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Sharp-wave ripples are complex neurophysiological events recorded along the
trisynaptic hippocampal circuit (i.e. from CA3 to CA1 and the subiculum)
during slow-wave sleep and awake states. They arise locally but scale brain-
wide to the hippocampal target regions at cortical and subcortical structures.
During these events, neuronal firing sequences are replayed retrospectively or
prospectively and in the forward or reverse order as defined by experience.
They could reflect either pre-configured firing sequences, learned sequences
or an option space to inform subsequent decisions. How can different
sequences arise during sharp-wave ripples? Emerging data suggest the hippo-
campal circuit is organized in different loops across the proximal (close to
dentate gyrus) and distal (close to entorhinal cortex) axis. These data also dis-
close a so-far neglected laminar organization of the hippocampal output
during sharp-wave events. Here, I discuss whether by incorporating cell-
type-specific mechanisms converging on deep and superficial CA1 sublayers
along the proximodistal axis, some novel factors influencing the organization
of hippocampal sequences could be unveiled.

This article is part of the TheoMurphymeeting issue ‘Memory reactivation:
replaying events past, present and future’.
1. Introduction
The hippocampus is crucial for episodic memory, an ability that relies on the
formation of a cognitive map [1]. According to this theory, a set of hippocampal
pyramidal cells fire selectively to map relationships between locations where
events happen. During encoding, firing sequences of hippocampal cells are coor-
dinated by theta (4–12 Hz) and gamma oscillations (40–80 Hz) and activated in a
manner ordered by experience [2]. In a given theta cycle, spikes from place cells
organize along the past, present and future events [3–7]. This mechanism
allows behavioural sequences to be chunked into theta sequences [4,8,9]. Presum-
ably, theta sequences facilitate encoding of information by plasticity mechanisms
relying on the relative timing between spikes [10,11].

Offline reinstating of this activity has been traditionally viewed as a form of
replaying sequences for their subsequent consolidation via high-frequency
induced plasticity [12–14]. Replay was initially described during sleep in
association with fast oscillations or ripples, but it was also observed during
exploratory pauses [15–17]. Moreover, the content of replay (i.e. the organiz-
ation and identity of neuronal sequences) was shown to vary substantially
across states and behaviour [18]. In the light of this new evidence, it was pro-
posed that replay may serve a wider range of cognitive functions than
originally thought [19,20].

Here, I first review recent data on hippocampal replay studied in rodents to
illustrate how our conceptions have evolved to accommodate a more complex
perspective. In spite of this conceptual shift, we still lack a physiological under-
standing on how different forms of replay are generated. A major difficulty in
updating this view is that our current models have not yet considered the cell-
type and region specificity of hippocampal microcircuits. However, emerging
data suggest a specific organization of the hippocampus along the dorso-ventral
(or septo-temporal), proximodistal (transverse) and deep–superficial (radial)
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Figure 1. Miscellaneous patterns of replay potentially underlying different processes of memory consolidation, retrieval, planning and imagination. As the animal
experiences a succession of events (represented by letters), some hippocampal neurons fire selectivity to build an abstract representation or cognitive map. During
periods associated with sleep and immobility, sequences of these ‘place cells’ are co-activated in an orderly manner coordinated by sharp-wave ripples (SPW-ripples).
The order of replay reveals the multifactorial influence of brain state and microcircuit physiology, as well as other procedural and cognitive factors. According to use,
replay can be retrospective (engaging sequences already experienced) or prospective (engaging sequences ahead in time). According to the order, replay can be
forward (in the same order as experienced) or reverse (opposite to experienced). Some sequences are not linked to experience and reflect a sort of preplay of events
never seen before. Finally, according to the subject ‘location’ in the event space, replay can be local or remote. (a) Forward retrospective replay occurring remotely
during sleep was the first form of replay reported in the literature [28,29]. Later reports showed it is also present locally during awake immobility and exploratory
pauses [30] (b) Reverse retrospective replay is more typically present in awake conditions [6,30] and strongly influenced by novelty, reward values or goal-oriented
tasks [31]. Forward and reverse replay can be concatenated along several sharp-wave ripples to accommodate extended experience [32]. (c) Forward prospective
replay of already experienced neuronal sequences is typically seen before running for a goal or during choice learning [30,33,34]. (d ) Preplay depicts sequences never
experienced before and is correlated to or predictive of the activity during the future experience [35,36]. Preplay, which can be forward or reverse, is detectable in
awake rest and in slow-wave sleep, and it has been proposed to play a major role in rapid encoding of novel information. (Online version in colour.)
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axes [21–26]. I discuss whether, by considering physiological,
microcircuit and neuromodulatory factors in the transverse
and radial axes of the dorsal hippocampus, different mechan-
isms may help to explain biases of hippocampal replay.
2. Complexities of retrospective hippocampal
replay

Hippocampal replay of neuronal sequences is a rather
complex phenomenon. Replay is typically associated with a
particular physiological event called the sharp-wave ripple
[27]. It consists of short multi-neuronal sequences (approx.
40–100 ms) carrying information about the temporal organiz-
ation of experience (figure 1). Originally viewed as a basic
mechanism underlying memory consolidation during sleep
[12], retrospective replay reflects ordered firing from a set
of neuronal ensembles that were previously activated by
experience [28,29].
The organization of replay was early challenged by the dis-
covery that sequence order is influenced by the brain state
[6,30]. During sleep, sequential firing is typically organized
forward (i.e. in a similar order to that experienced; figure 1a),
but when replayed during awake immobility the order can
reverse (figure 1b). Physiologically, different neuromodulatory
influences during sleep and awake states help to explain part of
this bias [37]. The role of place fields and place field tails
suggested a contribution of the animal’s current location in
the emergence of awake replay [30,38], but remote places
were also seen to trigger sequences [39]. The terms centripetal
(away from the animal) and centrifugal (towards the animal)
were introduced to identify replay from a more egocentric
perspective (see [40] for an early reference to the terms).

Additional complexities were noted in these studies.
When rodents were trained to run back and forth along a
linear track, the forward and reverse orders were dissociated
[30]. At the end of the track, when the animal was drinking
and immobile, sequences replayed forwardly, while after
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running and preceding drinking they replayed in reverse
order. This quasi-directional effect suggests a higher level of
organization emerging from complex associations among
different ensembles [41]. In subsequent studies, it was
noted that forward and reverse sequences intermixed in
long tracks to incorporate the spatial intricacies of the maze
[32,42]. Sequence integrity was not uniform, suggesting that
extended replay (up to 600 ms) during concatenated sharp-
wave ripples may depend specifically on direct inputs from
layer III of the entorhinal cortex [43,44].

In general, forward replay appears more frequent than
reverse replay [30,32]. However, additional variables can influ-
ence the organization of retrospective sequences. Sensory
interference (sounds) can bias the content of replay during
sleep to reactivate memory traces associated with auditory
cues [45,46]. Reverse replay can be modulated by changing
rewards [31], a manipulation that also affects the rate of
sharp-wave ripples [47]. This brings reverse replay to a
unique position to integrate reward-predictive information
into specific neuronal sequences. Consistently, during spatial
learning, sequences reorganize to represent new goal locations
[48] under the influence of dopaminergic signals from the
ventral tegmental area (VTA), locus coeruleus and the dorsal
raphe nucleus [40,49–51]. Thus, replay and sharp-wave
ripples can actually scale to a system level to serve different
cognitive abilities in interaction with other brain regions
(e.g. the striatum [52,53], visual cortex [54], cingulate cortex
[55], prefrontal cortex [56], auditory cortex [46], amygdala
[57], mediodorsal thalamus [58]). Accordingly, forward
and reverse retrospective replay can contribute to retrieving
information more dynamically during awake states [59,60].
3. Prospective hippocampal replay defies the
rule

Research on the intriguing nature of replay gained a new
impetus with the discovery of prospective coding during
sharp-wave ripples (figure 1c). Prospective coding is a more
general phenomenon [61,62], but identification of similar
processes during ripples challenged the dominant view.
Using spatial alternation tasks requiring short-term memory,
it was found that forward replay occurring just before making
a decision depicted future place cell sequences ahead of the
animal [33]. Moreover, increased activation of these ripple-
associated neuronal sequences predicted correct choices,
whereas during incorrect trials synchrony remained at chance
levels. A role of the animal’s location in this form of replay
was proposed based on the observation that sequences started
in place and ended at the goal sites [34]. This form of replay is
dependent on the memory for recent experiences and therefore
it may reflect an interaction between neuronal processes
underlying encoding, retrieving and planning [20].

However, using a complex maze with several bifurcations
and detours in a choice task with daily changing contingencies,
it was noted that the replay content may not be determined
solely by the recency of events [35]. Up to that moment, it was
believed that replay was intimately associated with sequences
built up by experience (theta sequences) [4,11]. Surprisingly,
the new experiments revealed sequences of trajectories never
experienced before by the animal [35]. This more complex
organizationwas related to subsequent observations of preplay
(figure 1d), a phenomenon bywhich future place cell sequences
can be recorded during sharp-wave ripples preceding explora-
tion [36]. Pre-existing ensembles were proposed to underlie
the formation of sequences that can be repurposed for acquiring
new experiences while others are generated de novo [63–67].
The existence of these rigid and reconfigurable hippocampal
ensembles may be supported by the skewed distribution
of relevant physiological parameters such as synaptic
weights and firing rate [64,68,69]. Thus, replay may also
contribute constructive cognitive roles such as imagination, a
hippocampal-dependent ability that can be conceptualized as
a mental travel through the cognitive map [20,70].

In the view of all the evidence reviewed so far, replay
can be considered a multifactorial event and hippocampal
sharp-wave ripples the underlying physiological mechanism.
However, our understanding is still fragmented. How can a
palette of sequences ordered back and forth in time and
space emerge from an apparently unidirectional event (i.e.
from CA3 to CA1) such as the sharp-wave ripple?
4. Can replay organize differently along CA1?
Sharp-waves reflect a population synaptic event presumably
emerging from the recurrent CA3microcircuit, whereas ripples
can be generated locally in CA1 [27]. During states dominated
by a lower cholinergic tone (i.e. immobility and slow-wave
sleep), CA3 neurons are released from sustained GABAergic
inhibition and population bursts emerge from transient
increases in synchrony [71,72]. These synchronous discharges
from CA3 pyramidal cells concurrently activate synaptic cur-
rents in the apical dendrites of CA1 neurons, resulting in a
transient sharp potential at the stratum pyramidale [73].
Together with CA1 pyramidal cells, some GABAergic inter-
neurons discharge during sharp-wave ripples [74]. Thus,
dedicated pyramidal–interneuron interactions shape the local
expression of ripples [75]. The relative ‘independency’ between
the sharp-wave and the ripple presumably allows for the
expression of several but coherent events along the proximodis-
tal and septo-temporal axes [76,77]. The term independency
refers to different local ripple mechanisms associated with a
given sharp-wave, as well as their independent occurrence at
different loci. Thus, multiple neuronal sequences can be acti-
vated during sharp-waves, reflecting different ensemble
patterns of CA3–CA1 neurons [78,79].

Consistently with this view, intracellular recordings of
CA1 pyramidal cells typically show depolarizing responses
shaped by phasic excitation/inhibition during sharp-wave rip-
ples both in awake and anaesthetized conditions [73,80–82].
However, this picture was challenged by reports of intermixed
hyperpolarized responses able to silence some CA1 neurons
[83,84]. Morphological reconstruction revealed a specific
organization across the deep (closer to oriens) and superficial
(closer to the stratum radiatum) sublayers [83]. Part of this
selection can be explained by a radial gradient of perisomatic
inhibition interacting with behavioural and state-dependent
effects to bias neuronal firing during sleep and awake ripples
[83]. Other microcircuit factors may equally contribute to sub-
layer segregation of hippocampal activities [26,83,85].

While investigating the mechanisms for selective reactiva-
tion of morphologically identified CA1 cells, some additional
differences were noted [86]. Unsupervised clustering of
sharp-wave ripple events allows us to evaluate how variability
of single-cell firing could be explained by the participation of
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Figure 2. Flexibility of neuronal firing from CA1 pyramidal cells during sharp-wave ripples (SPW-ripples). (a) Unsupervised classification of individual sharp-wave
ripple events clusters of similar local field potential signatures to be identified. The number of events in each group is indicated. Clusters of groups with topological
similarities in the high-dimensional space are identified by colours in the inset scheme. (b) Single CA1 pyramidal cells were recorded juxtacellularly during sharp-
wave ripples and their firing was grouped per cluster. Note different timing of the same cell in the orange and blue cluster indicated before. (c) Juxtacellular
recorded cells are labelled for morphological identification with streptavidin, and classified as deep or superficial depending on their location within the calbin-
din-positive sublayer. (d ) Distribution of the preferred firing phase during the sharp-wave from different clusters in deep and superficial cells. Note wider distribution
in deep cells indicating more flexibility. Data from [86]. (Online version in colour.)
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different ensembles, as captured by extracellular signatures
[86,87] (figure 2a). When applied to recordings of morphologi-
cally identified cells, it was noted that deep cells participated
less than superficial cells [83,86] and that their spike timing
along sharp-waves was more variable (figure 2b,c). For
instance, the cell shown in figure 2b fired earlier during
sharp-wave ripples in the orange cluster and later for ripples
in the blue cluster. This wider range of firing variability may
suggest more flexibility for forward and reverse replay in
deep than superficial cells in a sequence (figure 2d).

These data suggest that ripple-associated replay may pro-
ceed differently across CA1 sublayers. A radial organization
of CA1 neuronal firing was early noted [88]. Deep CA1 cells
fire at higher rates and have broader place fields as compared
with superficial cells [88,89]. The nature of these fields is also
qualitatively different: deep cells are more tightly linked to
somatosensory landmarks and influenced by rewards, while
superficial cell firing is more contextual [89,90]. Superficial
place fields apparently provide a more stable representation
of a given context while deep cells are more flexible. Their abil-
ity to form theta sequences is strongly determined by different
phase precession dynamics: deep cells exhibit a wider phase
range than superficial cells and can even shift phases during
rapid eye movement (REM) sleep [88,91]. Therefore, physio-
logical mechanisms may be in place to influence neuronal
activity across CA1; whether they could explain the variety of
hippocampal replay is unknown.
5. Potential biases of hippocampal replay across
deep–superficial sublayers

By considering genetic, microcircuit and behavioural factors,
different mechanisms could be proposed to bias replay. First,
cell-type and region-specific microcircuits wire differentially
along sublayers (figure 3a). Deep cells at CA1 regions closest
to CA2 (proximal CA1) receive more inputs from the medial
entorhinal cortex, whereas superficial cells located closer to
subiculum (distal CA1) are better connected to the lateral
entorhinal cortex [99]. Therefore, the way sensory modalities
integrate into the CA1 region should be determined by this
dedicated wiring. Consistently, non-spatial and spatial infor-
mation segregates radially [89,90,94] and proximodistally in
CA1 [100–102]. Intrahippocampal circuits also wire differ-
ently across sublayers. Superficial cells are more responsive
to CA3 inputs than deep cells owing to differences of feed-
forward inhibition [83], which together with the proximodis-
tal organization of Schaffer collaterals will determine how
contextual information from dentate gyrus (DG) and CA3
enters into CA1 [103–105]. Deep cells, in contrast, are more
strongly activated by CA2 [106,107], which may help to
accommodate other cognitive representations such as social
memory and delay signals during immobility [108–111].

Different innervation by local GABAergic interneurons
also shapes the dynamics of CA1 cells [112], especially across
behavioural states [113–115]. Parvalbumin (PV) and chole-
cystokinin (CCK) basket cells target deep and superficial cells
differently [83,116] so that their feed-forward and feedback
activation can gate information differently across sublayers
[91,116–118]. In addition, transcriptomic differences regulate
the laminar expression of neuromodulatory receptors such as
G-protein coupled receptor 5-HT1a for serotonin (enriched at
superficial cells) or the nicotine receptor for acetylcholine
(enriched in the deep sublayer) [92] (figure 3b).

Therefore, data support integration of distinct physiologi-
cal influences across CA1. Under this scenario, it is tempting
to consider whether these mechanisms could provide expla-
natory axes for a variety of replays (figure 3c). For instance,
state (including brief exploratory pauses) has a major influ-
ence [30,119], and this is supported by the physiology of
sharp-wave ripples in response to different neuromodulators
[120]. Sensory inputs [45,46] as well as the animal’s location
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deep cells are biased for SOM+ interneurons. In return, innervation by PV+ basket cells is larger over deep cells while CCK+ basket cells preferentially target
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ized gene expression values from three different replicates are shown. Data from https://hipposeq.janelia.org/ [92]. (c) Multifactorial axes biasing the content and
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can bias the replay content, a property that presumably
depends on entorhinal inputs segregated along CA1 [99].
Accordingly, co-activations of neuronal sequences in ento-
rhinal layers can independently control the input/output
flow of the hippocampal replay [95,121]. Novelty and
reward can reverse replay in time [6,47] owing to the influ-
ence of the VTA, nucleus accumbens and medial prefrontal
cortex [40,49,122,123]. Aversive inputs from the amygdala
can also affect hippocampal replay [51,57].

Along many of these axes, a deep–superficial organization
of neuronal firing has been described and can therefore influ-
ence sequence dynamics (figure 3c; grey boxes). State-
dependent shifts of the preferred theta phase andwider preces-
sion dynamics are reported for deep CA1 cells [88,91]. Place
field of deep cells is more typically linked with somatosensory
and olfactory inputs [89,94] while superficial maps are more
contextual and allocentric [90]. The activity of deep cells is
more affected by goals, rewards and anxiety [90,96]. Given
that sharp-wave ripple physiology is influenced by all these
factors [27,124,125], I hypothesize that the deep–superficial
hippocampal axis may contribute to shape replay. Are there
microcircuit substrates for such an effect?
6. A proximodistal and deep–superficial
perspective of hippocampal replay

According to the classical view, sharp-wave ripples represent a
complex event built from two different processes [27]. Sharp-
waves result from convergent depolarization of the dendrites
of CA1 pyramidal cells in response to CA3 firing distributed
through Schaffer collaterals [78]. By contrast, ripples emerge
locally in CA1 from feedback interactions between pyramidal
cells and interneurons [75]. It is believed that the recruitment
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process starts more typically at the distal CA3a region (close to
CA2) and runs as a neuronal avalanche towards CA1.

However, sharp-wave activity can also backpropagate to
the proximal CA3c area (close to DG) before invading CA1
[71,78]. Driven by CA3c firing, mossy cells from the hilus
are recruited and integrated into the flow [126]. Moreover,
recent evidence suggests that some CA2 cells may indepen-
dently support the generation of sharp-wave ripples
markedly during awake states [97], possibly owing to recur-
rent connectivity [127] and in interaction with a specific
subset of CA3a cells [128]. Therefore, different initiating
regions distribute along the hilus–CA3–CA2 axis to trigger
local ripples in CA1 [105,124,97,129]. If diversity of replay
can be explained by any physiological mechanism, the mul-
tiple sharp-wave initiating loci must be one key. In support
of this view, individual ripple events vary along CA1 [77].
Such high-dimensional dynamics can be disentangled with
appropriate methods ([86,87,130,131]; see also figure 2).

I propose bringing the focus tomodels of sharp-wave ripples
consisting of multiple initiating loci instead of considering a
single triggering area. By considering different spots along
upstream pre-synaptic regions, the activity can flow differently
inCA1 to control the replayordermore precisely by discharging
cells at different timing (figure 4). Under this perspective, the
proximodistal hilus–CA3–CA2–CA1 axis represents a primary
source of modulation, but entorhinal inputs as well [43,132].
Adherence of individual cells to particular ripple clusters (i.e.
replay content) reflects that the underlying orthogonalization
may also segregate across CA1 sublayers [75,83,86]. Therefore,
the proximodistal organization of pre-synaptic ensembles inter-
acts radially in CA1. For instance, sharp-wave events initiated
by CA3c cells would more likely result in the feed-forward
inhibition of CA2 cells [83,133] and consequently would dis-
charge mostly superficial CA1 cells. By contrast, sharp-wave
ripples initiated by CA3a–CA2 pyramidal cells could rather
flow through deep CA1 sublayers first (figure 4). Connectivity
between CA3 cells, hilar mossy cells and dentate granule cells
should further contribute to shaping firing content during
these events by incorporating additional sequences and influen-
cing reactivation [105,126,129]. Selection of different sequences
can be triggered by single cells [71,134], which together with
plasticity canhelp to reconfigure and to establish newensembles
[135]. Recent evidence supports the idea that such a processmay
indeed occur randomly [66].

Given the ‘independency’ of ripples from the sharp-wave
event, local CA1 circuits could also contribute to the way
sequences can be replayed. While recurrent connectivity
between CA1 pyramidal cells is very low, di-synaptic inhibi-
tory circuits interface between sublayers [25,26]. Thus, driven
by specific spatio-temporal patterns of GABAergic inhibition
the content and order of replay could further unfold
[74,136,137]. Interneuronal interactions, but possibly GABA-
ergic projecting cells as well [115,118,138], could organize
spatially separated ensembles into coherent sequences [75].
For example, superficial CA1 cells preferentially activate PV+
basket cellswhile deep cells apparently do sowith SOM+ inter-
neurons [91,116]. Therefore, cell-type-specific local ripple
generators can provide additional mechanisms for orthogona-
lization (figure 4). Indeed, optogenetic manipulations able to
induce artificial CA1 ripples suggest that deep and superficial
sublayers may actually form distinct ensembles [139].

Computational models of replay support the existence of
multiple attractors resulting from different buffers of activity
[5,140]. In some of these models, direct inputs bypassing the
intrahippocampal circuit are required to favour encoding of
reversed association [5,141]. In most cases, the experience is
critical in establishing the organization of auto-associative
ensembles and thus the order and content of replay. While
retrospective and prospective firing can be simulated with
these premises, evidence of preplay has questioned whether
sequence reactivation during sharp-wave ripples requires
encoding or rather it may result from existing ensembles
[67,142]. Pre-determined cell-type-specific connectivity can
favour pre-configured attractors. For instance, a single CA3
pyramidal cell typically gives rise to a number of collaterals
projecting in different directions onto its neighbouring cells
[143–145], with the pattern of connectivity depending on the
location of the pre-synaptic soma [146,147]. Novel synapse
labellingmethods have revealed Schaffer collateral connections
with CA1 are enriched between neurons sharing similar devel-
opmental periods [148]. Strikingly, CA3 connectivitywith early
developed deep CA1 pyramidal cells appears more highly
structured and non-random than with late developed super-
ficial cells [149]. This suggests there is a level of determinism
that provides additional functional constraints. The way in
which pre-configured and learned sequences coexist and
interact remains to be understood.

Overrepresentation of reward, goal and aversive contexts
bias replay for specific events [48,51,150–153]. The hippocampal
sharp-wave ripple generator interacts brain-wide to hierarchi-
cally orchestrate these representations. New evidence
supports that hippocampal–amygdala and hippocampal–
hypothalamic interactions are more likely to involve subpopu-
lations of deep cells [96,116] and that deep CA1 cells are more
influenced by goals and rewards [90]. Similarly, state-depen-
dent changes may affect differently deep and superficial
layers given their different innervation by some GABAergic
interneurons [113] and gradient expression of receptors for
some neuromodulatory transmitters [154]. Consistently, deep
cells phase shift during theta oscillations associated with REM



r

7
sleep [88]. Therefore, different behavioural and emotional states
could also contribute to orthogonalize replay (figure 4).
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7. Conclusion
Understanding replay is challenging.Most of thework done so
far has adopted conceptually separated views. On the one
hand, sequence analysis has enabled identifying the organiz-
ation of neuronal ensembles during replay and using them
to decode neuronal representations. On the other hand, a
physiological perspective has helped to pinpoint microcircuit
mechanisms responsible for the basic field potential signatures
of sharp-wave ripples. We need to fill the gap between the
mechanisms and function of these events.

To better understand the complexities of replay, an updated
view of sharp-wave ripple physiology has to incorporate the
critical influence of cell-type-specific subcircuits that wire
brain-wide the proximodistal and radial axes of CA1. We
then need to exploit this specificity to evaluate how replay
dynamics can be precisely controlled. Here, I have reviewed
the evidence and discussed recent data supporting that firing
of deep and superficial CA1 cells can be influenced differently
during sharp-wave ripples. I suggest that cell-type- and input-
specific connectivity together with radial expression of recep-
tors and intrinsic properties may provide substrates for
biasing hippocampal replay back and forth. How these vari-
ables can specifically affect the content and order of replay
remains to be examined.

I propose relying on these mechanisms to force conceptual
shifts regarding our understanding of the way replay is estab-
lished and used to guide behaviour. Based on this review and
emerging cell-type and region-specific data the following
research questions and hypotheses can be addressed:

— Are sharp-wave ripples multifocal? I hypothesize events
may arise from different loci and engage different sets of
neuronal sequences along the septo-temporal,proximodistal
and deep–superficial axes of the hippocampus.

— What is the role of cortical and subcortical inputs? Based
on the different connectivity with deep and superficial
pyramidal cells, contrasting and dynamic effects across
CA1 sublayers can be predicted.

— What determines the direction of propagation of sharp-
wave ripples and how does it relate with replay order
and content? I hypothesize that the generating loci, as
well as participating GABAergic interneurons and dyna-
mically fluctuating inputs, will bias replay in a
predictable way.

— To what extent can experience modify replay of deep and
superficial subcircuits? Given their different developmen-
tal origin I predict different connectivity and plasticity
rules determining preplay ability across sublayers.

— Can manipulations of the replay content differently affect
cognition? Given different brain-wide connectivity of deep
and superficial cells, specific behavioural effects can be
predicted.
The advent of super-resolutionoptoelectrodes andmulticellular
voltage imaging [139,155–158], in combination with single-cell
transcriptomic public atlases and gene editing techniques
[92,154,159–161], will certainly many of these questions to be
addressed at unprecedented levels of detail in forthcoming
years [162–164].
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