basis for the oncotripsy effect.
The susceptibility of the cytoskeleton dynamics to therapeutic ultrasound, at strains of the order
of 10−5 and frequencies in the MHz range, has been noted by Mizrahi et al. [17]. At low acoustic
intensities, no structural network changes are observed over the duration of the experiments. By
contrast, at sufficiently high acoustic intensities the actin network is progressively disrupted and
disassembles within 3 min following exposure (figure 3). This disruption is accompanied by a
50% reduction in cell stiffness. Remarkably, after exposure to moderate acoustic intensities the
stiffness of the cell gradually recovers and returns to its initial value. The mechanisms of actin
stress–fibre repair have been extensively studied and are reasonably well understood at present
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Figure 3. Live yellow fluorescent protein-tagged actin network staining of cells before and 5 min after exposure to 290 kPa
acoustic pressure showing massive fibre disruption. Scale bar 10µm. Republished with permission from the Royal Society of
Chemistry, from [17]; permission conveyed through Copyright Clearance. Center, Inc.

(e.g. [18,19] and references therein). By contrast, at high acoustic intensities no recovery takes
place after cessation over the span of observation.

To gain insight into the biomolecular mechanisms of LIPUS cytodisruption, Mittelstein
et al. [16] examined CT26 cells after 2 min LIPUS treatment at 500 kHz and a focal pressure
of 1.4 MPa. To evaluate the effect of LIPUS on the cytoskeleton, they plated CT26 cells after
LIPUS and performed confocal microscopy immediately after insonation. Confocal images show
the actin cytoskeleton, stained with phalloidin-conjugated green dye, as a ring on the cell
periphery (figure 4). This ring is disrupted and shows diminished fluorescence for a 30 ms
pulse duration, suggesting that cytodisruption is coupled with persistent cytoskeleton disruption.
These observations are consistent with reports for other systems that LIPUS disrupts the cellular
cytoskeleton [20,21]. By contrast, with a 1 ms pulse duration, the actin cytoskeleton appears
unchanged from the negative control. Mittelstein et al. [16] conclude that these observations
suggest that LIPUS induces actin cytoskeletal disruption and activates apoptotic cell-death
pathways.

In the present work, we argue that these competing mechanisms of cytoskeletal disruption
and self-repair, when coupled to the—possibly resonant—dynamics of the cells over many
insonation cycles, underlie the oncotripsy observations of Mittelstein et al. [16]. Based on this
hypothesis, we develop a plausible theoretical model of oncotripsy that accounts for several
of the key experimental observations of Mittelstein et al. [16], including the dependence of the
cell-death rates on frequency, pulsing characteristics and number of cycles. We posit that, under
the conditions of the experiments, cells in suspension subjected to LIPUS act as frequency-
dependent resonators and that the evolution of the cells is the result of competing mechanisms
of high-cycle cumulative damage and healing of the cytoskeleton. We recall that structural
materials can fail at load levels well below their static strength through processes of slow
incremental accumulation of damage when subjected to a large number (millions) of loading
cycles, a phenomenon known as mechanical fatigue [22]. Likewise, whereas one single LIPUS
pulse is unlikely to cause significant cytoskeletal damage, we posit that over millions of cycles
damage can accumulate to levels that render the cell unviable and cause it to die. By analogy
with structural materials, we refer to the hypothesized necrosis mechanism as mechanical cell
fatigue.

We note that, whereas the elasticity, rheology and remodelling of the cytoskeleton have been
extensively studied in the past (e.g. [23–26] and references therein), no model of cumulative
damage and mechanical cell fatigue appears to have been proposed as yet. The model proposed in
this work uses the application of cell dynamics, statistical mechanical theory of network elasticity
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Figure 4. Confocalmicroscopy of CT26 cells immediately after LIPUS treatment at 500 kHz, a focal pressure of 1.4 MPa and pulse
duration (PD) of 0 ms (control), 1 ms and 30 ms. Reprinted from [16], with the permission of AIP Publishing. Dead cells stained
red with fixable LIVE/DEAD, the actin cytoskeleton stained green using phalloidin and the nucleus stained blue with DAPI (4’,6-
diamidino-2-phenylindole). Confocal images show the disrupted actin cytoskeleton ring and significantly decreased actin stain
intensity. Microscopy suggests that LIPUS cytodisruption is coupled with persistent cytoskeletal disruption. (Online version in
colour.)

and ‘birth–death’ kinetics to describe processes of damage and repair of the cytoskeleton. We also
develop a reduced dynamical model that approximates the three-dimensional dynamics of the
cell and facilitates parametric studies, including sensitivity analysis and process optimization.
The reduced dynamical system encompasses the relative motion of the nucleus with respect to
the cell membrane and a state variable measuring the extent of damage to the cytoskeleton.
The cell membrane is assumed to move rigidly according to the particle velocity induced in
the water by the insonation. The dynamical system evolves in time as a result of structural
dynamics and kinetics of cytoskeletal damage and repair. The resulting dynamics is complex and
exhibits behaviour on multiple time scales, including the period of vibration and attenuation,
the characteristic time of cytoskeletal healing, the pulsing period and the time of exposure
to the ultrasound. We show that this multi-time scale response can effectively be accounted
for by recourse to Wentzel–Kramers–Brillouin (WKB) asymptotics and methods of weak
convergence [27]. We also account for cell variability and estimate the attendant variance of
the time-to-death of a cell population using simple linear sensitivity analysis. The reduced
dynamical model predicts, analytically up to quadratures, the response of a cell population
to LIPUS as a function of fundamental cell properties and process parameters. We show, by
way of partial validation, that the reduced dynamical model indeed predicts—and provides
a conceptual basis for understanding—the oncotripsy effect and other trends in the data of
Mittelstein et al. [16], including the dependence of cell-death curves on pulse duration and
duty cycle.

2. Experimental basis
We begin with a brief summary of the experimental system developed by Mittelstein et al. [16],
as well as data and observations resulting from the study that are directly relevant to the present
work. Their original publication may be consulted for a complete account.
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Figure 5. Experimental set-up of Mittelstein et al. [16]. (a) Schematic drawing of the LIPUS system and high frame-rate (HFR)
camera set-up enabling cellular imaging at a frame rate of 5 MHz. Reprinted from [16], with the permission of AIP Publishing.
(b) Schematic of pulsed ultrasound. (Online version in colour.)

(a) Experimental system
The experimental set-up (figure 5a) was developed to investigate the response of cells in aqueous
suspension to ultrasound insonation [16]. Suspension cells are placed with a Mylar film pocket
that is submerged within a water bath. The cells within the pocket are thus in acoustic contact
with the ultrasound transducer. The investigation indicated that the cell-disruption effect through
LIPUS requires the presence of spatial standing waves, which are generated by the reflection of the
ultrasound wave off an acrylic or metal acoustic reflector. Several hypotheses for the requirement
of a standing wave are explored in [16]. The transducer in the water tank is positioned directly
incident with the Mylar pocket such that the acoustic axis is perpendicular to the optical axis,
which is illuminated by laser light. The Mylar pocket is supported by a three-sided acrylic frame.
One side of this frame serves as an acoustic reflector to form the standing waves. A water
immersion pan-fluor objective is lowered into the water bath and a series of prism mirrors and
converging lenses deliver the image into a high-speed camera. Images are acquired 100 ms after
the arrival time of the pulse to observe the effect of prolonged ultrasound exposure.

The experiments aimed to isolate the mechanical effects of ultrasound by preventing local
heating from taking place. In order to maintain low-intensity ultrasound conditions (spatial-
peak temporal-average intensity < 5 W cm−2), pulsed ultrasound was performed as shown in
figure 5b. LIPUS was applied at a 10% duty cycle. However, the pulsing parameters were varied
in order to investigate their role in ultrasound cytodisruption. The pulse duration corresponds to
the length of each pulse during which the ultrasound is on. By varying the pulse duration, while
maintaining a constant duty cycle, the pulsing pattern of the ultrasound applied to the cells can be
modified while maintaining constant acoustic energy deposited on the cells. To further investigate
the effects of modifying ultrasound parameters on cytodisruption, three different transducers
operating at 300, 500 and 670 kHz were used during this investigation. To provide consistent
comparisons, they were configured to produce a peak negative pressure of 1.4 MPa at their focus
in free water.

(b) Cell motion
The recordings show that the entire field of view oscillates in the direction of ultrasound
propagation with minimal observable cell membrane deformation (figure 6a). The damping out of
cell membrane oscillations is expected given the exceedingly low Reynolds number characteristic
of the cell dynamics in aqueous suspension. Figure 6b shows the measured trajectory of a
K-562 cell upon insonation with a focal pressure of P0 = 1.4 MPa, frequency f0 = 670 kHz and
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Figure 6. (a) Frames from video captured by Mittelstein et al. [16] and processed with Ncorr [28] (scale bar 10µm). Reprinted
from [16], with the permission of AIP Publishing. (b) Measured velocity of a K-562 cell under an incident plane wave of focal
pressure amplitude P0 = 1.4 MPa and excitation frequency f0 = 670 kHz.

wavelength λ = 2.2 mm. As may be seen from the figure, the cell undergoes an ostensibly
harmonic motion. The period of the motion is T = 1.4 µs, which corresponds to a frequency of
f = 714 kHz. In addition, the amplitudes of the motion in the x- and y-directions are ux = 0.23 µm

and uy = 0.022 µm, respectively, for a total displacement amplitude of u =
√

u2
x + u2

y = 0.231 µm

and a velocity amplitude of v = 2π fu = 1.037 m s−1. By way of reference, the particle velocity
amplitude of the medium is v0 = P0/ρ0c0 = 0.97 m s−1, where ρ0 = 1000 kg m−3 is the mass density
of water and c0 = 1450 m s−1 is its speed of sound. We thus conclude that, as expected for the long
wavelength of the insonation relative to the cell size, the cells move ostensibly at the particle
velocity of the fluid.

(c) Cell-death data
The experimental study of Mittelstein et al. [16] reveals that LIPUS conditions at specific
frequencies and pulsing parameters can indeed achieve cell-selective cytodisruption. This
capability to tune ultrasound parameters to cause selective disruption in cancer cells while
sparing healthy cells appears to be a novel finding and fits with many of the predictions of
the oncotripsy theory. The morphology, type and related disease for each cell line are listed in
table 1. Figure 7 demonstrates that cells can have varying responses to ultrasound depending
on the ultrasound waveform. All data points in this figure represent cell death assessed using
LIVE/DEAD assays after exposure to an equal dosage of acoustic energy, though administered
with different signal frequencies and pulse durations. These tests were all performed on cells in
suspension for an exposure time of 60 s, a duty cycle of 10% and in a spatial standing wave set-up
with a free-field pressure of 0.7 MPa. Remarkably, high cell-death rates are observed for both of
the cancerous K-562 and U-937 cell lines at 500 kHz signal frequency and 20 ms pulse duration
while, under identical conditions, the control T-cells remain nearly unaffected (figure 7b). These
observations bear out the oncotripsy effect, as a frequency-dependent resonant response—and
eventual death—of cells under harmonic excitation, and its selectivity.

The data in figure 7 also show a strong dependence of the cell response on pulse duration, with
cell death enhanced at higher pulse durations. We take this dependence to suggest that the cell
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Figure 7. Tests of cancerous K-562 and U-937 cells and healthy CD4 T-cells at a peak negative pressure of 0.7 MPa and a time of
exposure of 60 s, showing the effect of frequency and pulse duration (PD) on cell-death rates. In all cases, the pulse duration is
10% of the total pulse repetition period. (a) Cell-death fraction versus pulse duration, and (b) cell-death fraction at 20 ms pulse
duration versus type. Reprinted from [16], with the permission of AIP Publishing. (Online version in colour.)
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Figure 8. Tests of cancerous K-562 cells at a free-field pressure of 0.7 MPa, pulse duration of 100 ms and duty cycle of 10%,
showing the effect of frequency and number of cycles. (a) Cell death versus number of cycles and (b) cell death at 1.8 million
cycles. Unpublished data from DR Mittelstein, J Yian, EF Schibber, A Roychoudhury, LT Martinez, MH Fekrazad, M Ortiz, PP Lee,
MG Shapiro, M Gharib (2020) [16]. (Online version in colour.)

response is the result of two competing effects with vastly different characteristic times: damage
accumulation during the on-part of the cycle and cell repair and healing during the entire time
of exposure. The efficiency of the duty cycle may then be expected to depend sensitively on the
relative values of the pulsing period and the characteristic times for damage accumulation and
healing.

Figure 8 shows data from tests of cancerous K-562 cells, showing the effect of frequency and
the number of cycles. In all cases, the pulse duration is 10% of the total pulse repetition period,
or a duty factor of 0.1. As may be seen from these figures, cell death does not occur instantly but
requires a certain exposure time to occur. We take this observation to suggest that death occurs
by a process of damage accumulation over many insonation cycles. It is also evident from the
figures that some cells die relatively early, whereas others require a considerably larger number
of cycles to die. These observations are suggestive of a broad variability in the susceptibility of
the cell population to LIPUS.

3. Oncotripsy model
We proceed to develop a theoretical framework in which to understand and rationalize the
preceding observations. The framework explored in this work is based on the following
assumptions.
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Table 1. Haematopoietic and lymphoid tumour cells used in the experiments ofMittelstein et al. [16], classified bymorphology,
tissue, disease and source.

cell line morphology tissue disease source

K-562 lymphoblast lymphocyte chronic myelogenous
leukaemia

human cell line

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

U-937 monocyte lymphocyte pleura/pleural effusion,
lymphocyte, myeloid

human cell line

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T-cells lymphocyte peripheral blood cells,
isolated CD3+

human primary cells

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(i) For cells in suspension subjected to ultrasound, the aqueous medium damps out and
suppresses the outer membrane vibrations, which translates rigidly at the particle
velocity of the water.

(ii) The internal structures of the cell, including its nucleus, respond as a resonator and
vibrate in synchronization with the applied ultrasound.

(iii) For sufficiently large pulse amplitudes, the cytoskeleton sustains cumulative mechanical
damage that increases with successive cycles.

(iv) At all times during exposure to ultrasound, the cytoskeleton can repair itself at a rate
proportional to the level of damage sustained.

(v) The cell ceases to be viable and dies when the amount of cumulative damage to the
cytoskeleton exceeds a critical threshold.

The various elements of the theory are next developed in turn.

(a) Three-dimensional structure
In mammalian cells, the nucleus, as the largest cellular organelle, occupies about 10 % of the
total cell volume [29,30]. It is surrounded by the cytosol, a viscoelastic solid containing several
subcellular structures such as the Golgi apparatus, the mitochondrion and the endoplasmic
reticulum. The cytosol and other organelles contained within the plasma membrane, for instance
the mitochondria and plastids, form the so-called cytoplasm. The nucleus is bounded by the
nuclear envelope and contains the nucleoplasm, a viscoelastic solid similar in composition to
the cytosol. It furthermore comprises the nucleolus, which constitutes the largest structure within
the nucleus and consists of proteins and RNA. In the present work, we neglect the organelles
within the cytosol, which is idealized as a uniform viscous matrix containing the cytoskeleton.
The nucleus is likewise idealized as rigid and we omit explicit consideration of the nucleoplasm.
Given the focus on cytoskeletal dynamics, we additionally neglect the effect of the nuclear and
cellular membranes.

(b) Cytoskeleton elasticity
The cytoskeleton is a system of filaments in the cell that radiates from the nucleus and is anchored
at the plasma membrane. In eukaryotic cells, the filament network has three major components:
microtubules, intermediate filaments and microfilaments (figure 9a). Microfilaments are polymers
of the protein actin, microtubules are composed of the protein tubulin and intermediate filaments
are composed of various proteins, depending on the type of cell. The cytoskeleton confers
elasticity to the cell, mediates the movement of the cells, helps to support the cytoplasm and
responds against external mechanical stimuli. In particular, microfilaments and intermediate
filaments act as cables to support tension loads while microtubules act as beams in compression
[32], in analogy to tensegrity structures [33–36].
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1 µm

Figure 9. Schematic of the computational model, consisting of a random three-dimensional network of filaments spanning a
rigid and heavy nucleus and a cell membrane oscillating rigidly with the surrounding fluid. Left: Electronmicrograph of F-actin.
Reprinted from [31], with permission from Elsevier.

According to the network theory of elasticity in statistical mechanics [37,38], the cytoskeleton may
be modelled as an amorphous network of cross-linked fibres. The fibres consist of many freely
jointed segments and are far from full extension. It is further assumed that the cross-linking points
move according to the local macroscopic deformation. In addition, the cytoskeleton is assumed
to be embedded in a viscous matrix. A standard analysis (e.g. [37]) then gives the free-energy
density per unit volume of the network as

A(F, T) = μ(T)
2

KIJ(CIJ + C−1
IJ ), (3.1)

up to inconsequential additive constants. In (3.1), μ(T) is a temperature-dependent shear
modulus, F is the local deformation gradient, C = FTF is the right Cauchy–Green deformation
tensor and T is the absolute temperature (e.g. [37,39] for background on continuum mechanics).
An analysis of the configurational entropy of the fibres [37,38] gives the shear modulus as

μ(T) = 2nl2

b2 kBT, (3.2)

where n is the number of fibres per unit volume, b is the segment length, l is the end-to-end
distance of the fibres and kB is Boltzmann’s constant. In addition, the structure tensor K in (3.1)
follows as

KIJ =
∫

S2
p(ξ )ξIξJ dΩ , (3.3)

where ξ is the unit vector pointing from one end of the fibre to the other, or fibre direction, p(ξ ) is
the fraction of chains in the ensemble of direction ξ , S2 is the unit sphere and dΩ is the element
of the solid angle. The density p(ξ ) is subject to the normalization condition

∫
S2

p(ξ ) dΩ = 1. (3.4)

The distribution function p(ξ ) describes the structure of the cytoskeletal network and is assumed
fixed and known. For instance, Smolyakov et al. [40] used single-cell force spectroscopy to test
the mechanical properties of four breast cancer cell lines and found that the most invasive cells,
MDA-MB231, contain actin fibres that are distributed randomly throughout the cell without any
particular structure or preferred direction. For an isotropic fibre distribution of this type, p = 1/4π ,
and the structure tensor (3.3) reduces to the identity. Under these conditions, the free-energy
density (3.1) specializes to

A(F, T) = μ(T)
2

(
tr(C) + tr(C−1)

)
, (3.5)

where tr denotes the matrix trace.
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(c) Cytoskeletal damage and healing
The experimental observations of Mittelstein et al. [16] for cells in suspension (§2) reveal that
cell death requires the application of a large number (millions) of insonation pulses, which
in turn suggests that, under the conditions of the experiment, cell death is the result of a
process of slow damage accumulation. Indeed, Mizrahi et al. [17] observed that, whereas the
cytoskeletal actin fibres are catastrophically disrupted under the action of ultrasound stimulation
of sufficiently high intensity (figure 3), under low-intensity ultrasound cellular responses exhibit
gradual damage accumulation and sometimes complete recovery following insonation cessation.
Confocal microscopy of CT26 cells assessed after LIPUS treatment reported in [16] also reveals
that LIPUS cytodisruption is coupled with persistent cytoskeletal disruption (figure 4).

Whereas cytoskeletal elasticity has been extensively studied in the past, the processes of
damage accumulation in the cytoskeleton under LIPUS actuation, or high-cycle cell fatigue,
appear to be as yet poorly understood. Building on past work on the failure of polymer networks
[41–43], we develop a model of cumulative cell damage that accounts for the gradual disruption
and repair of cytoskeletal fibres. This competition between disruption (death) and repair (birth)
is a classical example of a ‘birth–death’ process in evolutionary dynamics (e.g. [44]).

We assume that the mechanism of damage accumulation to the cytoskeleton is the progressive
disruption of the actin fibres. In order to account for the attendant loss of stiffness, we introduce
a damage variable q(ξ ) ranging from 0 to 1 such that q(ξ ) = 0 when all the fibres with direction
ξ are intact and q(ξ ) = 1 when all the fibres with direction ξ are broken. We additionally assume
that the breaking of the fibres requires a certain energy to be supplied. We represent these effects
by means of a free-energy density of the form

A(F, T, q) =
∫

S2
p(ξ )

(μ(T)
2

(1 − q(ξ ))2(λ2(ξ ) + λ−2(ξ ) − 2
)+ β

2
q2(ξ )

)
dΩ , (3.6)

where
λ(ξ ) =

√
CIJξIξJ (3.7)

is the stretch ratio of the fibres of direction ξ and β is a constant. We note from (3.6) that the effect
of a damage field q(ξ ) is to decrease the free-energy density of the fibres of direction ξ by a factor
(1 − q(ξ ))2 at an energy cost of (β/2)q2(ξ ). Additionally, damage relaxes the stresses in the network
by reducing the stiffness of the fibres. Evidently, in the absence of damage, q(ξ ) = 0, (3.6) reduces
to (3.1), as required.

Following the method of Coleman & Noll [45], the thermodynamic driving forces for damage
follow as

f (ξ ) = − ∂A
∂q(ξ )

= p(ξ )
(
μ(T)(1 − q(ξ ))

(
λ2(ξ ) + λ−2(ξ ) − 2

)− βq(ξ )
)

. (3.8)

We see from this expression that, by the choice (3.6) of free-energy density, the driving force (3.8)
comprises two terms. The first term represents the energy-release rate due to the disruption of
the fibres and, therefore, promotes damage. The second term represents the energetic cost of
disrupting the fibres, which hinders damage and promotes healing. Assuming linear kinetics,
we obtain the damage evolution law

α q̇(ξ ) = f (ξ ), (3.9)

where α is a kinetic coefficient.
The kinetic relation (3.9), in combination with the driving forces (3.8), defines an evolution of

the cytoskeletal state as a balance between ‘birth’ and ‘death’ processes. Thus, the energy-release
term μ(T)(1 − q(ξ ))(λ2(ξ ) + λ−2(ξ ) − 2) in the driving force induces progressive damage (death)
of the fibre population proportionally to the energy μ(T)(λ2(ξ ) + λ−2(ξ ) − 2) of the fibres. The
additional factor (1 − q(ξ )) brings the driving force to zero at full damage q(ξ ) = 1 and ensures
that q(ξ ) ≤ 1 at all times. By contrast, the energetic cost term −βq(ξ ) in the driving force tends to
restore (birth) the fibre population and thus accounts for healing. Built into the form of (3.8) is
the assumption that the rate of healing is proportional to the extent of damage. In particular, the
healing rate vanishes for q(ξ ) = 0, which ensures that q(ξ ) ≥ 0 at all times.
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(d) Cell viscosity
Another source of resistance to cell deformation arises from the viscosity of the cytoplasm. This
viscosity damps resonant vibrations within the cell and limits their amplitude. On average, the
cytoplasm viscosity does not differ significantly from that of water [46,47], but the distribution
of intracellular viscosity is highly heterogeneous. Full maps of subcellular viscosity have been
successfully constructed via fluorescent ratiometric detection and fluorescence lifetime imaging
[48]. However, this degree of detail is beyond the scope of this study. Instead, we assume an
average viscosity uniformly distributed over the cytoplasm. Further assuming linear viscosity,
the viscous Cauchy stress in the cytoplasm follows as

σij = η(vi,j + vj,i) +
(

κ − 2
3
η

)
div v δij, (3.10)

where η is the shear viscosity, κ is the bulk viscosity, v is the velocity field, a comma denotes
partial differentiation and div v is the divergence of the velocity field.

(e) Reduced model
The preceding model of cytoplasm elasticity, damage, healing and viscosity can be taken as a basis
for a fully three-dimensional analysis of cell motion, e.g. by means of the finite-element method
(cf. [49]). However, parametric and sensitivity studies are greatly facilitated by reduced models.
We develop a reduced dynamical model of cell deformation and damage based on the following
assumptions:

(i) spherical geometry of the cell and nucleus
(ii) rigid translational motion of the cell membrane

(iii) heavy and rigid nucleus
(iv) ansatz for the cytoplasm deformation and damage fields.

We note that, under the conditions of interest here, a Rayleigh treatment of the acoustic scattering
problem is justified in view of the large wavelength of the ultrasound waves compared with the
cell size.

We specifically consider a spherical cell of radius b containing a concentric spherical nucleus
of radius a. We assume that the cell moves under the action of planar waves and executes
a translational motion according to the particle velocity of the aqueous medium. We attach a
moving Cartesian reference frame to the centre of the cell such that the x3-axis is aligned with the
direction of motion. We additionally introduce a spherical coordinate system (r, ϕ, θ ), such that

x1 = r sin θ cos ϕ, x2 = r sin θ sin ϕ, x3 = r cos θ , (3.11)

where r is the radius, ϕ is the azimuthal angle and θ is the inclination. In these spherical
coordinates, the domain of the cytoplasm in its undeformed configuration is ϕ ∈ [0, 2π ), θ ∈ [0, π )
and r ∈ [a, b]. The nucleus is assumed to translate rigidly through a time-dependent displacement
u(t) relative to the cell membrane. In addition, a material point in the cytoplasm initially at
location (x1, x2, x3) in the undeformed configuration is assumed to be at location

y1 = x1, y2 = x2, y3 = x3 + b − r
b − a

u(t), (3.12)

following the displacement of the nucleus. In this ansatz, a spherical material shell of radius r
in the undeformed configuration translates rigidly to another spherical shell of the same radius
centred at u(t) (b − r)/(b − a) following the displacement of the nucleus (figure 10).
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(b)(a)

Figure 10. Deformation ansatz used in model reduction. (a) Cross section of the reference configuration of the cell, showing
the nucleus (inner circle) and two concentric material spheres to aid in the visualization of the deformation. (b) Deformed
configuration of the cell after displacement of the nucleus.

(i) Dynamics without damage

Inserting this ansatz into the free-energy density (3.1) and assuming small relative displacements
u(t), we obtain, after a trite calculation,

A = μ

2
u2(t)

(b − a)2 (3 + cos(2θ )), (3.13)

and the total free energy of the cytoskeleton evaluates to

A(u(t)) =
∫ 2π

0

∫π

0

∫ b

a
Ar2 sin θ dr dθ dϕ = 16π

9
(b3 − a3)μ

u2(t)
(b − a)2 , (3.14)

which, in the absence of damage, supplies a potential for the relative displacement of the nucleus.
Likewise, the velocity field of the cytoplasm follows by time differentiation of the ansatz (3.12),
with the result

v1 = 0, v2 = 0, v3 = b − r
b − a

u̇(t). (3.15)

Inserting this velocity field into the viscosity law (3.10) and assuming small relative displacements
of the nucleus gives, after a straightforward calculation, the dissipation per unit undeformed
volume

D = 1
2
σijvi,j = 1

24

(
5η + 6κ − (η − 6κ) cos(2θ )

) u̇2(t)
(b − a)2 , (3.16)

and the total dissipation follows as

D(u̇(t)) =
∫ 2π

0

∫π

0

∫ b

a
Dr2 sin θ dr dθ dϕ = 2π

27
(b3 − a3)(4η + 3κ)

u̇2(t)
(b − a)2 . (3.17)

Finally, the total kinetic energy of the cell follows as

K(t, u̇(t)) = 1
2

(
m0 + 2π

15
ρ(b − a)(6a2 + 3ab + b2)

)
(v(t) + u̇(t))2, (3.18)

where m0 is the mass of the nucleus, ρ is the density of the cytoplasm and v(t) is the prescribed
velocity of the cell membrane. An appeal to the Lagrange–D’Alembert principle gives the
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equation of motion
d
dt

∂K
∂u̇

(t, u̇(t)) + ∂D
∂u̇

(u̇(t)) + ∂A
∂u

(u(t)) = 0. (3.19)

Inserting (3.14), (3.17) and (3.18) into (3.19), we obtain

mü(t) + cu̇(t) + ku(t) = −mv̇(t), (3.20)

where

m = m0 + 2π

15
ρ(b − a)(6a2 + 3ab + b2), c = 4π

27
b3 − a3

(b − a)2 (4η + 3κ), k = 32π

9
b3 − a3

(b − a)2 μ (3.21)

are the total mass, damping coefficient and stiffness of the cell, respectively. Equation (3.20)
describes a damped and forced harmonic oscillator, with the material velocity v(t) of the aqueous
medium supplying the forcing.

(ii) Dynamics with damage

Suppose now that the cell undergoes damage. In general, damage patterns may be expected to
arise at two levels: inhomogeneously over the cytoplasm; and damage along preferential fibre
directions at every material point. Such a degree of complexity requires a full three-dimensional
analysis for its elucidation (cf. [49]). In order to simplify the dynamics, we simply assume that
damage is isotropic at all material points, i.e. the damage parameter q is independent of direction
ξ ; and independent of position over the cytoskeleton. By this simple ansatz, the state of damage
of the cell is characterized by a single state variable q(t). An immediate extension of (3.14) then
gives the total free energy of the cell as

A(u(t), q(t)) = 16π

9
(b3 − a3)(1 − q(t))2μ

u2(t)
(b − a)2 + 4π

3
(b3 − a3)

β

2
q2(t). (3.22)

Likewise, the total dissipation (3.17) extends to

D(u̇(t), q̇(t)) = 2π

27
(b3 − a3)(4η + 3κ)

u̇2(t)
(b − a)2 + 4π

3
(b3 − a3)

α

2
q̇2(t). (3.23)

The Lagrange–D’Alembert principle then gives the coupled equations

d
dt

∂K
∂u̇

(t, u̇(t)) + ∂D
∂u̇

(u̇(t), q̇(t)) + ∂A
∂u

(u(t), q(t)) = 0 (3.24a)

and
∂D
∂ q̇

(u̇(t), q̇(t)) + ∂A
∂q

(u(t), q(t)) = 0. (3.24b)

Inserting (3.22), (3.23) and (3.18) into (3.24), we now obtain

mü(t) + cu̇(t) + (1 − q(t))2ku(t) = −mv̇(t) (3.25a)

and
nq̇(t) + dq(t) = (1 − q(t))ku2(t), (3.25b)

with m, c and k as before and

n = 4π

3
(b3 − a3) α and d = 4π

3
(b3 − a3) β. (3.26)

The first of these equations represents a forced and damped harmonic oscillator in which the
stiffness depends on the instantaneous state of damage. The second governs the kinetic evolution
of the damage state, including damage accumulation and healing.

The accuracy of the reduced model just derived can be assessed by means of comparisons
with finite-element implementations of the full model. Figure 11 shows a typical axisymmetric
calculation in which a cell is insonated at 1.4 MPa focal pressure and 500 kHz frequency over
0.1 ms [49]. As may be seen from the figure, the damage to the cytoskeleton is localized at
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Figure 11. Axisymmetric finite-element results at 0.1 msexposureusing the full three-dimensional damagemodel [49]. The cell
is insonated at 1.4 MPa focal pressure and 500 kHz frequency. (a) Magnitude of axial displacement in micrometres. (b) Damage
averaged over all fibre directions. (Online version in colour.)

poles of the cell. Despite this patterning, the nuclear displacements and average cytoskeletal
damage predicted by the reduced model are found to be within 7% of the full-field finite-element
calculations. Given the level of observational error, this accuracy may reasonably be deemed
adequate for all practical purposes. Further details of the error analysis may be found in [49].

(f) WKB dynamics
Under the conditions of interest here, the dynamics described by system (3.24) is characterized
by two disparate time scales: the period of oscillation and the characteristic time for damage
evolution, the former much smaller than the latter. This two-time structure suggests analysing
the problem by means of WKB asymptotics [27].

We consider a generic duty cycle such as that shown in figure 5b, starting at time t0 and
consisting of an on-period ending at time t1 and an off-period ending at time t2. The duration of
the on-period, or pulse duration, is T1 = t1 − t0; the duration of the off-period, or listening time,
is T2 = t2 − t1; and the total duration of the duty cycle, or pulse repetition period, is T = t2 − t0.
We specifically assume harmonic excitation of the form

v(t) = Veiωt, (3.27)

during the on-period and v(t) = 0 during the off-period. In (3.27), V is a complex amplitude and
ω is the insonation frequency.

We begin by analysing the equation of motion (3.25a), which we rewrite in the form

ü(t) + 2ζω0u̇(t) + (1 − q(t))2ω2
0u(t) = −v̇(t), (3.28)

where ω0 =√
k/m is the natural frequency of the undamaged cell and ζ is the damping ratio. During

the on-period of the duty cycle, we have

ü(t) + 2ζω0u̇(t) + (1 − q(t))2ω2
0u(t) = −iωVeiωt, (3.29)
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where, for convenience, we extend the equation to the complex domain. Assume now that the
period of oscillation T0 = 2π/ω0 is much smaller than the pulse duration T1. Assume additionally
that the frequency ω of insonation is comparable to ω0. Finally, suppose that the variation of
the damage state variable q(t) is slow and on the scale of the pulse duration T1. Under these
conditions, the solution u(t) can be obtained by performing a WKB asymptotic analysis in the
small parameter T0/T1. We note that, for fixed q(t), equation (3.29) is a linear second-order
ordinary differential equation and, therefore, its solution is the sum of the general homogeneous
solution and a particular solution. Owing to the presence of damping, with damping coefficient ζ

of O(1), the homogeneous solution decays on the scale of T0 and can be safely neglected. We seek
a particular equation of the form

u(t) = A(t)eiωt, (3.30a)

u̇(t) = (Ȧ(t) + iωA(t))eiωt (3.30b)

and ü(t) = (
Ä(t) + 2iωȦ(t) − ω2A(t)

)
eiωt. (3.30c)

Inserting these expressions into (3.29) and retaining leading-order terms only, we obtain

− ω2A(t) + 2iζω0ωA(t) + (1 − q(t))2ω2
0A(t) = −iωV. (3.31)

Solving for the amplitude A(t), we find

A(t) = iωV

ω2 − (1 − q(t))2ω2
0 − 2iζω0ω

. (3.32)

Finally, inserting into (3.30a) we obtain

u(t) = iωVeiωt

ω2 − (1 − q(t))2ω2
0 − 2iζω0ω

, (3.33)

asymptotically as T0/T1 → 0. We observe from (3.33) that the nucleus executes rapid oscillations
relative to the cell membrane over the pulse duration in synchronization with the ultrasound
excitation, with amplitude modulated by the damage variable q(t).

Next, we turn to the damage evolution equation (3.25b). Inserting solution (3.33) into (3.25b)
gives

nq̇(t) + dq(t) = k(1 − q(t))ω2|V|2(
ω2 − (1 − q(t))2ω2

0
)2 + 4ζ 2ω2

0ω
2

, (3.34)

which is now fully expressed in terms of the damage variable q(t). Conveniently, equation (3.34)
is separable and admits the explicit solution

t = t0 +
∫ q

q0

n dξ

k(1 − ξ )ω2|V|2(
ω2 − (1 − ξ )2ω2

0
)2 + 4ζ 2ω2

0ω
2

− dξ

, (3.35)

where we write q0 = q(t0). Alternatively, the equation of evolution (3.34) can be recast in terms of
dimensionless variables as

dq
dτ

(τ ) + q(τ ) = (1 − q(t))w4ε(
w2 − (1 − q(τ ))2

)2 + 4ζ 2w2
, (3.36)

where

τ = t − t0

tr
, tr = n

d
, w = ω

ω0
, ε = k|V|2

dω2
0

= m|V|2
d

, (3.37)

whereupon (3.35) becomes

τ =
∫ q

q0

dξ

(1 − ξ )w4ε(
w2 − (1 − ξ )2

)2 + 4ζ 2w2
− ξ

. (3.38)
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Figure 12. Example of cell response to harmonic excitation. (a) Damage state variable versus time. (b) Relative nucleus
displacement and amplitude versus time. Parameters: tr = 1,ω = ω0 = 100, ζ = 1, qmax = 1/2.

From this reparametrization, we observe that the evolution of damage depends on the following
dimensionless parameters: (i) the ratio of the elapsed time to the relaxation time tr for healing;
(ii) the ratio w between the frequency of insonation and the undamaged natural frequency; (iii)
the energy deposited by insonation relative to the energy cost of repair; and (iv) the cell-damping
ratio. It is also interesting to note that the damage state variable attains a steady-state maximum
value qmax when

qmax = (1 − qmax)w4ε(
w2 − (1 − qmax)2

)2 + 4ζ 2w2
, (3.39)

which expresses a balance between damage accumulation and healing. From this relation, the
energy intensity required to attain a maximum level of damage qmax follows as

ε(qmax) =
(
w2 − (1 − qmax)2)2 + 4ζ 2w2

w4
qmax

1 − qmax
. (3.40)

As expected, ε(qmax) reduces to zero as qmax → 0 and diverges to infinity as qmax → 1. We also
note that, by virtue of the existence of a steady state at qmax, the integral in (3.38) is well defined
and finite in the range q0 ≤ q < qmax and diverges to infinity at q = qmax, indicating that the steady
state is attained only asymptotically at infinite time.

Figure 12 shows an example of the WKB dynamics just elucidated for the following
parameters: tr = 1, ω = ω0 = 100, ζ = 1, qmax = 1/2. As may be seen from figure 12, the state
of damage of the cell evolves on the scale of the relaxation time tr for healing and tends
asympotically to qmax. The relative displacement of the nucleus is damped out on the shorter
time scale 1/ζω0 and simultaneously amplified by the loss of stiffness due to damage on the time
scale tr. The competition between these two opposing effects results in a well-defined steady-
state amplitude, which follows from (3.31) by taking the limit of q(t) → qmax. Correspondingly, the
phase-space trajectory (u(t), u̇(t)) converges to a stable limit cycle. The ability of WKB asymptotics
to characterize the fast oscillations of the system and their slow modulation in time is remarkable.

During the off-period, the governing equations (3.25) reduce to

mü(t) + cu̇(t) + (1 − q(t))2ku(t) = 0 (3.41a)

and
nq̇(t) + dq(t) = 0. (3.41b)

Again, we assume that the duration T2 of the off-period is much larger than the natural period of
vibration T0. Under these assumptions, in the off-period we have

u(t) = 0 and q(t) = q1e−(t−t1)/tr , (3.42)
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outside a short transient decay on the scale of T0 immediately following t1. Thus, modulo short
transients during the off-period the cell is quiescent and repairs itself exponentially on the time
scale of tr.

(g) Fractional-step approximation of high-cycle limit
Of special interest is the case in which the amount of damage accumulated over each duty cycle
is small. Thus, in the experiments of Mittelstein et al. [16] the death of a significant fraction
of the population requires the application of a large number of duty cycles of insonation.
Correspondingly, the number of insonation pulses required to cause cell death is large, i.e.
T/tr � 1. We proceed to obtain an effective equation describing the evolution of the system over
larger numbers of duty cycles, or a high-cycle limit. The effective equation follows by an appeal
to the method of fractional steps [50].

We recall that the duty cycle under consideration consists of an on-period of scaled duration
τ1 = T1/tr and an off-period of scaled duration τ2 = T2/tr. The entire scaled duration of the duty
cycle is τ1 + τ2. Assuming τ1 � 1, over a single on-period (3.36) gives

q1 ≈ q0 + τ1

(
(1 − q0)w4ε(

w2 − (1 − q0)2
)2 + 4ζ 2w2

− q0

)
. (3.43)

Likewise, with τ2 � 1 over the subsequent off-period (3.41b) gives

q2 ≈ (1 − τ2)q1. (3.44)

Compounding the preceding relations and keeping the terms of first order in τ1 and τ2 gives

q2 ≈ q0 + τ1

(
(1 − q0)w4ε(

w2 − (1 − q0)2
)2 + 4ζ 2w2

− q0

)
− τ2q0. (3.45)

Rearranging terms gives the relation

q2 − q0

τ1 + τ2
≈ λ

(
(1 − q0)w4ε(

w2 − (1 − q0)2
)2 + 4ζ 2w2

− q0

)
− (1 − λ)q0, (3.46)

where

λ = τ1

τ1 + τ2
and 1 − λ = τ2

τ1 + τ2
(3.47)

are the on-time fraction of the duty cycle, or duty factor, and the off-time fraction, respectively.
Formally passing to the limit in (3.46) gives the differential equation

dq
dτ

(τ ) + q(τ ) = λ(1 − q(τ ))w4ε(
w2 − (1 − q(τ ))2

)2 + 4ζ 2w2
, (3.48)

which approximates slow damage evolution over larger numbers of duty cycles, or a high-cycle
limit. Again, the differential equation (3.48) is separable with solution

τ =
∫ q

0

dξ

λ(1 − ξ )w4ε(
w2 − (1 − ξ )2

)2 + 4ζ 2w2
− ξ

, (3.49)

which is explicit up to a quadrature. As in the case of steady insonation, we note that the system
attains a steady state at a maximum level of damage

qmax = λ(1 − qmax)w4ε(
w2 − (1 − qmax)2

)2 + 4ζ 2w2
, (3.50)
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at which point damage accumulation and healing balance each other. The energy intensity
required to attain a maximum level of damage qmax follows as

ε(qmax, λ) =
(
w2 − (1 − qmax)2)2 + 4ζ 2w2

λw4
qmax

1 − qmax
. (3.51)

As expected, ε(qmax, λ) reduces to zero as λ → 0 and reduces to (3.40) for λ = 1. We also note that
the integral in (3.49) is well defined and finite in the range q0 ≤ q < qmax and diverges to infinity
at q = qmax, indicating that the steady state is attained only asymptotically.

The convergence of the damage evolution to the high-cycle limit as the pulse repetition period
T becomes much smaller than the characteristic time tr for healing is illustrated in figure 13, which
corresponds to the choice of parameters: tr = 10, λ = 1/10, ω = ω0 = 100, ζ = 1/10, qmax = 1/2.
Figure 13a–c shows the evolution of the damage state variable obtained by solving directly the
WKB equations (3.36) and (3.41b) for T = 1, 1/10 and 1/100, respectively. As expected, damage
accumulates during the off-period and otherwise relaxes at all times, resulting in a characteristic
saw-tooth profile. Figure 13d shows the corresponding evolution of the damage state variable
predicted by the effective fractional-step equation (3.48). Evidently, the high-cycle limiting curve
is smooth and represents a weak limit of the damage evolution curves as the number of duty
cycles tends to infinity (respectively, the pulse duration cycle tends to zero).

(h) Cell death
We recall that the state variable q(t) measures the amount of damage sustained by a cell at time t. A
plausible assumption is that a cell becomes unviable and dies when q(t) attains a critical value qc.
In light of our previous discussion, this condition cannot be met if qmax ≤ qc, i.e. if the maximum
accumulated damage induced by insonation is less than the critical value. Conversely, it follows
from (3.51) that cell death requires a minimum level of energy deposition

ε ≥ ε(qc, λ). (3.52)

If this condition is met, then in the high-cycle limit the time to death of a cell follows from (3.49)
as

τc =
∫ qc

0

dξ

λ(1 − ξ )w4ε(
w2 − (1 − ξ )2

)2 + 4ζ 2w2
− ξ

; (3.53)

otherwise, τc = +∞ and the cell survives for all time. The corresponding number of insonation
pulses is

Nc = n
d

τc

T
, (3.54)

where T is the total pulse duration.
As noted in the Introduction, this type of system failure by slow damage accumulation over

many cycles is observed in other systems, notably inert structural materials, in which context
it is known as high-cycle mechanical fatigue [22]. The number of loading cycles to failure is
correspondingly known as the fatigue life of the material. In this analogy, cell death by slow
damage accumulation over many cycles may be thought of as a form of mechanical cell fatigue,
and the number of cycles Nc to death as the fatigue life of the cell.

(i) Variability within a cell population
A typical population of cancerous cells exhibits broad variation in geometry and mechanical
properties. This variability is strongly suggested by the cell-death curves observed by Mittelstein
et al. [16], which show that some cells die much earlier than others. In order to capture this gradual
cell necrosis, we regard the parameters governing the evolution of the cells as random and a cell
population as a sample drawn from the probability distribution of the parameters. By virtue of
the variability of the sample, parts of the population have a relatively short time to death and die
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Figure 13. Convergence of the damage evolution to the high-cycle limit as the pulse repetition period T becomesmuch smaller
than the characteristic time tr for healing (cf figure 5b). Parameters: tr = 10, λ = 1/10,ω = ω0 = 100, ζ = 1/10, qmax =
1/2. (a) T = 1, (b) T = 1/10, (c) T = 1/100. (d) Damage evolution predicted by the high-cycle limit equation (3.48).

early, whereas other parts have a comparatively longer time to death and die later, resulting in
the gradual estimated cell-death curves observed experimentally (figure 8).

The statistics of the time to death can be estimated simply by means of a linear sensitivity
analysis (e.g. [51]). We see from (3.53) that the time to death tc = τctr depends on the cell
parameters (tr, ω0, ζ , qc), respectively the relaxation time for healing, the natural frequency of
vibration, the damping ratio and the critical value of damage and on the process parameters
(ε, ω, λ), respectively the energy intensity, frequency and on-period fraction of the insonation. For
simplicity, we assume that the process parameters can be controlled exactly and are uncertainty-
free. In contrast, the cell parameters define a multivariate random variable X ≡ (tr, ω0, ζ , qc), with
probability distribution reflecting the variability of the cell population.

Owing to the randomness of the cell population, the time to death tc itself defines a random
variable Y. In terms of these random variables, (3.53) defines a relation of the form

Y = f (X). (3.55)

In order to estimate the variability in the time-to-death random variable Y, we make a small-
deviation approximation

Y ≈ f (X̄) + Df (X̄)(X − X̄) + high-order terms, (3.56)
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Table2. Meanand standarddeviationobtainedbyfitting to cell-death timedata [16] for cell lineK-562at focal pressure 1.4 MPa,
pulse duration 100 ms, 10% duty cycle at two insonation frequencies, 500 kHz and 670 kHz.

frequency (kHz Ȳ (s) σY (s)

500 30.5 46.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

670 49.4 71.36
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where
X̄ = E(X) ≡ (t̄r, ω̄0, ζ̄ , q̄c) (3.57)

is the mean value of the cell parameters and Df (X̄) are the sensitivity parameters. The average
time to death then follows as

Ȳ = E(Y) ≈ f (X̄) + high-order terms. (3.58)

In addition, a measure of the variability of Y is given by the variance

σ 2
Y = E((Y − Ȳ)2) = Df (X̄)T

E((X − X̄) ⊗ (X − X̄))Df (X̄) = Df (X̄)TΣDf (X̄), (3.59)

where
Σ = E((X − X̄) ⊗ (X − X̄)) (3.60)

is the covariance matrix of the cell parameters.
We note that, for small deviations, the mean time to death of the cell population is obtained

by evaluating (3.53) at the mean value X̄ = (t̄r, ω̄0, ζ̄ , q̄c) of the cell parameters (cf. equation (3.58)),
with the result

t̄c = t̄r

∫ q̄c

0

dξ

λ(1 − ξ )w̄4ε(
w̄2 − (1 − ξ )2

)2 + 4ζ̄ 2w̄2
− ξ

, (3.61)

where we write w̄ = ω/ω̄0 and we assume that (3.52) is satisfied with qc = q̄c. Likewise, the
requisite sensitivity parameters Df (X̄) follow by differentiating (3.58) with respect to the cell
parameters and evaluating the resulting integrals at their mean value.

Simple forms of the probability distribution of tc are fully determined by the statistics Ȳ and
σ 2

Y. For instance, if we hypothesize a Gamma distribution

p(Y) = 1
Γ (k)θk

Yk−1e−Y/θ , (3.62)

then the parameters of the distribution follow as

Ȳ = kθ and σ 2
Y = kθ2. (3.63)

The fraction of the cell population with a time to death less than or equal to t is given by the
cumulative distribution function

F(t) = P(Y ≤ t). (3.64)

For the Gamma distribution (3.62), we have

F(t) = 1 − Γ (k, t/θ)

Γ (k)
, (3.65)

where Γ is the Gamma function. The resulting dead-cell fraction versus time curves are illustrated
in figure 14.

By way of an example, figure 15 shows a least-squares fit of the cell-death time data of [16]
using the function F(t) obtained from the Γ distribution, equation (3.65). The data correspond to
the cell line K-562 at focal pressure 1.4 MPa, pulse duration 100 ms and 10% duty cycle. The mean
and standard deviation derived from the fit are listed in table 2. As may be seen from the figure,
the Γ -distribution provides an adequate fit to the data.
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Figure 14. Dead-cell fraction versus time curves obtained from the Gamma-distribution. (a) σ 2
Y = 1, t̄c = 1/2, 1, 2, 4 and 8.

(b) t̄c = 1,σ 2
Y = 1, 1/2, 1/4, 1/8 and 1/16.
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Figure 15. Γ -distribution fit of cell-death time data [16] for cell line K-562 at focal pressure 1.4 MPa, pulse duration 100 ms,
10% duty cycle at two insonation frequencies, 500 kHz and 670 kHz.

4. Comparison with experiment
We proceed to assess the ability of the proposed dynamical model to account for the
experimentally observed trends summarized in §2.

(a) Qualitative comparison
We note that the experimentally observed dead-cell fraction versus time curves exhibit the
sigmoidal form predicted by the proposed dynamical model (cf. figures 8 and 14), which can
be used to fit the experimental curves. More importantly, the model explains the observed dead-
cell fraction curves as a result of cell-to-cell variability; specifically, the random distribution
of times to death in the cell population. Furthermore, the time to death of an individual cell
is predicted by the model explicitly as a function of cell parameters (tr, ω0, ζ , qc) and process
parameters (ε, ω, λ), e.g. through equation (3.53) in the high-cycle limit. Owing to the variability
of the cell population, the cell parameters may be assumed to be random and, by an appeal
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Figure 16. Damage accumulation rate as a function of insonation frequency. Parameters: ω0 = 1, ε = 1, λ = 1, tr = 1,
ζ = 1/10, 2/10, 3/10, 4/10, 5/10. (a) Pristine cell, q= 0. (b) Damaged cell, q= 1/10.

to linear sensitivity analysis, the mean and variance of the cell time to death can be related to
the mean values and covariance matrix of the cell parameters, equations (3.53) and (3.59). Thus,
if the statistics of the cell parameters is known, the time-to-death statistics and, correspondingly,
the dead-cell fraction curves are given explicitly by the model. In this manner, the model relates
the observed dead-cell fraction curves to fundamental mechanical properties of the cell such as
mass, stiffness, viscosity and damage tolerance.

The dynamical model also predicts the dependence of the dead-cell fraction curves on pulse
duration observed experimentally (figure 7). Indeed, this trend is exhibited by the damage
evolution curves shown in figure 13. A careful inspection of these curves shows that the maximum
level of damage attained within the insonation cycles decreases as the pulse duration decreases
relative to the characteristic time for healing. Thus, for long pulses the cells have time to
accumulate large amounts of damage during the on-period of the pulse. For shorter pulses, the
extent of damage accumulation is comparatively less. If the pulse duration is comparable to—
or smaller than—the relaxation time for healing, the cell does not have sufficient time to recover
during the off-period of the cycle, and the trend persists over repeated cycles. Therefore, according
to the model the dependence of the dead-cell fraction curves on pulse duration is the result of
a delicate interplay among the pulse repetition period and pulse duration, the cell dynamics,
which determines the rate at which damage accumulates, and the kinetics of cell healing, which
determines the rate at which damage is restored.

The dynamical model also exhibits the oncotripsy effect, i.e. the insonation-frequency
dependence of the cell response and the window of opportunity for selective cell ablation.
Figure 16 shows the damage accumulation rate q̇ computed from (3.48) as a function of insonation
frequency, damping ratio and state of damage. The parameters used in the figure are: ω0 = 1,
ε = 1, λ = 1, tr = 1, ζ = 1/10, 2/10, 3/10, 4/10, 5/10, q = 0, 1/10. As may be seen from the figure,
the damage rate peaks sharply in the vicinity of the undamped resonant frequency ω = ω0.
The damage accumulation rate is largest for a pristine cell, q = 0, and persists, albeit somewhat
reduced, after the cell sustains damage, q = 1/10. This frequency dependence is clearly apparent
in the experimental data (figure 8b).

(b) Quantitative comparison
A quantitative comparison between the predicted cell-death times and experimental data
provides a measure of validation of the model. We recall that the death time tr of a cell
characterized by parameters X ≡ (tr, ω0, ζ , qc) is given analytically by (3.53). We regard X as a
multivariate random variable with a certain probability distribution reflecting the variability of
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Figure 17. Comparison of predicted cell-death fraction with experimental data from [16] for a focal pressure of 1.4 MPa, pulse
duration 100 ms, duty cycle 10% and frequencies 500 kHz and 670 kHz. The experimental data are represented through the
Γ -distribution fit shown in figure 15.

Table 3. Estimated mean, standard deviation and sensitivities of cell parameters.

tr (s) ω0 (rads/s) ζ qc
mean 100 3142 0.7 0.136

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

standard deviation 10 393 0.175 0.0136
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the cell population. Owing to this variability, the time to death tc itself defines a random variable
Y, in terms of which (3.53) is to be regarded as a response function of the form (3.55).

In order to exercise the linearized sensitivity framework formulated in §3h(i), we need to
know the average values X̄ of the parameters X for a given cell population and their covariance
matrix Σ . In lieu of direct characterization, we estimate these statistics as follows. We begin
by assuming that the parameters X are independent and lognormal distributed with unknown
mean X̄ and diagonal covariance matrix Σ . From this distribution, we generate a random sample
{Xi, i = 1, . . . , N} of size N = 1000, compute the corresponding cell-death times {ti, i = 1, . . . , N}
using (3.53) and evaluate the fraction of the cell population with a time to death less than or equal
to t as (cf. equation (3.64))

F(t) = 1
N

#{ti ≤ t, i = 1, . . . , N}, (4.1)

where # is the counting measure. The statistics X̄ and Σ are then obtained by means of a least-
squares fit to the data. The results are listed in table 3.

Finally, we are in a position to compare predicted cell-death curves with the experimental
data. Figure 17 shows computed cell-death curves for lognormal independent cell population
parameters, with mean values and standard deviations as in table 3, together with experimental
data from [16]. The predicted curves are computed directly via Monte Carlo based on a sample
of size N = 1000 and by means of the linearized-sensitivity approximation. As may be seen
from the figure, the linearized-sensitivity curve closely approximates the Monte Carlo curve,
which establishes the validity of the linearized-sensitivity approximation under the conditions
of the experiments. In addition, both the linearized-sensitivity and the Monte Carlo curves match
closely the experimental data, which provides a measure of validation of the model.
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5. Discussion and concluding remarks
The proposed dynamical model provides a rational basis for understanding the oncotripsy effect
posited by Heyden & Ortiz [1] under the conditions of the experiments of Mittelstein et al. [16].
An important difference between those experiments and the scenario initially contemplated in [1]
is that in the experiments of Mittelstein et al. [16] the cells are in aqueous suspension, whereas
the analysis of Heyden & Ortiz [1] is concerned with cells embedded in a solid ECM. In aqueous
suspension, the cells experience an exceedingly viscous environment, which is likely to suppress
any vibrations of the cell membrane. The response of the cells to ultrasound stimulation is
thus reduced to that of an internal resonator. Heyden & Ortiz [1] pointed out that the spectral
gap between cancerous and healthy cells depends sensitively on the mechanical properties of
the ECM and that the changes in those properties experienced by the cancerous tissue are a
key contributing factor to the opening of a spectral gap. In addition, for cells embedded in an
ECM, membrane rupture provides an additional lysis mechanism which is absent in cells in
suspension. These considerations suggest the need for an independent experimental assessment
of the oncotripsy effect in cancerous tissues, preferably in vivo.

The proposed dynamical model also reveals the dependence of oncotripsy on fundamental cell
parameters and on process parameters. The cell parameters of the model can be calibrated from
cell-death data for specific cell lines. Alternatively, fundamental cell properties such as stiffness
and viscosity can be measured independently. The calibrated model can then be used as a tool
for optimizing process parameters for maximum therapeutic effect. Most importantly, theoretical
understanding such as that provided by the proposed dynamical model is key for interpreting
experimental observations and formulating new and improved clinical therapies.

In this regard, a number of possible therapies suggest themselves as possible clinical
applications of oncotripsy. Thus, owing to genomic instability and being in different states within
the cell cycle, cancer cells are highly heterogeneous at any given moment. As such, it is unlikely
that an entire cancer cell population can be killed by a single set of acoustic parameters. This
suggests exploiting oncotripsy in connection with other synergistic cancer therapies such as
immunogenic cell death (ICD). In this combination, oncotripsy does not need to kill every last
cancer cell to be effective, as long as it can induce ICD of sufficient cancer cells to trigger the
host immune system to kill the remaining cancer cells (abscopal effect). Again, these and other
fundamental questions suggest worthwhile directions for further research.
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