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As witnessed at last year’s RSNA, the revolution is upon us. Experts tout deep learning as a 

revolution in radiology. Some radiologists fear for their jobs because some experts suggest 

deep learning as an infallible replacement for radiologists [1,2]. Radiologists at the forefront 

of this technology have tried to assure their colleagues that there is nothing to fear and that 

deep learning will make their lives better by performing tedious repetitive tasks and by 

providing intelligent decision support tools to enhance radiologists’ real expertise and 

performances. Although deep learning may indeed provide tools to enhance radiologists’ 

performances and efficiency, from our perspective, investigators place too much emphasis on 

developing the tools and not nearly enough effort on the optimum implementation of these 

tools.

In this opinion article, we focus on the use of deep learning as related to a specific clinical 

application of radiology image analysis, namely computer-aided diagnosis (CAD). We 

restrict our argument to CAD, and specifically CAD for mammography, for a number of 

reasons. First, CAD is an obvious application of deep learning, and there is much activity 

both academically and commercially. Second, mammography CAD is the most widely used 

CAD application, and there are several studies evaluating its impact on screening 

mammography. Although we take a narrow focus here, we assert that this CAD example is 

relevant to all other applications where using deep learning assists radiologists. We need 

more research on the man-machine interface in parallel with developing algorithms.

DEEP LEARNING IN RADIOLOGY AND CAD

Deep learning refers to a class of machine-learning algorithms that are inspired by and 

simulate the multilayer structure and function of the brain, called artificial neural networks. 

Armed with powerful computing, big data, and smart algorithms, deep learning technology 

has shown impressive outcomes in a number of IT applications in a wide range of industries 

and professions. This technology is also expected to make a huge impact in many aspects of 

radiology practice, including image interpretation, delivery and application of radiology 

information, clinical decision making, and outcome management. With the success of deep 

learning technology in the future, the role and the business of radiology will change 

drastically.

Robert Nishikawa: Department of Radiology, University of Pittsburgh, 3362 Fifth Ave, FARP, Pittsburgh PA 15213; 
nishikawarm@upmc.edu. 

HHS Public Access
Author manuscript
J Am Coll Radiol. Author manuscript; available in PMC 2020 May 08.

Published in final edited form as:
J Am Coll Radiol. 2018 January ; 15(1 Pt A): 49–52. doi:10.1016/j.jacr.2017.08.027.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CAD is largely divided into two groups: computer-aided detection (CADe) and computer-

aided diagnosis (CADx). CADx represents a class of broader and more sophisticated tools 

than CADe, but CADx has not been integrated into the clinic for a variety of reasons. On the 

other hand, CADe is FDA approved and is available for clinical use in radiology practices. 

Deep learning in the future may allow us to implement more powerful and versatile tools 

that combine CADe and CADx. With this goal in mind, a number of research groups are 

working on applying deep learning to CAD, encompassing a wide range of body parts and 

pathologies.

CAD IN CURRENT CLINICAL BREAST IMAGING

In our opinion, applying deep learning to current breast imaging CAD will not be successful 

if we just develop more accurate algorithms. Breast imaging CAD has penetrated the market 

only for screening mammography and, appreciably, only in the United States. Better 

algorithms alone will not improve CAD clinically. The accuracy of the algorithms is not 

what is limiting the current success of CAD in breast imaging. We assert that the manner in 

which CAD has been implemented has dampened its effectiveness. We present two pieces of 

evidence for this assertion.

First, Nishikawa et al showed that radiologists ignore the vast majority (71%) of correct 

computer detections of a cancer on a mammogram [3]. When initially developing CAD, the 

prevailing thought was that if the computer marked a lesion, radiologists, because they are 

good at detecting cancer, would immediately recognize that they missed a cancer. This is, 

apparently, not the clinical reality. Visual psychologist Jeremy Wolfe and his team showed 

that radiologists are more likely to miss a cancer if the prevalence of cancer is low than if the 

prevalence of cancer is high [4]. This is a fundamental property of human perception [5].

When applied to screening mammography, the positive predictive value (PPV) of a CAD 

prompt is low. Given that breast cancer prevalence is 0.5%, a radiologist with a sensitivity of 

80% will have one missed cancer for CAD to detect in every 1,000 women screened. 

Assuming CAD sensitivity is 100% and there are two false detections per case (0.5 per 

image or 2,000 images with a false-positive), then the prevalence of a true-positive, or PPV 

of CAD detection (assuming CAD detected the cancer in two views), is 0.1% (2 true-

positive detections and 2,000 false-positives). Even if we improve the false detection rate of 

CAD by a factor of 10, the prevalence of a true computer detection is still low. Extrapolating 

the findings of Wolfe and colleagues, because the prevalence of the true CAD detection is 

low, radiologists tend to ignore the true computer detections more than they would at high 

prevalence. Although this would argue for the need of better CAD algorithms, the level of 

performance at which CAD would have high PPV exceeds the performance of most breast 

radiologists, at which point CAD as a second reader would be replaced by CAD as the 

primary reader.

Second, radiologists are not using screening mammography CAD as intended, which is as a 

second reader. Table 1 shows published data from three different clinical studies of CAD. 

All studies used data from the Breast Cancer Screening Consortium. The data show a clear 

trend for decline in incremental improvement in sensitivity and recall rate with using CAD. 
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When used correctly as a second reader, investigators designed CAD to help radiologists 

avoid overlooking a cancer. CAD is not designed for improving specificity. Therefore, 

sensitivity and recall rate should both increase. Table 1 shows that, over time, the benefit of 

CAD to improve sensitivity lessened and the detriment of CAD to increase recall rate also 

declined, to the point where both the sensitivity and the recall rate actually reduced with 

using CAD. This is an unexpected trend, particularly for recall rates, and is not possible 

under the intended second reader paradigm. One possible explanation is that radiologists 

consult CAD to avoid overcalling. Radiologists concerned about a high recall rate may not 

recall suspicious lesions that are not detected by CAD, contributing to reduced sensitivity. 

Another possibility is that radiologists use CAD as a concurrent, or first, reader paradigm. 

Zheng et al have shown that when used as a concurrent, or first, reader, CAD can reduce 

sensitivity because radiologists can miss cancers not detected by CAD compared with 

reading without CAD [6].

RADIOLOGISTS AND CAD GO ON A BLIND DATE

Just like a radiologist, CAD is subject to a finite diagnostic performance with its own 

sensitivity and specificity profile. If radiologists are overconfident of CAD’s input, they may 

suppress their own sound diagnostic judgment to blindly follow CAD’s choice. On the other 

hand, underappreciating CAD’s input may result in rejecting an accurate CAD diagnosis. 

Currently, there is no mechanism for a radiologist or CAD to know the consequences of each 

other’s action. Radiologists and CAD operate independently with little feedback and 

interaction. Investigators train and validate CAD at a laboratory with a set of data, and 

radiologist users receive their training with their own set of clinical experiences and are 

subject to their own heurist bias. Radiologist users have limited understanding of CAD 

performance characteristics and the underlying decision mechanisms. There is no systemic 

feedback to narrow the mutual biases between the radiologist and CAD. Radiologists and 

CAD are essentially in a blind date with limited understanding of each other. We consider 

this decision architecture of CAD as an inadequate and inefficient clinical diagnostic or 

radiologic decision support tool.

To foster and promote CAD as a well-balanced partner with radiologists, we should 

understand the behavioral aspect of the radiologist’s clinical practice and consider this 

behavior in the clinical decision architecture when implementing CAD. With deep learning 

technology and big data, we may be able to design CAD to guide and protect radiologists by 

anticipating potential misuse of CAD by radiologists and algorithmically discouraging them 

from taking an undesirable shortcut that may negatively affect diagnostic performance. A 

smart decision support tool could provide checks, balances, and feedback and actively 

improve a radiologist’s performance.

As we consider developing CAD as a well-informed decision support tool, we cite research 

from Daniel Kahneman, a psychologist, a Nobel laureate in economics, and the founder of 

behavior economics. He modeled the workings of the mind as an uneasy interaction between 

two fictitious, but insightful, characters: the automatic system 1 and the effortful system 2 

[7]. System 1 uses association and metaphor to produce a quick and dirty draft of reality, 

which system 2 draws on to arrive at explicit beliefs and reasoned choices. Ideally, we 
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should use system 2 to evaluate information and make logical and rational decisions. But, as 

Kahneman describes it, system 2 can be lazy and just endorse system 1, even if system 1’s 

choice is not logical. This may explain the findings of Wolfe et al [4, 5] and Zheng et al. [6]

When using CAD as the first or concurrent reader, it likely enforces a radiologist’s fast 

automatic system 1 thinking and turns off the controlled process of system 2 thinking. As a 

consequence, a radiologist may gain productivity but lose an opportunity to reason and come 

up with an alternative decision. When using CAD appropriately as the second reader, it 

could encourage a radiologist’s system 2 thinking. However, a simple listing of CAD 

detection may not be sufficient to stimulate a radiologist’s system 2 thinking to reconsider 

the initial choice. Radiologists would simply write off CAD’s suggestion even if it is 

accurate. A more effective approach would be presenting a CAD choice designed with the 

knowledge of an individual radiologist’s reaction to particular patterns of images.

Future CAD may have its decision architecture tuned to engage and aid a radiologist’s 

system 2 thinking when needed. Turning system 2 on constantly when system 1 is making a 

routine decision is inefficient and creates limited capacity. So, CAD, equipped with deep 

learning capability, learns and analyzes a radiologist’s previous interpretation data to heed 

when mistakes are likely and intervenes effectively with system 2 to avoid significant 

mistakes. This may be possible if we provide the radiologist with appropriate feedback on 

why the CAD detected something that the radiologist disagrees with. Kahneman’s team also 

observed that research subjects’ pupils dilated significantly more when involved in system 2 

cognitive activity than when involved in system 1 activity [7]. Future CAD may be able to 

take advantage of multisensory capability to actively gauge a radiologist’s attentiveness and 

to align system 2 operation mode when needed.

WHAT’S NEXT?

How deep learning will impact radiology is unknown. There are no large-scale 

implementations to evaluate. One aspect of deep learning is CAD, and we do have several 

large studies of CAD (that do not implement deep learning). We need to couple the 

development of deep learning to improve CAD performance with the development of better 

methods of implementing CAD. We should investigate at least three approaches. We are 

hopeful that there are others. (1) Implementing CAD in an interactive format in which 

radiologists only request assistance from CAD when they would like help with a case [8]. 

(2) Providing radiologists with more information upon request, such as providing similar 

imaging cases with known outcome [9,10]. (3) Alerting radiologists to cases that they 

identify as normal and CAD flags as a high probability that an abnormality exists. We 

should personalize this approach to the radiologist. For example, we train the deep learning 

algorithm on imaging data interpreted previously by individual radiologists to offer a 

personalized CAD program that, as an informed partner, would help predict and 

appropriately modify the radiologist’s behavior. We suggest giving no location information 

to the radiologist, only that he or she should reexamine the case more carefully. The 

overarching theme is to have radiologists carefully interact with the CAD output (system 2) 

only when necessary and not to blindly and needlessly offer radiologists the CAD output. In 

that way, radiologists will make the best informed decision efficiently.

Nishikawa and Bae Page 4

J Am Coll Radiol. Author manuscript; available in PMC 2020 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We expect investigators to spend a tremendous amount of effort in terms of manpower, 

money, and ideas for developing diagnostic imaging tools based on deep learning. However, 

without significant advances in how to best implement these tools clinically, we are in for 

another round of disappointments, and the revolution, like a mismatched couple on a blind 

date, will end in failure.
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