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Neural activity patterns of recent experiences are reactivated during sleep in
structures critical for memory storage, including hippocampus and neo-
cortex. This reactivation process is thought to aid memory consolidation.
Although synaptic rearrangement dynamics following learning involve an
interplay between slow-wave sleep (SWS) and rapid eye movement (REM)
sleep, most physiological evidence implicates SWS directly following experi-
ence as a preferred window for reactivation. Here, we show that reactivation
occurs in both REM and SWS and that coordination of REM and SWS acti-
vation on the same day is associated with rapid learning of a motor skill. We
performed 6 h recordings from cells in rats’ motor cortex as they were
trained daily on a skilled reaching task. In addition to SWS following train-
ing, reactivation occurred in REM, primarily during the pre-task rest period,
and REM and SWS reactivation occurred on the same day in rats that
acquired the skill rapidly. Both pre-task REM and post-task SWS activation
were coordinated with muscle activity during sleep, suggesting a functional
role for reactivation in skill learning. Our results provide the first demon-
stration that reactivation in REM sleep occurs during motor skill learning
and that coordinated reactivation in both sleep states on the same day,
although at different times, is beneficial for skill learning.

This article is part of the Theo Murphy meeting issue ‘Memory reactivation:
replaying events past, present and future’.
1. Introduction
A growing body of evidence suggests that neural activity during rest and sleep
is related to awake cognition and behaviour in a reciprocal relationship,
although the details of this relationship are poorly understood. One example
of this relationship between awake and resting neural activity is the reactivation
of recent experience during sleep. In the rodent hippocampus, sequences of
place cell activity that are experienced during behaviour are reactivated (or
replayed) during subsequent sleep [1,2]. Since its discovery, reactivation has
been observed in other brain areas, including the neocortex [3,4]. Notably, the
hippocampus and neocortex are critical for memory processing, suggesting
an important role for reactivation in the consolidation of memory. Different
terms related to memory reactivation are now common in the literature, thus
for clarification, the terms pre-/reactivation typically refer to coincident acti-
vation of task-related ensembles before or after the task epoch (as described
in this study), while the terms pre-/replay typically refer to matching a sequen-
tial pattern of cell firing before or after the task epoch, although these terms are
sometimes used interchangeably during general discussion of the phenomenon.

Behavioural evidence suggests that memory reactivation improves memory
performance [5–10]. The disruption of reactivation in the hippocampus by
using electrical impulses during sharp-wave- ripples impairs memory recall
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Figure 1. Behaviour and motor cortex cell firing during reaching. (a) Daily recording procedure. (b) Front view of reaching cage. (c) Performance on the single-pellet
reaching task. (d ) Example raster plots of six cells showing diverse firing patterns during reaches. Blue lines indicate start of reach (R) and grasp (G) times. (e) Six
successive reach trials illustrating variability in sequential firing pattern of single units. Solid blue lines indicate trial boundary (start of reach), and dashed lines
indicate grasp time. Trial duration is 1200 ms. (Online version in colour.)
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[11,12]. In addition, growing evidence suggests that the
enhanced processing of memory during sleep can improve
behaviour performance. The association of neutral sensory
stimuli such as tones during learning can improve memory
if the stimuli are played during sleep [13], a process that
appears to work by biasing replay content during sleep [14].

Still missing from the evidence is a more detailed under-
standing of how the different stages of sleep might reactivate
neural activity experienced during behaviour, and how differ-
ent kinds of memory—declarative (memory for times and
places, hippocampus-dependent) versus non-declarative
(includes motor skills)—might be reactivated. Most data sup-
porting reactivation have been sampled from a relatively
short time window of rest following behaviour (typically
less than 1 h). Since rodents experience a sleep structure
that is grossly similar to humans, i.e. cycles of slow-wave
sleep (SWS) and rapid eye movement (REM) sleep, with the
sleep immediately following behaviour rich in SWS, most
evidence for reactivation has come from SWS. One study
has demonstrated reactivation in REM sleep, but it is notable
that most of the observed reactivation actually occurred in
sleep periods prior to behaviour [15], suggesting a possible
pre-activation of upcoming experience [16].

We have sampled neural activity from 6 h sleep periods in
rats across several weeks of training on a motor skill task. We
show that coordinated reactivation between SWS and REM
sleep is correlated with the fastest skill acquisition. Reactiva-
tion is also coordinated with muscle twitches during sleep,
suggesting a functional link of reactivation. Finally, we
observed that particularly strong periods of reactivation
persist for a brief time upon waking.
2. Results
(a) Skill learning and sequential cell firing in motor

cortex
Single units were recorded from the forelimb region of the
primary motor cortex of five rats while they were trained
on the single-pellet reaching task, as well as during 3 h pre-
and post-task rest periods (figure 1a,b). Rats were naive to
the task initially, except for brief testing of paw preference
prior to surgery. Training occurred daily during a 30 min
period, typically including 60 trials, and continued until
asymptotic performance was achieved. Learning rates
varied between animals, taking between 10 and 20 days to
reach maximum success rates of 60–85%. Although perform-
ance was variable, two rats exhibited a more rapid acquisition
of the skill, showing major performance gains from Day 3 to
Day 4, followed by a more gradual increase in performance
thereafter (figure 1c, Rats 1 and 2). Three rats exhibited a
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Figure 2. Template matching of sequential unit firing during sleep. (a) Template of sequential firing during reaches and example matches from task, SWS and REM.
(b) Distributions of template match scores pooled from all animals for 1 h of Rest 1 and 2 sleep and 30 min of reaching task. Strong matching is evident during the
task, but not during Rest 1 or 2. (c) Group data for template matching (no temporal compression). Overall distributions of match strength during sleep are weak
compared to task. REM and SWS match strength was similar and neither REM nor SWS was significantly different between Rest 1 and 2. (d ) Template matching
strength for faster (8×) or slower (0.12×) replay compression. The strongest matches occur when no compression is applied. Error bars are s.e.m. of n= 5 rats.
(Online version in colour.)
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gradual increase in success over several days that has been
reported previously using Long Evans rats (figure 1c, Rats
3–5) [17–19]. Because of this broad difference in the learning
rate, we applied the terms rapid and gradual learners to
distinguish between the two groups of animals.

Individual cells typically fired at similar times with
respect to the start of the reach across trials, although the
time of peak firing varied considerably over the population
of simultaneously recorded units (figure 1d ). When units
were sorted according to the time of maximum firing, a
sequential pattern of activation became clear during
1200 ms windows surrounding reaches (figure 1e). Although
there was trial-to-trial variability in firing, the underlying
sequential pattern was evident. We also compared ensembles
for successful versus failed reaches and found them to be
similar, with correlation coefficients in the range 0.4–0.8 (see
electronic supplementary material, figure S4). Similarity
between success and fail ensembles typically increased as
training progressed (electronic supplementary material,
figure S4). When the whole reach was divided into prepara-
tory, grasp and return segments, the preparatory and return
segments showed the largest increases in similarity between
success and fail trials, whereas the grasp segment did not
show as much of an increase.

Because of the sequential nature of unit firing during the
task, we considered the possibility that the sequential pattern
(figure 1e) would be replayed during rest, as previously
reported for spatial learning tasks in both the cortex and hip-
pocampus. Averaging unit activity across reach trials
consistently yielded a clear template (figure 2a); however,
we observed only modest matching of the template in
either Rest 1 or 2 (figure 2a,b). The distribution of
standardized match scores pooled from the rest periods of
all animals lacked strong matches compared to task matches
(figure 2c). Breaking down sleep into REM and SWS showed
that match strength in REM and SWS was similar (figure 2c),
and neither SWS nor REM showed a clear difference in match
strength between Rest 1 and 2, suggesting that no sequen-
tially organized reactivation was detected either in SWS or
in REM sleep (figure 2c). We also considered the possibility
that replay was temporally compressed with respect to the
task; however, the examination of compression factors from
8× to 0.125× did not reveal evidence of faster or slower
replay (figure 2d ). Considering the clear sequential activity-
patterns during the task (figures 1e and 2a, left) and
previous evidence of sequential replay in the hippocampus
and neocortex, these negative results were rather surprising.
However, they are consistent with a similar study in
which they did not report sequential replay following reach
training [20].
(b) Principal component activation during sleep
Lacking strong evidence for sequential replay, we next con-
sidered the possibility that the coincident activation of
ensemble activity during rest was more important for skill
learning, as this has been reported recently [20]. Based on
the established methods [21], principal component (PC)
analysis was performed on a task activity matrix constructed
from concatenated 1200 ms reach segments (as shown in
figure 1e). The first PC, which showed consistently strong
activation at reach times (figure 3a), was used to construct
an activation time series for each rest epoch, which was
then segmented into REM and SWS epochs for analysis.
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Figure 3. PCs of reaching activity are activated during REM and SWS. (a) Reach-triggered average of PC activation shows PC1 is related to reach behaviour. Shaded region
is mean ± s.e.m. of randomly sampled time points in task. (b) Example time course of PC activation in Rest 1 and 2 against the background hippocampal LFP spectrogram.
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PC activation during sleep revealed a dynamic difference
between REM and SWS. Similar to previous reports for
declarative and procedural tasks [20,21], there was an
increased activation strength in Rest 2 SWS (figure 3b).
Additionally, we observed strong activation during REM
sleep that was more apparent in Rest 1 (figure 3b). Calculat-
ing the average activation strength for REM and SWS for
all training days revealed that REM sleep activation was sig-
nificantly stronger than SWS activation (t4 = 3.5, p<0.05)
(figure 3c(i)). Furthermore, the activation in REM was signifi-
cantly stronger in Rest 1 compared to Rest 2 (t4 = 2.8, p <
0.05), whereas SWS activation was significantly stronger
in Rest 2 (t4 = 2.8, p< 0.05) (figure 3c(i)). Previous results
have shown that the distribution of PC activation strength
in SWS is particularly long-tailed [21]. To compare distri-
butions of REM and SWS activation strength, we pooled
average activation scores from individual REM and SWS
epochs for all days and all rats. Comparing the SWS distri-
butions showed that the average increase in Rest 2
activation strength was driven mainly by an increase in the
upper tail of the distribution (similar to previous reports of
SWS activation [21]). Comparing the REM distributions
showed that the stronger Rest 1 activation was owing to an
overall increase in activation (figure 3c(ii)).
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We also examined how changes in sleep architecture
might impact the net amount of activation that occurred
during the rest periods. The quality of sleep was better
during Rest 1 compared to Rest 2; the rats spent more time
sleeping (figure 3d(i); t4 = 6.7, p< 0.01) and the sleep was less
fragmented in Rest 1 compared to Rest 2 (t4 = 6.7, p< 0.01,
data not shown). Additionally, there was a strong tendency
for a greater allocation of REM sleep in Rest 1 and SWS in
Rest 2, although they did not reach significance (figure 3d(ii);
t4 = 2.65, p=0.056 for both REM and SWS since total sleep is
the sum of REM and SWS). The combination of more REM in
Rest 1 with the stronger activation strength of REM in Rest 1
resulted in a greater net activation in REM for Rest 1
(figure 3e; t4 = 4.4, p<0.05). Although there was stronger
SWS activation in Rest 2, the net SWS activation was similar
in Rest 1 and Rest 2 (figure 3e; t4 = 0.3, p=0.80) because the
stronger activation was offset by a reduced sleep time in
Rest 2.

(c) Functional role of principal component activation
during sleep

To gain a better understanding of the relationship between
PC activation in sleep and learning, we examined when the
strongest activation occurred during training. From the distri-
butions of average activation scores for individual REM and
SWS epochs, we selected those above the 95th percentile for
each animal and named these epochs big-REM and big-
SWS, respectively, and those below threshold as reg-REM
and reg-SWS. The occurrence of big-REM and big-SWS was
then plotted on the performance curve for each rat (figure 4a).
In line with the observed activation strength in Rest 1 and
Rest 2, big-REM tended to occur more frequently in Rest 1
(figure 4a, top row, red markers above the performance
curve) and big-SWS tended to occur in Rest 2 (figure 4a,
middle row, green markers below the performance curve).
Furthermore, both big-REM and big-SWS showed a non-
random allocation across training days, which was confirmed
by significant χ2 tests for all rats (figure 4a). For the two rapid
learners (rats 1 and 2), there was a clear allocation of big-REM
and big-SWS to days around the large gain in performance,
whereas the allocation in gradual learners (rats 3–5) was
more distributed across days. We next examined the co-
occurrence of big-REM and big-SWS. Because big-REM
occurred more in Rest 1 and big-SWS occurred more in
Rest 2, we analysed the co-occurrence of big-REM in Rest 1
and big-SWS in Rest 2. We generated control distributions
of the number of co-occurring Rest 1 big-REM and Rest 2
big-SWS by randomly assigning big-REM and big-SWS
across training days. Days for which the actual number of
co-occurring Rest 1 big-REM and Rest 2 big-SWS exceeded
the expected number were indicated on the performance
curve (figure 4a, bottom row, yellow marker). We found
that the two rapid learners showed a clear allocation of co-
occurring big-REM and big-SWS on the 2 days prior to
their large performance gain. For the gradual learners, it
was not easy to relate co-occurrence with performance
improvement because these animals did not exhibit clear
performance gain on a single day.

To explore the relationship between sleep activation and
learning further, we analysed the relationship between the
daily change in performance (Day (n) to Day (n+ 1)) and
the amount of activation in REM or SWS during Rest 1 or
Rest 2. When data from all rats were pooled together, no sig-
nificant relationship was observed. When rapid and gradual
learners were separated, however, significant correlations
were observed in rapid learners, but not gradual learners
(figure 4b). We compared two measures: net activation
(sum of activation strength in either REM or SWS) and aver-
age activation (net activation divided by duration of REM or
SWS). In rapid learners, there was a significant correlation
between the net REM activation in Rest 1, but not the average
REM activation, and performance change. Since the average
measure factors out time, the correlation between net acti-
vation and performance change was likely owing to the
observed changes in sleep architecture, i.e. the increase in
overall sleep time in Rest 1 (figure 3d(i)) as well as the
increased allocation of REM in Rest 1 (figure 3d(ii)). Rapid
learners also exhibited a significant correlation between
SWS activation in Rest 2 and performance change. Both net
and average activation measures were significantly correlated
with learning, indicating that the correlation was driven by
the increase in activation strength in Rest 2 SWS compared
to Rest 1. The SWS activation in Rest 2 also exhibited a
time dependence relative to the task, whereas activation in
REM or Rest 1 SWS did not. Activation in Rest 2 SWS was
strongest immediately following the task and decreased sig-
nificantly within the first hour following the task (electronic
supplementary material, figure S5), which is consistent with
the previously observed time course of memory reactivation
in rat medial prefrontal cortex [22].

We found further evidence for a functional role of sleep
activation by examining its relationship with electromyo-
graphic (EMG) activity. For each animal, we performed a
cross-correlation of the activation signal with the rectified
EMG signal for all days and then calculated the average
cross-correlation for each animal. After calculating the aver-
age cross-correlation across rats, we observed significant
relationships in both REM and SWS (figure 5). In Rest 1,
REM activation was significantly correlated with EMG
activity within a narrow window from −100 to 100 ms (com-
pared to time-shuffled EMG; ANOVA F1,4 = 12.1, p< 0.05). No
significant correlation between REM activation and EMG
activity was observed in Rest 2. In SWS, a reciprocal relation-
ship was observed: no relationship was observed in Rest 1, but
a significant relationship was observed in Rest 2 within the
same time window of −100 to 100 ms (ANOVA F1,4 = 7.8, p<
0.05). To verify the relationship between sleep activation and
EMG, we performed two additional analyses. First, we calcu-
lated the triggered average of sleep activation at times of
significant EMG activity and found that the pattern of trig-
gered activation corroborated the cross-correlation analysis
(electronic supplementary material, figure S6). Second, to
rule out the possibility that the activation–EMG relationship
was not a by-product of brief arousals, we calculated the trig-
gered average of firing rate at times of significant EMG
activity. Although firing rate did increase after EMG twitches,
it was similar between Rest 1 and 2, whereas PC activation was
not (electronic supplementary material, figure S7).

In summary, we found evidence of REM pre-activation
and SWS reactivation coexisting in the motor cortex during
skill learning. We also found evidence that strong REM pre-
activation and strong SWS reactivation are functionally
linked to skill improvement, as the co-occurrence of REM
and SWS activation was temporally linked to performance
improvements, specifically for the two rapid learners.
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Furthermore, both REM pre-activation and SWS reactivation
were coordinated with EMG activity.
(d) Activation surrounding big-REM and big-SWS
To examine the relationship between REM and SWS acti-
vation on a finer time scale, we constructed triggered
averages of the activation time course centred on the start
of REM. We constructed separate time courses for big- and
reg-REM to test whether the stronger REM activation was
preceded by stronger SWS activation. In Rest 1, there was
no difference between big- and reg-REM during the 2 min
of SWS preceding the REM epoch (figure 6a). In Rest 2, how-
ever, there was evidence of a coordination between SWS and
REM activation, as big-REM activation was preceded by
significantly stronger activation in SWS (ANOVA F1,4 = 13.2,
p<0.05). Because most REM epochs frequently end with
waking, we also analysed the activation in the subsequent
wake periods following REM. Interestingly, big-REM acti-
vation in Rest 1 persisted upon waking, whereas reg-REM
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activation returned to pre-REM levels upon waking.
Although the waking-state activation following big-REM
was somewhat variable, it was significantly stronger than
the activation following reg-REM in the 2 min wake period
(ANOVA F1,4 = 10.4, p<0.05). A similar persistence of big-
REM into wake was not observed in Rest 2. One possible
explanation for the apparent persistence of big-REM acti-
vation into wake is a difference in behaviour upon waking,
i.e. greater movement upon waking. To test this possibility,
we constructed a similar time course using the EMG signal
(electronic supplementary material, figure S8), but there
was no difference between EMG activity for the big- and
reg-REM time courses. Therefore, a persistent activation
into wake following big-REM was not induced by behaviour,
at least not behaviours associated with neck-muscle EMG,
but rather it indicates a tendency for neural activity in
big-REM to be sustained during the subsequent wake.

We also performed a similar analysis for big-SWS acti-
vation, examining the activation time course from wake to
SWS and back to wake (figure 6b). In Rest 1, there was no
difference between big- and reg-SWS activation time courses
in either the wake preceding or the wake following the SWS
epoch. However, in Rest 2, the big-SWS activation time course
was significantly stronger than reg-SWS, for both the 90 s of
wake preceding (ANOVA F1,4 = 8.4, p<0.05) and the 90 s of
wake following (ANOVA F1,4 = 9.6, p<0.05) the SWS epoch.
We also verified that these differences in activation levels
were not a result of differential EMG activity (electronic
supplementary material, figure S8).

In summary, we found evidence of a coordinated SWS and
REM activation in Rest 2. We also found evidence of a coordi-
nated sleep and wake activation: big-REM activation was
extended into the subsequent wake in Rest 1 and big-SWS was
preceded and followed by strongly activated wake in Rest 2.
(e) Activation in sleep spindles
While analysing the time course of REM activation, we noted
that activation had already started rising approximately 30 s
prior to the start of the REM epoch for both big- and reg-
REM (end of SWS epoch in figure 6a). It has also been
reported that PC activation during SWS is associated with
spindle oscillations [20,21]. Given this evidence, we investi-
gated PC activation within spindles, focusing on the
spindle-rich pre-REM period. We confirmed that the average
activation strength within spindles was significantly stronger
compared to non-spindle SWS (figure 7a). Further analysis of
the activation time course within spindle oscillations revealed
a dynamic difference between Rest 1 and Rest 2. Compared to
spindles in Rest 1, there was significantly stronger activation
in the early part of spindles in Rest 2, suggesting that task
activation occurs preferentially early in the spindle oscillation
(figure 7b,c).

We further analysed spindle power and activation
strength in the spindle-rich pre-REM period to explore a
possible difference between big-REM epochs and reg-REM
epochs. An increase in LFP spindle power occurred prior to
both big-REM and reg-REM epochs (figure 7d ); however,
the increase was significantly greater for big-REM epochs in
both Rest 1 (ANOVA F1,4 = 19.8, p<0.05) and Rest 2
(ANOVA F1,4 = 17.0, p<0.05). Even though there was a differ-
ence in pre-REM spindle power prior to reg- and big-REM
epochs in Rest 1 and Rest 2, activation strength in the
pre-REM period was only stronger prior to big-REM in
Rest 2. Figure 7e summarizes the activation strength data
from figure 6b, and the spindle power from figure 7d to illus-
trate that pre-REM activation strength leading into big-REM
is only greater than reg-REM in Rest 2, whereas spindle
power leading into big-REM is greater than reg-REM in
both Rest 1 and Rest 2.
3. Discussion
Many studies have demonstrated memory trace reactivation
in SWS following training on a declarative memory tasks,
but evidence has been lacking for memory reactivation
during REM sleep or in the context of procedural tasks.
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We have demonstrated the activation of task-related ensem-
bles during both REM and SWS in rats learning a motor skill
task. Activation in SWS was strongest following task train-
ing in Rest 2 and was associated with spindles, whereas
REM activation predominated in Rest 1 and occurred
along with a change in sleep architecture towards more
REM sleep. REM and SWS activation were functionally
linked to skill learning, as Rest 1 REM and Rest 2 SWS acti-
vation were correlated with performance gains in the two
rapid learning rats. Additionally, in all rats, there was a sig-
nificant correlation with EMG activity for Rest 1 REM and
Rest 2 SWS activation. The strongest activation during
REM in Rest 1 and SWS in Rest 2 also had the intriguing
property of persisting into waking following the sleep
epoch.
(a) Rest 1 rapid eye movement activation
Our results demonstrated strong activation of reach-related
activity during Rest 1 REM sleep. The lack of prior evidence
for reactivation during REM sleep may in part be owing to
limited sampling, as REM sleep comprises only approxi-
mately 20% of sleep and most reactivation studies record
30–60 min of sleep. Notably, one of the earliest reports of hip-
pocampal memory replay provided evidence of REM replay
using a template matching procedure [15]. Although it was
termed ‘replay’, most significant template matches in that
study [15] were detected in pre-task sleep. This observation
suggests that the REM activation they observed is a form of
pre-activation of task activity, similar to our results. Preplay
of sequential place cell activity has been reported in the
hippocampus and explained either as an allocation of
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pre-existing circuits [16,23] or a combination of pre-existing
and novel circuits [24]. The concept of preplay has been ques-
tioned, however [25]. Comparisons between our results and
those of Louie & Wilson [15] are limited by several differ-
ences: hippocampus versus motor cortex recording, maze
running versus motor skill task, template matching versus
PC activation. In addition, it is important to note the differ-
ence of time scales. Louie & Wilson [15] used templates
based on a 1 s binsize and further smoothed them with a
1.5 s Gaussian kernel, whereas a 50 ms binsize resolution
was used in our study. This represents a significant difference
in time scale. Thus, although we both observed significant
pre-activation during REM, whether or not the two effects
reflect similar processes is questionable.

The strong Rest 1 REM activation was accompanied by an
increase in REM sleep, caused by an increase in overall sleep
time as well as increased allocation of sleep to REM. The com-
bined effect led to an increase in total activation during REM
that was correlated with the rate of learning on the reaching
task for the two rapid learners. The change in sleep structure
was similar to changes described in early studies of learning
and REM sleep. In these studies, rats trained on a conditioned
avoidance task exhibited a significant increase in SWS
immediately following the training session, and then
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exhibited a transition to a more prolonged increase in REM
sleep 4–6 h after training [26]. If the delayed increase in
REM sleep was prevented by sleep deprivation, then learning
was impaired [27]. A recent study using a task similar to ours
did not report an increase in reach accuracy following a 2 h
sleep period, although an improvement in reach kinematics
and ‘neural speed’ (shift in peri-event time histogram
(PETH) peak) was observed [20]. One possible explanation
is that the motor cortex circuits had undergone refinement
and induced kinematics and neural speed improvement,
but that the 2 h rest period, which was SWS-rich, was too
short to include enough REM to improve reach accuracy. It
is possible that further sleep, which included more REM,
would allow for activation in the newly refined circuits and
result in a performance improvement.

(b) Slow-wave sleep activation
In agreement with a previous report [20], our results demon-
strate strong activation of reach activity in post-task SWS.
Previous studies have demonstrated that training on the
reach task results in synaptic strengthening in the motor
cortex, suggesting that motor cortex circuits are undergoing
refinement following training, possibly during SWS [28–30].
Supporting this idea, recent imaging of dendritic spine
dynamics during reach training has shown that new spines
are formed during sleep following reach training [31]. Fur-
thermore, REM sleep ultimately refines these newly formed
spines, pruning some and stabilizing others [32]. Under
these conditions of circuit refinement, it is not expected that
a template of sequential activity based on previous behaviour
would continue to match for very long in sleep. Indeed, this
refinement possibly explains the decay in SWS activation we
observed during the first hour of Rest 2, as well as the lack of
sequential template matching that we and others [20]
observed.

If the purpose of the circuit refinement is to improve reach
accuracy, however, then the activity in REM, which mostly
reflects the newly refined circuits, might be expected to
pre-activate the upcoming and presumably more successful
reaching behaviour. In summary, our data, together with
previous behavioural and anatomical results, suggest that
both SWS and REM activation are important for skill learn-
ing, although at different times relative to behaviour. Ideally,
a continuous 24 h recording would provide a complete picture
of the time course of SWS and REM activation.

The activation that extended into waking following a bout
of strong REM activation in Rest 1 and strong SWS activation
in Rest 2 is an interesting observation. Whether or not it is
necessary for the consolidation process is unclear, and
future experiments will need to test this by selectively
disrupting/supressing motor cortex activity during this time.

(c) Functional implications of rest activation
We observed a significant correlation of sleep activation and
muscle activity in Rest 1 REM and Rest 2 SWS, suggesting a
direct link between sleep activation and muscle activity. Evi-
dence from neonatal rats indicates that muscle twitches
during sleep are not random events, but instead exhibit
spatio-temporal structure that undergoes refinement [33].
Furthermore, these early twitches are coordinated with spindle
oscillations, the earliest patterned activity in the neocortex,
implying a functional relationship between muscle twitches
and brain activity during development [34]. It is possible
that a similar process continues in adulthood, serving to
shape motor circuits in order to support new skills. Muscle
twitching in REM sleep is well documented and evidence
suggests that they are not random events or temporary
lapses in REM sleep paralysis. Twitching in REM develops
throughout the duration of the REM epoch, increasing in fre-
quency such that longer REM epochs exhibit more twitches
[35]. Our data support a continued cooperation between
muscle activity and sleep activation in adults that facilitates
motor skill learning.

We also observed a correlation between activation and
daily performance improvements in the two rapid learning
rats. The net activation in Rest 1 REM and both the net and
average activation in Rest 2 SWS correlated with performance
gains. This pattern of correlation was similar to the corre-
lation of EMG with Rest 1 REM and Rest 2 SWS activation,
providing further support that activation in both SWS and
REM are important for skill learning. This hypothesis is
further strengthened by the observation that most of the co-
occurring big-REM and big-SWS took place just prior to the
large performance gains for the two rapid learners. It is
unclear why the correlation between activation and daily per-
formance was not observed in the gradual learners, but one
possibility is that the record of task performance is noisy
[19,30,36,37], thus the smaller changes in performance in
the gradual learners may have been affected by measurement
noise. A more detailed behavioural analysis, as is often done
in stroke models [38,39], may reveal a correlation with sleep
activation.
(d) Slow-wave sleep and spindle activation
The importance of spindle oscillations in memory consolida-
tion is supported by numerous studies, for both declarative
[40–43] and procedural [44–46] tasks. In agreement with
these findings, we observed an increase in spindle density
following training. Associated with this increase in spindle
density was an increase in activation strength. This is also
in agreement with previous studies using PC analysis to
measure memory activation, in both declarative [21] and pro-
cedural [20] tasks. We further identified the early part of the
spindle oscillation as the critical window in which memory
activation occurs. Since spindles are frequently associated
with down- to up-state transitions [43], our results implicate
activity directly following an up-state transition as important
windows for memory consolidation.

We also identified pre-REM spindles as especially impor-
tant for memory activation. Although this pre-REM period of
enhanced spindle activity was identified decades ago [47–49],
little is known about its functional significance. We have
found that pre-REM spindles are enhanced prior to REM
epochs that display particularly strong activation strength.
Furthermore, this pre-REM period itself displays enhanced
activation in Rest 2, raising the possibility that strong pre-
REM activation and strong activation in the following REM
epoch are coordinated and promote memory consolidation.
Interestingly, many serotonin-specific reuptake inhibitors
(SSRIs), commonly used to treat depression, suppress REM
sleep to varying degrees [50–52], yet this suppression does
not affect cognition or behaviour. It has even been reported
that motor skill memory is improved following REM sup-
pression with SSRI treatment [53]. Although most studies
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of the effects of antidepressants on REM sleep do not take
into account pre-REM sleep, two have reported intriguing
effects on the pre-REM sleep period. One study reported an
increase in pre-REM sleep time that paralleled the decrease
in the duration of REM sleep caused by SSRI treatment
[52]. Another study that used a norepinephrine-specific
reuptake inhibitor found a reduction in the amount of REM
and pre-REM sleep and noted that the reduction in pre-
REM was highly correlated with memory deficits [54].
Thus, the role of REM sleep in memory consolidation may
come from an interaction between pre-REM and REM,
rather than REM sleep per se.

In summary, we have demonstrated the activation of task-
related ensembles during REM and SWS as rats were trained
daily on a skilled reaching task. REM sleep activation was
strongest in Rest 1 sleep and was accompanied by an increase
in the amount of REM sleep. SWS activation was stronger in
Rest 2, in particular during spindles and the spindle-rich pre-
REM period. Both REM and SWS activation was correlated
with performance improvements and EMG activity. Thus,
our data support a coordinated role of REM and SWS
activation during motor skill learning.
90655
4. Methods
(a) Animals and surgery
Five adult male Fisher-Brown Norway rats (Rattus norvegicus)
were used in these experiments. The rats were between four
and nine months old at the time of surgery and weighed between
350 and 450 g. Animals were housed in a reverse light-cycle
room (10.00 lights off, 22.00 lights on) and experiments were con-
ducted during the dark cycle. Animals were allowed free access
to food and water except during training on the reaching task,
when they were food restricted to 85% body weight. All pro-
cedures were performed in accordance with the Canadian
Council for Animal Care guidelines as well as University of
Lethbridge guidelines.

After brief behavioural testing to determine paw preference
on the single-pellet reaching task (described below), a hyperdrive
containing an array of 12 tetrodes and 2 reference electrodes [55]
was implanted at the surface of the forelimb region of the pri-
mary motor cortex contralateral to the preferred paw
(coordinates: 1.0 mm anterior, 2.5 mm lateral to bregma; see elec-
tronic supplementary material, figure S1). Additionally, a twisted
bipolar electrode (Teflon insulated stainless steel: 75 µm conduc-
tor) was implanted in the dorsal hippocampus to record the local
field potential (LFP; coordinates: 3.8 mm posterior, 2.6 mm lat-
eral, tip separation 0.6 mm). A pair of wires (Teflon insulated
multi-strand stainless steel) was inserted into the neck muscle
to record EMG activity. The entire assembly was cemented to
the skull with dental acrylic and jeweller screws. Following sur-
gery, the rats received 3 days of analgesic injections (Metacam)
and 5 days of antibiotics (Baytril). They were allowed one
week to recover before recording began.

(b) Recording and behavioural training
Recording was done with digital Cheetah SX data acquisition
software (Neuralynx, Boseman, Montana). For spike recording,
the signal was bandpass filtered (600–6000 Hz) and sampled at
a rate of 32 kHz. One electrode in the drive was lowered to the
white matter below the cortex and used as a reference for the
tetrode recordings. LFP and EMG signals were bandpass filtered
(0.1–1000 Hz), sampled at 2 kHz and referenced to a skull screw
above the cerebellum. During the habituation period prior to
training, tetrodes were slowly lowered over the course of one
to two weeks to deep layers of the motor cortex. During the train-
ing period, small adjustments were made if necessary at the end
of daily recording to maximize cell yield.

Prior to training, the rats were food restricted to 85% of their
free-feeding weight. The recording procedure each day occurred
during the animal’s dark cycle in a dimly lit room. The procedure
involved a 3 h pre-task rest epoch (Rest 1), a 30 min task epoch
and another 3 h post-task rest epoch (Rest 2, figure 1a). During
the rest epochs, the rat rested in a flower pot lined with towels,
and the behaviour was recorded with an infrared security
camera. During the task epoch, the rat was placed into a polycar-
bonate box designed for the single-pellet reaching task. The front
of the box contained a 1.5 cm slot opening through which the rat
reached to retrieve a sugar pellet (45 mg, Bio-Serv, Frenchtown,
NJ, USA). The pellet was positioned in a well that was 1.5 cm
from the opening and on a shelf that was 3 cm high (figure 1b).
A high-speed infrared camera was used to record the task train-
ing epoch at 200 fps (Prosilica GigE). Additionally, an infrared
beam across the front of the cage detected reaches, and this
timing information was logged in the cheetah recording
system. Before training on the reaching task began, there was a
habituation period of one week. During habituation, the daily
recording procedure was the same except that during the 30-
min task period, the door to the shelf remained closed and the
rat did not reach for pellets. During this time, the experimenter
occasionally scattered pellets on the floor of the cage for the rat
to eat. This habituation period ensured that the rat experienced
all environmental factors except for reaching into the slot.

The rats were naive to the skill training except for the initial
testing to determine paw preference. Skilled reach training typi-
cally consisted of 60 trials that were separated by 20–30 s and
continued daily until asymptotic performance was achieved for
three consecutive days (less than 5% increase in performance
across 3 days; figure 1c). Between trials, a sliding door blocked
access to the slot, and this allowed control over the time between
trials and the total number of trials completed each day. The
same experimenter did the training each day and recorded the
performance as a percentage of successful reaches. A successful
trial was one on which the rat grasped the pellet, retrieved it
and ate it. All other trials were considered unsuccessful, includ-
ing misses and attempts where the pellet was grasped but
dropped during retrieval. The performance and reach timing
were later scored more accurately using the high-speed video
and this time was used for analysis.

At the end of the experiment, one electrode tip from each
tetrode was marked by passing DC current through it (5 µA
for 10 s). After Nissl staining, electrode tip locations were
confirmed in deep layers of motor cortex (see electronic
supplementary material, figure S1).
(c) Sleep classification and spindle detection
Classification of sleep into REM and SWS epochs was based on a
combination of EMG and hippocampal LFP activity. The power
of the EMG signal was thresholded visually to segment the
recording into epochs of rest or movement. Within rest epochs,
the classification of REM was based on a ‘REM’ signal calculated
by dividing hippocampal theta power by hippocampal delta
power and EMG power. Theta power was calculated by filtering
the LFP (6–10 Hz), squaring the result and smoothing with a 1 s
moving average. Delta power was calculated similarly except for
filter frequency (1–5 Hz). EMG power was calculated by squar-
ing the raw recording and smoothing with a 1 s moving
average. The REM signal was calculated as theta/delta/EMG.
For each rat, this signal was thresholded (greater than 3 s.d.) to
obtain start/end timestamps for REM. The remaining rest
period was classified as SWS or quiet wake based on the strength



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190655

12
of upper delta power (2–6 Hz, greater than 2 s.d.). Automated
sleep classification was confirmed by visual inspection and
refined manually if necessary. Manual refinement was done by
plotting REM and SWS epochs as coloured patches on top of
the hippocampal LFP spectrogram. The experimenter could
then click on a REM or SWS epoch to adjust the start or end
time. Manual refinement was necessary mainly to resolve small
overlaps at SWS–REM transitions. The same experimenter
performed all sleep structure analysis.

Spindles were detected from the LFP of one of the tetrode
channels. Since spindles in the rodent can be dissociated into
two types, low-voltage spindle (LVS) and high-voltage spindle
(HVS), we detected both forms of spindle, but then focused
our analysis on LVSs because they are related to memory reacti-
vation, whereas HVSs are not [43]. For LVS detection, the LFP
was filtered between 10 and 20 Hz and then squared to obtain
a power signal. Peaks in the power signal that were greater
than 1.5 s.d. were expanded down to 0.75 s.d. to give a list of
start and end timestamps. Gaps in timestamps less than 100 ms
were merged together and a minimum duration of 200 ms was
required. Spindle frequency was calculated as the mean of the
peak-to-peak frequency within the oscillation. HVSs are charac-
terized by a lower frequency range and higher amplitude
compared to LVSs. They were calculated similarly to LVS
except that the LFP was filtered between 6 and 10 Hz first and
peaks in the power signal had to exceed 3 s.d. For K-complex
detection, the LFP was filtered in the delta band (1–5 Hz) and
then a time-shifted (35 ms) difference signal was calculated.
The time-shifted signal emphasized large amplitude fluctuations
on the time scale of the K-complex and peaks in this signal (mean
+ 3 s.d.) were considered detected K-complexes. Example detec-
tion of LFP events can be seen in electronic supplementary
material, figure S3. The period just prior to REM sleep is charac-
terized by a marked increase in LVS activity [56]. To quantify this
pre-REM spindle power, the average value of the Hilbert trans-
formed spindle LFP (10–20 Hz) was calculated in 10 s bins
around the start of REM epochs.

(d) Spike sorting
Spikes were sorted using automated clustering (Klustakwik,
K. Harris) followed by manual refinement (MClust). Several
features were used to assess the quality of sorted units: the
inter-spike interval histogram (less than 0.2% spikes in 2 ms
refractory period), cross-correlation with other units (no peak
in refractory period), waveform shape with low variance and
consistent firing rates/patterns over the whole recording. Quality
was further assessed by calculating the L-ratio [57]. The majority
of units had an L-ratio less than 0.1 (99th percentile: 0.09) and
units with L-ratios greater than 0.12 were excluded ([57];
electronic supplementary material, figure S4).

(e) Principal component activation
PC activation was calculated according to the method described
by Peyrache et al. [21]. A task activity matrix was constructed
from binned spikes (ncell × nbin, 50 ms bin size) by concatenating
1200 ms reach segments together (as in figure 1e). Each row of the
activity matrix was z-scored by subtracting its mean and dividing
by its standard deviation, and the PC analysis was performed.
Determination of signal PCs was based on the theoretical
distribution of eigenvalues (Marcenko–Pastur distribution) as
described previously [21]. The first PC, which was consistently
related to reaching (figure 3a), was used to construct a projector
operator that was compared against activity in Rest 1 and 2. Only
the first component was analysed because it was the only one
consistently above signal threshold across all rats and days (the
number of signal PCs and the variance captured by the first
PC are shown in electronic supplementary material, figure S2).
Each column vector of the z-scored rest activity matrix was left
and right multiplied against the projector operator to form a
time series of activation strength. This raw activation measure
and a z-scored measure derived from a control distribution of
activation time series were analysed. To generate the control dis-
tribution, the analysis was repeated on surrogate rest activity
matrices (n=500) constructed from Poisson spike trains based
on the real firing rates of the individual cells.

The PC activation strength was quantified by taking the aver-
age value in each REM and SWS epoch. The individual epoch
measures were then used to calculate the average REM or SWS
activation strength in Rest 1 and 2. Additionally, for each
animal, epochs from all days were pooled to form a distribution
of REM and SWS activation strengths. From this distribution,
the 95th percentile was used to identify strong REM and SWS
activation epochs (termed big-REM and big-SWS).
( f ) Template matching
Replay of sequential activity was analysed using methods
described previously [4,22]. A task template was constructed
by averaging the 1200 ms reach segments of the activity matrix
(described above). Replay strength was calculated as the corre-
lation coefficient of the template and an equally sized segment
from the rest activity. A time series of replay strength was calcu-
lated by advancing the rest segment one bin at a time. The raw
match score was z-scored by generating a distribution of match
scores (n= 500) based on Poisson spikes similar to the PC acti-
vation score. Temporal compression of replay was assessed by
varying the bin size of the rest activity from 6.25 to 400 ms,
which corresponds to 8× (faster)–0.125× (slower) temporal
compression.

Reported p-values are based on paired t-tests or repeated-
measures ANOVA unless otherwise noted (*p<0.05, **p< 0.01,
***p< 0.001).
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