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Patterns of neural activity that occur spontaneously during sharp-wave
ripple (SWR) events in the hippocampus are thought to play an important
role in memory formation, consolidation and retrieval. Typical studies exam-
ining the content of SWRs seek to determine whether the identity and/or
temporal order of cell firing is different from chance. Such ‘first-order’ ana-
lyses are focused on a single time point and template (map), and have been
used to show, for instance, the existence of preplay. The major methodologi-
cal challenge in first-order analyses is the construction and interpretation of
different chance distributions. By contrast, ‘second-order’ analyses involve a
comparison of SWR content between different time points, and/or between
different templates. Typical second-order questions include tests of experi-
ence-dependence (replay) that compare SWR content before and after
experience, and comparisons or replay between different arms of a maze.
Such questions entail additional methodological challenges that can lead
to biases in results and associated interpretations. We provide an inventory
of analysis challenges for second-order questions about SWR content, and
suggest ways of preventing, identifying and addressing possible analysis
biases. Given evolving interest in understanding SWR content in more com-
plex experimental scenarios and across different time scales, we expect these
issues to become increasingly pervasive.

This article is part of the TheoMurphymeeting issue ‘Memory reactivation:
replaying events past, present and future’.
1. Introduction
The hippocampus spontaneously generates spike sequences whose firing order
corresponds to the order observed during behaviour. These ordered spike
sequences occur during specific time windows identified by sharp waves in
the stratum radiatum of the CA1 region, along with fast ripple oscillations in the
CA1 pyramidal layer (hence known as sharp-wave ripples, SWRs; [1]). SWRs
and their temporally ordered activity are not only a strikingly beautiful phenom-
enon, but also provide an important systems-level neural access point into
understanding higher-order cognitive and mnemonic processes such as memory
encoding, consolidation and planning. Experimental studies have shown impair-
ments in learning and performance of various memory tasks when SWRs are
disrupted [2–5]. In parallel, computational models illustrate how SWRs may con-
tribute to the learning and performance of such tasks [6–8], motivating further
work that increasingly relies on identifying SWR content under different con-
ditions. By SWR content we mean not simply aggregate properties such as the
number or duration of SWRs, but ‘what is being replayed’: the structured spiking
patterns during SWRs, such as the activation of specific ensembles and temporal
orderings. These patterns have been associated with particular events, trajectories
and experiences, motivating a growing body of work that seeks to identify and
decode SWR content.

Early studies of SWR content were mostly concerned with demonstrating
the statistical robustness of particular kinds of non-randomness in SWR activity
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(see [9] for an excellent review). Although this seemingly
straightforward issue is far from trivial (as we will discuss
below; see also [10]), it is now established beyond doubt
that SWR activity is structured in ways that deviate robustly
from chance. However, the status quo is largely facing differ-
ent questions: to what extent is SWR activity shaped by
experience? Does SWR activity transform or prioritize par-
ticular patterns to serve specific cognitive or network
benefits, e.g. by preferentially replaying salient experiences,
trajectories less or more travelled, and/or conversely forget-
ting or suppressing other experiences? Does the presence of
some specific set of factors dramatically change SWR con-
tent? These questions come with additional complexity in
the data analysis, in that it is no longer sufficient to simply
demonstrate that SWR activity is more structured relative to
some notion of chance.

As experimental and theoretical interest in probing SWR
content continues to evolve, we see a corresponding need for
analysismethods that are appropriate for increasingly complex
and subtle questions. The objective of this paper is to facilitate
the analysis of SWR content by organizing questions about
SWR content into a rudimentary taxonomy. A key feature of
this taxonomy is the distinction between first-order questions,
which rely on determining whether and how SWR content
is different from chance, and second-order questions, which
seek to establish whether SWR content differs between two
or more conditions, such as time points or arms of a maze.
Then, we will provide an inventory of challenges in data
analysis specific to second-order questions, and point to
some possible ways to diagnose, prevent and address them.
2. First-order versus second-order replay analysis
Figure 1a diagrams the distinction between first-order and
second-order SWR content questions. First-order questions
(cyan rectangles) are concerned with a single set of SWR
events and a single template (depending on the question, a tem-
plate may be a list of cells or ensembles, a set of tuning curves,
or a specific ordering of cells); no comparison betweenmultiple
templates or between different sets of SWRs is required. First-
order questions have sought to establish, for instance, that there
is sequential order in SWR content similar to an environment
that has yet to be explored (‘preplay’, [11–13]); that sequential
activity can be in forward and reverse order compared to the
place cell order experienced during behaviour [14,15]; and
that SWR content can be of a remote environment (i.e. one
that the animal is not currently in, [16]). These first-order con-
tent and order detection questions remain important, requiring
careful consideration of assumptions built into the null hypo-
theses, particularly the shuffle/resampling methods, to
determine whether the observed sequence activity is unex-
pected by chance. Such first-order issues have been recently
discussed in several papers [10,13,17] and we will review
them briefly in the next section.

Second-order questions include comparisons between
different experimental conditions (red rectangles in figure 1a)
and/or time points (purple rectangles). For example, when
viewed this way, establishing whether SWR content reflects
replay of prior experience is a second-order question that
requires comparing SWR content at two different time
points: prior to, and following experience [18]. Other typical
second-order questions include asking whether the left or a
right arm of a T-maze is preferentially expressed during SWRs
[19–21], whether there is an increase in replay in the presence
or absence of reward [22,23], whether pharmacological and/
or genetic manipulations affect SWR content [24,25], and so
on. These second-order questions face additional scrutiny that
requires accounting for an additional set of potential confounds.
A major goal of this paper is to identify challenges in detecting
and interpreting second-order patterns in replay and to suggest
some practical advice.
3. First-order replay analysis
(a) Which cells and what order?
The main question at stake in a first-order SWR analysis is the
determination of whether activity in a given SWR (or set of
SWRs, taken together) is different from a chance distribution.
Activity may differ from chance in a number of ways, such
as inwhich cells are active (for instance, particular pairs, ensem-
bles, etc.), and in whether their activity displays temporal
ordering (figure 1b). The choice of which chance distribution(s)
to compare the observed data to (typically ‘shuffles’ in a resam-
pling procedure) determines the interpretation and level of
specificity of the conclusion that can be drawn from a first-
order analysis. Note that in the literature, the term ‘replay’
does not have a consistent technical definition. Some studies
consider the (re)activation of specific cells, pairs or ensembles
without any specific temporal ordering as replay, whereas
others use the term reactivation to distinguish it from tem-
porally ordered (sequential) activity. In this review, we try to
be as explicit as possible in distinguishing ensemble reactivation,
which can occur without any temporal order but does not pre-
clude it, and sequence replay, which has a temporal order, but
may additionally involve activity in a specific ensemble. In
places, however, we will use the term ‘replay’ nonspecifically
to include either or both of these types of SWR structure.

This distinction between ensemble reactivation (which
cells) and sequence replay (temporal order) illustrated in
figure 1b is important from several interrelated but distinct
perspectives: neural, psychological and analytical. Neurally,
different kinds of structure in SWR activity will likely be read
out differently depending on the downstream circuitry. Several
studies have shown relationships between SWR content in the
hippocampus and spiking activity in putative populations of
readout neurons (ventral striatum: [26,27]; prefrontal cortex:
[28–30]; entorhinal cortex: [31], but see [32]; lateral septum:
[33]; auditory cortex: [34]; ventral tegmental area: [35]). How-
ever, these correspondences generally take the form of a
general statistical model that does not reveal what specific fea-
tures of hippocampal SWR activity are most important for
downstream neurons. For instance, it is currently not known
how accurately postsynaptic neurons distinguish between for-
ward and reverse SWR sequences (but see [36] for a proposed
mechanism for how single neurons may do so). Alternatively,
some structures, such as the lateral septum [33], may only
care about the strength and size of the SWR-associated popu-
lation activity. In general, the problem of determining what
features of SWRs matter is an important overall challenge in
the replay field, and will need to be confronted with comp-
lementary lines of inquiry (see Box 1 for some promising
directions). When considering different analysis issues and
methods, such as those discussed in this review, the choice of
analysis method should ultimately be informed by the features
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Figure 1. Schematic illustration of two conceptual distinctions in replay analysis: first-order versus second-order questions about replay content (a) and ensemble
reactivation versus sequence replay (b). (a) First-order questions (cyan boxes) test whether a given activity pattern (e.g. which cells, what order) is distinct from
chance. First-order questions are concerned with a single set of SWR events and a single template. In contrast, second-order questions compare replay content between
multiple data sets (e.g. time 1 and time 2, purple boxes), templates (e.g. track A and track B, red boxes) or both. Typical second-order questions include determining
whether post-experience SWR content better resembles activity during behaviour compared to pre-experience content, and whether the left arm of a maze is more
frequently (re)activated than the right arm. (b) Both first-order and second-order questions about SWR content can be categorized as focusing on which cells participate,
while ignoring temporal order (ensemble reactivation, left), and/or as focusing on what order these cells are active (sequence replay, right). Typical ensemble reactivation
questions include determining if a given pair or ensemble of cells is more co-active than expected by chance (a first-order question) or which of multiple possible ensem-
bles is more active (e.g. ‘blue’ versus ‘green’ cells, a second-order question); typical sequence replay questions include determining if firing order is different from chance
(a first-order question), and determining which of two firing orders is more prevalent (a second-order question). (Online version in colour.)
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of SWR activity that are neurophysiologically or behaviourally
meaningful.

A second reason to care about different kinds of structure in
SWR activity is that each may be associated with distinct cog-
nitive and/or mnemonic processes. For example, temporally
structured sequence replay may be better suited to signalling
multimodal, temporally organized episodic events for which
encoding and initial retrieval are supported by the hippo-
campus (though we note, that it is currently unclear whether
the content of replay is, in fact, episodic; the relationship
between SWRs and the subjective experience of retrieval or
mental time travel remains to be established). Conversely,
ensemble reactivation that is not explicitly ordered in time,
but does involve a consistently co-active set of cells, may be



Box 1. Ground truth for replay?

Spiking activity during sharp-wave ripples (SWRs) exhibits a diverse array of structured patterns, including the systematic
co-activation of particular subsets of cells (pairs and ensembles, ‘ensemble reactivation’), and temporal ordering which
matches that observed during behaviour (sequence replay). Analyses of SWR activity aim to determine whether such patterns
are different from what could be expected by chance; however, they cannot, by themselves, decide which patterns are physio-
logically or behaviourally relevant. ‘Grounding’ SWR content is an important but difficult problem that may be pursued by,
among others, the following approaches:

Approach 1: determine what SWR content features are read out by downstream single neurons and brain structures. For extra-
hippocampal neurons that show a statistically reliable change in activity following SWRs, a number of analysis strategies
may be used to determine that neuron’s preferred SWR pattern, or more generally, its tuning to SWR activity. Ideally, can-
didate readout neurons would be positively identified as receiving hippocampal input (e.g. with opto-tagging), and show
temporal relationships with SWRs that reflect a genuine readout rather than merely correlation. Since SWR activity is poten-
tially dynamic and high-dimensional, a range of appropriate dimensionality reduction techniques may need to be employed
to characterize readout. Different neurons and brain structures may be ‘tuned’ to different SWR features, applying different
projections or decision boundaries to the input. For instance, lateral septum neurons may respond preferentially to an ‘overall
activity’ dimension [33], whereas ventral striatal neurons may respond preferentially to activity associated with reward [37].

Approach 2: trigger disruption or stimulation on specific SWR content features and observe the neural/behavioural consequences. Real-
time detection of specific SWR features can be used for a variety of interventions that causally test the importance of such fea-
tures. For instance, selectively disrupting forward or reverse replaymay reveal distinct behavioural impairments associatedwith
each. Recording in putative readout areas while artificially triggering SWRs, and inhibiting synaptic terminals in triggered on
SWRs occurring, can provide complementary evidence that a given neuron or area, in fact, performs a readout.
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appropriate for retrieval of specific cues, spatial contexts and
semantic information that lacks a clear temporal component.
Sequence replay and ensemble reactivation are in principle
not mutually exclusive either: for instance, the phenomenon
of remapping suggests that distinct contexts are associated
with specific ensembles (maps) in which multiple distinct tem-
porally organized experiences can occur [38–40]. Thus, a given
SWR may involve both the reactivation of a specific ensemble
(indicating a specific context) and a specific ordering of cells
(indicating a specific trajectory or experience). Plausibly, the
neural mechanisms underlying both these components are dis-
tinct to some degree, and certain experimental manipulations
may have effects on only one, but not the other.

Finally, in termsof analysis, the distinctionbetween the reac-
tivation of cells and their temporal order is important because
the appropriate analysis method depends on the phenomenon
of interest. Cell reactivation (e.g. [22,41]), pairwise co-activation
methods (e.g. [18,42–45]) and PCA/ICA-based ensemble
reactivation studies (e.g. [46–48]) are agnostic towards temporal
order. These methods also typically apply a fixed timewindow
to measure co-activity in cells and ensembles, neglecting
temporal compression across different brain states. While
asymmetries in pairwise cross-correlograms can capture tem-
poral relationships [49–51], as the template used to evaluate
the order of firing is expanded to three [52] or more neurons
[14,53,54], the methods become increasingly sensitive to the
temporal structure. All of these approaches require careful con-
sideration of the null hypothesis (shuffles) to compare the data
to, and may give false positives based on factors such as firing
rate differences (discussed in more detail below); but if the
analysis is carried out appropriately then results can be inter-
preted cleanly in terms of either ‘which cells’ or ‘what order’
cause the non-random structure of the data.

How do current analysis methods detect reactivation and/
or sequential replay? In this issue, Tingley & Peyrache [9]
review the various methods used to detect replay in ensembles
and sequences and the statistics associated with each. In the
present review,we focus our attention particularly on sequence
replay methods that capture the order of firing across
populations of neurons.
(b) Sequence detection
There are several popular metrics for quantifying sequence
replay: the rank-order (Spearman) correlation [14,15,55], the
replay score (radon transform) introduced by Davidson et al.
[56] and the linear weighted correlation [13,57,58]—though
other methods continue to undergo development [59–61].
These metrics ostensibly capture sequential activity, but can
also be affected by factors unrelated to temporal order. This is
because for any of these metrics, the key question becomes:
what is the appropriate null distribution against which we
should compare the data? Each shuffling method is based on
assumptions about what random data ought to look like. If the
data deviates from these assumptions then the null hypothesis
can be rejected. However, rejection of the null hypothesis may
be due to aspects of these assumptions that are not directly
related to the sequential firing of cells during replay. We will
next highlight several instances of this general issue.

For example, the spike-id shuffle randomizes the cell identity
for each spike in a candidate SWRevent (e.g. in [62]), creating a
surrogate dataset inwhich the overall firing patterns during the
event are preserved, but each neuron is equally likely to fire any
given spike from the onset to offset of this event. Therefore, this
null hypothesis can potentially be rejected if the distribution of
inter-spike intervals of neurons deviates from uniformity, as is
known to be the case [63].

The cell-id shuffle (randomizing the cell identity for each
train of spikes in a candidate event; used in [14,15]) further
controls for the statistics of neurons’ observed firing patterns
(e.g. burstiness, inhibition of return), but otherwise assumes
that neurons fire independently of each other during ripple
events. By randomizing the order of neurons, which also ran-
domizes which neurons are co-firing in a given time window,
this null hypothesis may be rejected by non-uniform co-
activity, as well as non-random sequential activity. Thus, it
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tests against ensemble reactivation and sequence replay sim-
ultaneously, which may or may not be desirable. Moreover, it
does not readily lend itself to Bayesian decoding analysis
because, similar to the spike-id shuffle, it does not preserve
non-uniformity in the firing rates of neurons [64].

The circular place-field shuffle (circularly shifting each tuning
curve by a different random amount; used by [58]) allows that
neurons’ spike-train statistics should be preserved but assumes
that their preferred firing locations are randomly dispersed.
Importantly, this shuffle does not assume continuity in place-
fields; surrogate place-fields can represent locations that start
at the end of a track and reprise on the other side of the
track. Therefore, this null hypothesis can be rejected if there
is an uneven distribution of place-fields across the track, or
the shape of place-fields observes specific relationships to the
maze, as has been reported in several studies [65–67].

Other surrogatemethods first separate candidate events into
distinct time bins prior to shuffling. After binning, the circular
column cycle shuffle (used by [17,56]) shifts the decoded (pos-
terior) positions in candidate bins by random amounts, thus
controlling for the limited variance of decoded position in each
bin, but assumes that all maze positions are equally likely to
be reprised in any given time bin. Similar to the place-field
shuffle, it also allows that decoded locations can be discontinu-
ous across the end/beginning of tracks in the null distribution,
which does not happen in real data. Therefore, this null hypo-
thesis can be rejected if the decoded positions in candidate
events are not uniformly distributed along the track and/or
have specific skewed relationships to the end/start of tracks.

The pooled time-swap shuffle (also introduced by [56]) ran-
domizes the decoded position across all the candidate replay
events in the dataset. Thus, it assumes that the decoded pos-
ition in a given bin is random, but maintains the overall
distribution of decoded positions across all observed bins.
The within-event time-swap (used by [13]) shuffles the decoded
position bins in each candidate event separately (rather than
across events), thus more conservatively preserving the over-
all statistics of decoded positions in each event. Yet, both of
these time-swap shuffles assume that any decoded position
bin is equally likely to follow any other decoded position in
the null case—an assumption that is violated when neurons
fire continuously in bursts that span multiple time bins [63].

For each of these shuffles, there are further experimenter
decisions and imposed criteria that can affect the detected can-
didates and their null distributions. These include, but are not
limited to, the percentage and/or number of active cells, dur-
ation of events, the choice of time bin size, the average or
maximum jumps between bins allowed and how empty bins
are handled (e.g. is the posterior probability uniform or zero
across all positions in such bins and whether they are ignored
in shuffles if they fall in the first or last bins), a point which is
often not explicitly noted in methods sections. Another critical
point is that if multiple templates are being independently
evaluated (e.g. for forward versus reverse, and for each of sev-
eralmazearms), there is a greater chanceof false positivesdue to
multiple-hypothesis testing (see also [17]). It is, therefore, impor-
tant that the surrogatedata followingshuffles is treated similarly
to real data and tested against each template to determine null
hypothesis replay scores. Additionally, further properties of
the data, aside from the factors already mentioned, can yield
deviations from null distribution due to unintended reasons.
For example, serial-position effects, such as biases for SWRs to
be initiated by place-cells encoding the current and/or
rewarded locations (as opposed to random locations along the
track), could produce deviations from shuffle distributions
that randomize decoded locations. Likewise, stationary events
(SWRs with content that is fixed in one location) would qualify
as ‘replay’under somemetrics (e.g. ‘replay score’) but not others
(e.g. ‘weighted correlation’). One reasonable solution tomanage
these issues is to consider combinations of measures (e.g.
weighted correlation and mean jump distance) at different
thresholds [10,17].

In summary, the main message from the above consider-
ations is that replay analysis methods can be sensitive to both
which cells are active and to their temporal order. Depending
on the choice of shuffle(s), datamay deviate from the null distri-
bution due to factors that are not related to the sequential firing
patterns during SWRs. In these cases, it is important to avoid
interpreting the results as necessarily being due to one particu-
lar factor, such as sequential order. In the next section, we
consider ‘second-order’ questions that compare replay content
across different conditions, such as ‘is there more replay in
sleep after experience than in sleep before?’ These questions
inherit all the above issues related to the choice of shuffle and
associated interpretations and additionally entail another layer
of analysis issues, which we discuss next.
4. Second-order replay analysis
A typical second-order sequence replay question is of the form:
is sequence A replayed more frequently and/or more strongly
than sequence B? Second-order questions go beyond the exist-
ence proof required of first-order questions (does reverse
replay/remote replay/etc. exist?) to comparing the relative
prevalence or strength of sequential structure across different
conditions. Thus, the question ‘does reverse replay exist?’
is a first-order question, whereas comparing the relative
strengths of forward and reverse replay [15,23] is a second-
order question. Other common second-order questions
include comparing replay of different segments of a maze
environment, or replay after versus before an experience.

(a) Forward versus reverse sequences
Such comparisons began almost immediately after the obser-
vation of awake replay [14]. Diba & Buzsaki [15] compared
the relative prevalence of forward (positively correlated) and
reverse (negatively correlated) sequences both before and after
runs across the track. Forward sequences were found to be of
upcoming trajectories prior to a run, suggestive of planning,
while reverse sequences were observed after consumption of
reward at the end of the run, suggestive of reward processing.
Extending this work, Ambrose et al. [23] directly compared
templates for outgoing and incoming trajectories under high-
reward, low-reward and no-reward conditions on a linear
track. They found that increasing the amount of reward on
every trial produced an increase in the relative amount of
reverse versus forward sequences, supporting the proposed
role of reverse replay in reward processing [14]. Olafsdottir
et al. [68] examined the relative prevalence of different trajec-
tories during short pauses in the task versus long pauses that
likely reflect disengagement from the task, and found that for-
ward sequences were more prevalent in short pauses when
the animal remained engaged. On the other hand, Davidson
et al. [56] found that when the animal stopped in the middle
of a track and could resume running in either of two directions,
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there was no correlation between sequence replays and the
trajectories taken by the animal. Similarly, Shin et al. [29]
reported a strong correspondence between forward sequences
and upcoming trajectories, and reverse sequences and com-
pleted paths—except at choice points. In a remarkable study,
Xu et al. [69] demonstrated that while forward sequences corre-
sponded to the upcoming trajectory of the animal from its
current position, reverse sequences frequently originated at
remote locations and propagated toward reward sites, high-
lighting the special roles of reward processing in reverse
sequences and planning in forward sequences. Pfeiffer &
Foster [70] examined these questions in open field two-dimen-
sional trajectories, where place-fields are omnidirectional (so
that forward versus reverse sequences are not distinguishable)
and found that SWR sequences more closely matched upcom-
ing trajectories rather than replays of past trajectories,
consistent with the proposed role for replay in planning [15].
Interestingly, Stella et al. [71] found that in the absence of a
reliable goal, SWRs instead reflect random-walk trajectories
through the two-dimensional open field.

In summary, while many of these studies differed regarding
the relative prevalence of forward versus reverse sequences
across all trajectory sequences, there appears to be an emerging
consensus that forward sequences benefit immediate planning
while reverse sequences are modulated by recent reward.
Nevertheless, it is important to keep inmind that these forward
and reverse replays are not mutually exclusive [56]. Indeed,Wu
& Foster [57] found that forward, reverse and mixed replays
frequently stitched together to form spatially consistent trajec-
tories, and, further, the ‘shortcut’ sequences reported by
Gupta et al. [19] may result from the juxtaposition of spatially
contiguous forward and reverse events. Ultimately, both types
of sequences likely aid the animal in evaluating the reward
structure of an environment to benefit future spatial decisions.

The main question for these analyses involved comparing
whether a temporal event was better matched to one template
(e.g. run from left-to-right) or to a second template (run from
right-to-left) in either forward or reverse. Though there are sev-
eral different ways to perform such a comparison [15,56,57],
evaluation in these studies has generally been straightforward
because (i) the templates compared (forward and reverse) are
balanced—that is, subjects run through each template trajec-
tory an equal number of times—and (ii) they are applied to
the same SWR data. Yet, even this relatively simple case is
not immune to possible biases due to different numbers or
different properties of cells in each of the templates (discussed
in the next section).
(b) Sequences at time-1 versus time-2
A different second-order question involves a comparison of
sequences that occur at different time points. A salient example
of this type of question is preplay versus replay, which requires
comparing sequences before experience with sequences follow-
ing experience. Such a comparison between two time points
circumvents potential confounds from shuffling methods
alone, although the quantification will still depend on the
choice of shuffle. As a result, virtually all investigators agree
that replay in post-task sleep is stronger than preplay in sleep
before the task, although by exactly how much is still under
investigation and debate [13,72].

Further examples of this kind of question focus on the con-
ditions under which replay at one time is enhanced relative to
replay at other times. For example, Singer et al. [22] observed
increased SWR reactivation of place-cells following rewarded
trials, compared to unrewarded trials, indicating an important
role for reward processing during these events. Note, however,
that because reverse and forward sequences were not detected
or separated in this study, it is unknown if this rolewas attribu-
table exclusively to reverse replay [14,23]. In an alternation task
on aW-shaped maze, Singer et al. [44] reported increased SWR
reactivation of place-cells prior to correct trials versus incorrect
trials. This provided support for the role of replay in planning
and effective execution of upcoming routes, though this study
similarly did not examine whether forward sequences alone
could account for the planning component [15]. In a recent
study, Shin et al. [29] found that reverse replay decreases in fre-
quency with time on the maze, whereas forward replay
increases in frequency during this same period, indicating
that SWR content can indeed change dynamically with
experience.

Time-1 versus time-2 comparisons are similar to forward
versus reverse questions because they use the same templates
for analysis, but are distinct because the templates are applied
to the analysis of different data (e.g. pre- versus post-task).While
this approach has clear benefits, it does also introduce some
possible issues, which we discuss in the section below.
(c) Replay of track-1 versus track-2
Themore complicated version of second-order sequence analy-
sis involves comparing replay of different tracks or mazes,
on which the animals potentially have different amounts
of experience, different behaviour and different numbers of
place-fields. For example, Olafsdottir et al. [73] observed greater
sequence preplay of an arm of the T-maze that the animal was
cued to enter, compared to the uncued arm, indicating antici-
pation of the future path during SWRs. Wu et al. [74]
examined different regions of a linear track after delivering
electric shocks in one of the segments. They found more
replay of the shock zone that the animal actively avoided, in
comparison to a control region at the opposite end of the
track that the animal also avoided, but that represented less
danger. Xu et al. [69] compared replays of different arms of a
multi-arm maze. Remarkably, the arm that was replayed
varied according to the cognitive demands of the task. In refer-
ence memory at the choice point, where the animal needed to
remember the rewarded arms, forward replays tended to pre-
dict the upcoming path. On the other hand, during working
memory on the same maze, when the animal needed to
remember where it came from, the previously visited arm
was replayed in reverse. The observations in these studies pro-
vide strong support for the flexibility of hippocampal
sequences in supporting cognition and decision making (see
also [8]).

However, other second-order examinations present find-
ings that are more challenging to reconcile with this simple
picture. In the first study of its kind to question the relationship
between experience and replay, Gupta et al. [19] found that
when rats were rewarded on only the left arm of a continuous
T-maze, they replayed the opposite (right) armmore often than
if they alternated between left and right. This finding is in con-
flict with an experience-driven account of replay, which would
predict that themore frequently visited arm should be replayed
more often. In a free-choice variant of this task, where the
animal could choose whether to run for a water reward if
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thirsty, or a food reward if hungry, Carey et al. [21] remarkably
found that replay was biased toward the arm less visited, even
in rest before the actual task. In their study, Xu et al. [69] saw
that when the animal was at the reward site and simply had
to return back to the choice point, reverse replays tended to
start remotely from the choice point and propagate over to
the animal’s current location. These types of trajectory
sequences do not fit readily within the planning/reward
framework and present a challenge to simple models of the
cognitive or computational benefits of sequence replay.

Overall, the above types of second-order comparisons are
more complex than the previous forward/reverse comparisons
because they require different templates for each of the arms.
This introduces possible biases due to differential electrode
sampling (different numbers of cells recorded, cells with
different firing rates, etc.) and behavioural sampling of the
environment (when the animal’s behaviour involves an experi-
ential bias towards segments of the environment, e.g. by
spending more time, running through them faster, etc.). We
discuss such biases in the next section.
5. Framework for issues in second-order
sequence analysis

A number of potential analysis and interpretation issues arise
when addressing seemingly straightforward A versus B or
time-1 versus time-2 questions comparing replay under
different conditions. In general, under these conditions, the
detection and scoring of replay is susceptible to biases that
are unrelated to underlying sequential content, but may
nevertheless result in differences between observed replays of
Aversus B. These false positives can lead to incorrect interpret-
ations of results. Fortunately, such biases can be prevented or
minimized by experimental design and careful analysis. In
addition, some diagnostics are available to determine if these
biases are occurring so that the interpretation can be modified
accordingly. We conceptualize these biases within an overall
conceptual framework for replay generation (figure 2).

In this framework, the hippocampus maps any given
environment with a set of true behavioural tuning curves, which
describe the relationship between locations in that environment
and the firing rates of neurons. These are not directly observable
for two reasons. First, any given experiment records fromonly a
limited number of neurons (cell sampling). Second, tuning curve
estimates are inherently based on finite and variable behavioural
sampling of locations in the environment, and are therefore
susceptible to various covariates and confounds. For example,
animals may spend more time at some locations than others.
Their running speeds and acceleration can also vary, not only
according to the spatial configuration in the maze, but also
because of behavioural factors such as familiarity, anxiety or
expected reward. Furthermore, there are nonstationarities in
the true tuning curves (e.g. emerging, drifting and expanding
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place-fields), yet the experimenter must average over multiple
trials to estimate tuning curves. Thus the observed tuning
curves are inherently imperfect approximations of the true
behavioural tuning curves.

Likewise, in our framework observed sequences of spikes
(rasterplots in figure 2) during candidate replays arise from
true sequences generated by the brain from a set of true sequence
tuning curves that are also not directly observable. The true
sequence tuning curves are presumably translated by the
brain from the true behavioural tuning curves and are therefore
related but not necessarily identical to them; for instance,
instantaneous firing rates during SWRs can differ from those
during behaviour [75]. Moreover, sequence tuning curves pre-
sumably represent ‘mental’ time travel through space, as
opposed to physical travel during the experience. As such,
they may substantially differ from those obtained from behav-
ioural sampling. The spikes during SWRs are nevertheless
analysed by comparison with the observed behavioural tuning
curves, resulting in sequence scores. We note that because of
uncertainty regarding the transformation between behavioural
and sequential tuning curves, initial studies often used
nonlinear metrics for quantifying replay (e.g. Spearman rank-
order correlation coefficients), whereas studies using Bayesian
decoding methods assume identical sequence and behavioural
tuning curves with interchangeable firing rates ([56] and
others). In our framework, we remain agnostic concerning the
nature of this transform.

This conceptual framework allows us to highlight a
number of possible biases that are particularly relevant for
analyses involving second-order questions about sequences:

(1) Electrode sampling from limited numbers of place cells.
(2) Imperfect estimates of behavioural tuning curves, which

can arise from (a) non-uniform behavioural sampling of
the environment, and (b) drift in place cell tuning over time.

(3) Changes in the sequence tuning curves.

(a) Biases in cell sampling
In the scenario illustrated in figure 3, limited sampling of neur-
ons results in an unequal distribution of place cells recorded for
two maps (A and B; these could be different arms of a maze or



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190238

9
two different environments entirely; 5 cells for map A, 3 cells
for map B in this example). It may be that the different cell
counts arise from random chance (shot noise) or that units
representing one map are more noisy and/or less isolated.
As the number of recorded cells increases, the magnitude of
this bias will decrease correspondingly. However, the non-
linear nature of Bayesian decoding methods, where posterior
probabilities from spiking neurons are multiplied together,
means that a small difference in the number of recorded cells
can lead to large differences in decoded output, even when
there is no underlying difference in replay content.

Alternatively, it may be that different cell counts result not
from finite sampling but from inherent differences in the
number of cells representing maps A and B. Such differences
could be important, i.e. larger rewards associated with maze
A, resulting in increased density of place-fields (e.g. [67]), or
they may be trivial (e.g. maze B may be smaller in size).
Increased replay as a consequence of such underlying differ-
ences in place field density may or may not be functionally
important, but is conceptually distinct from increases in
replay that result from other factors not associated with place
field density, such as memory prioritization and recall bias.

Regardless of how a difference in the number of recorded
place-fields comes about, in the null case when the true
replay distribution has equal sequence frequency and strength
for both A and B, the observed spike trains will appear
unequal: the 5 ordered cells for A result in higher replay
scores than the 3 ordered cells for B (right panel). Taken in iso-
lation, this difference in replay scores may be (incorrectly)
interpreted as replay content favouring A over B.
(b) Biases in behavioural sampling
In addition to unequal sampling of neurons, differences in
the animal’s behaviour under two conditions introduces
concerns that require careful consideration. Even if the
true neuronal representations are similar in two mazes, if
the animal spends more time in A, the experimenter’s recon-
structed template for B will be more noisy simply because
less data was available, which in turn can lead to correspond-
ing bias in replay analysis. Other potential sources of unequal
behaviour between different conditions include differences in
running speed or acceleration through maze locations and the
degree of path stereotypy.

As an example of these possibilities, under the null scenario
depicted in figure 4, A and B maps are represented by an equal
number of cells, but the qualityof their observed tuning curves is
different: messy,multipeaked fields for B, clean, unimodal fields
for A. The true behavioural tuning curves are not systematically
different for A and B (left panel); rather, the behavioural tuning
curves for B can deviate from the true tuning curves due to
differences in behavioural sampling (e.g. 50 trials for A, 5 trials
forB), differences in the animal’s behaviour (e.g.more consistent
runs in A, but stoppages or changing running speeds in B, etc.)
and/or differences in nonspatial cues influencing place cell
activity between the arms. In a similar way to figure 3 above,
this difference in the observed tuning curves between the A
and B maps will lead to a difference in replay scores for A and
B because the noisier ‘B’ template is now out of order (note red
dots). This difference may be incorrectly interpreted as a differ-
ence in replay content. Furthermore, for questions that require
trial-unique analysis of replay content (e.g. in a reward devalua-
tion or replanning scenarios where the key manipulation can
only be done once) behavioural sampling bias remains a
particular concern.

(c) Non-stationary tuning curves
Adifferent source of bias in replay content arises from imperfect
behavioural tuning curve estimates related to temporal drift, i.e.
the known tendency for at least some cells to change their place
tuning over time [76–78], particularly in newenvironments [79].
This problem is further compounded by instabilities in unit
recordings, during which electrode drift or cell attrition can
affect the isolation distance and cluster quality of a unit over
time. Imagine that behavioural tuning curves are estimated
from an initial task epoch and first applied to sequences that
occur shortlyafter (figure 5, left; ‘time 1’). In this case, the behav-
ioural tuning curves are a goodmatch for the true tuning curves.
However, if the same behavioural tuning curves are used for
analysing sequences that occur sometime later (time 2) the
true tuning curves may have shifted (figure 5, right) causing a
difference in observed replay score even in the absence of a
difference in true underlying sequences.

If this scenario seems far-fetched, consider that van der
Meer et al. [80] showed clear differences in decoding accuracy
when decoding trials that were 1 versus 10 trials apart.
Additionally, observed tuning curves are known to change
over time as a result of several factors, such as experience-
dependent place field expansion [65], look-ahead at decision
points [81], rapid switching between multiple maps [82–84]
and the presence of different gamma rhythms [85].

On the otherhand, for instances inwhich ‘time 1’ and ‘time 2’
are closer together (e.g. rewarded versus unrewarded trials, or
correct versus error trials), examining the reactivation or co-acti-
vation probabilities of place cells or ensembles (i.e. ‘what cells’)
can potentially provide the desired information without the
need to evaluate their temporal sequences per se (e.g. [20).

(d) Changes in sequence generation tuning curves
A final source of bias can arise from differences or changes over
time in the true sequence tuning curves. Inourgenerative frame-
work, sequence tuning curves underlie the instantaneous firing
rates that occur during SWRs. Figure 6 illustrates the possibility
that for map A (green), the sequence generation tuning curves
are more precise than for map B (blue), resulting in higher
sequence scores for map A. This could occur, for instance,
because of differences related to deep versus superficial areas
of the CA1 pyramidal cell layer [86]. However, it presents an
even more significant concern when comparing replays across
time points that might be accompanied by changes in the excit-
ability of cells. For example, neuromodulatory changes between
awake and sleep states, or across the sleep/circadian cycle, can
potentially affect the likelihood of cells to fire during SWRs, and
their true sequence tuning curves will vary accordingly across
timepoints. Furthermore, as noted above, thedecodedposterior
probabilities during SWRs are sensitive to the number of co-
active cells. Thus changes in SWR excitability alone can
impact replay scores.

(e) Relevance of these biases for ensemble reactivation
measures

In some instances, investigators may simply be interested in
second-order questions involving cells or cell ensembles,
rather than temporal sequences. While we have highlighted
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these issues and potential biases with regards to sequence
analysis, it is important to recognize that they also factor into
second-order reactivation analyses using pairwise or PCA/
ICA ensemble methods. For example, less sampled regions of
a maze or fewer sampled neurons also inherently result in
poorer estimates for the co-activation patterns of neurons. For
ensemble analyses in particular, because these methods
typically involve a predetermined time bin, temporal com-
pression between behaviour and replay presents an
additional significant issue. Since many ensembles are most
activated during SWRs, the common approach is to actually
use SWR activity during immobility or sleep, rather than
activity during behaviour alone, to define the ensembles, and
then to examine their instatement post hocduring the behaviour
and/or sleep periods. That neurons contribute both positive
and negative weights, and that reactivation strength can
also take positive and negative values introduce other points
worthy of careful consideration. Finally, it should be kept in
mind that correlation methods measure coordinated changes
in firing rates and are, therefore, affected not only by global
activity but also by global silences, such as during DOWN
states [87], LOW states [88] or infra-slow oscillations [89]. If
these silent or low-activity periods vary across the periods
under comparison, they will inevitably produce further
confounds.
6. Strategies for diagnosis and prevention of
second-order sequence analysis issues

We believe that the above biases resulting from unequal
sampling of place cells and unequal estimates of tuning
curves are pervasive. It is rare that animal behaviour is
exactly equal across an environment. So, what is a replay
researcher to do? We suggest two main categories: bias mini-
mization, which can occur by experimental design and
analysis, and bias diagnostics, to determine what biases exist
so that the interpretations can be appropriately qualified.
Strategies for bias minimization include:
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— In experimental design, take steps to promote equal behav-
ioural sampling of the environment wherever possible. This
can include not only ensuring that the animal samples differ-
ent locations as equally as possible, but also standardizing
when and how (under different behavioural conditions)
the animal samples these locations.

— In analysis, subsample numbers of trials to equalize for the
different locations of interest. For instance, if there are 50 A
trials and 10 B trials, subsample the A trials to make the
A–B comparison more equitable. Below a certain number,
nevertheless, decoding accuracy will likely drop; for
instance, van der Meer et al. [80] found that decoding accu-
racy dropped substantially when fewer than 5 trials were
used to construct tuning curves for decoding.

— If uneven numbers of cells are recorded in the conditions
to be considered, similar-sized sections of the environment
(e.g. lengths of track) should be compared against each
other. This approach will therefore avoid inequalities aris-
ing from cell sampling while preserving more important
inequalities that may be due to differences in the true be-
havioural tuning curves, such as a higher density of
place-fields in one condition versus the other.

— Future replay scoring methods should hopefully be able to
take into account not only the mean firing rate in turning
curves, but also the uncertainty in that measure. This
would help mitigate biases due to unequal sampling that
underlie mean firing rate estimations for different locations.
The commonly used Bayesian decoding framework for
replay analysis [90,91] uses a Poisson process limited to a
mean firing rate (λ) for each location, discarding information
about the amount of data this mean estimate was derived
from (more uncertain for low sampling, less uncertain for
high sampling). Ghanbari et al. [92] show that incorporating
such uncertainty improves decoding accuracy of reaching
movements from motor cortex data; a similar approach will
likely be fruitful for hippocampal data under limited
sampling conditions. Unit isolation and stability on an
event-by-event basis could likewise be incorporated into a
more comprehensive probabilistic framework.

— Future replay scoring methods should also aim to avoid
the conflation between how strong a replay is (which
should be independent of the number of cells) and how
much evidence/uncertainty there is about that estimate
(which does depend on the number of cells). Current
methods such as z-scoring relative to a shuffled distri-
bution mix these two together.

— Alternate methods based on a probabilistic framework
such as Hidden Markov Models [59,93] can be valuable
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for incorporating uncertainties regarding the factors men-
tioned above, since in these methods observation states
and transition matrices are constructed from distributions
observed in the data in a template-free manner. These
methods can also be helpful when constructing a template
from place fields is not desirable, for example, during one-
trial learning or non-spatial behaviours.

Diagnostics for detection of replay content bias include:

— Compute a cross-validated decoding error on behavioural
data where a true correct answer, such as the subject’s pos-
ition in space, is available. Importantly, the decoding error
on data not included in the training set (i.e. the data from
which the decoder is obtained) is sensitive to all biases dis-
cussed above [80]. Thus, this error can be used to obtain a
null hypothesis for replay content given that the true under-
lying replay distribution is uniform, i.e. it can reveal the
replay content differences that would be expected from
experimental biases unrelated to true replay content.
— Generative models of replay can generate spike sequences
from a specific model of ground truth. Such synthetic data
can then be used to quantify the expected bias due to the
various factors discussed above (e.g. limited behavioural
sampling of true underlying tuning curves; different num-
bers and/or firing rates of place cells). Of course, the
relevance of the results from such a model is proportional
to how accurately the synthetic data captures the proper-
ties of real data; ongoing development of such generative
models of replay is likely to be a fruitful area of research
for multiple reasons.

7. Conclusion
The temporally compressed sequential firing patterns of
hippocampal neurons during SWRs have rightfully sparked
widespread fascination and attention from researchers with a
broad range of scientific interests. This is due to the potential
role of hippocampal sequences not only in learning and
memory, but also in complex decision making, planning and
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imagination. Furthermore, recent years have seen (i) the emer-
gence of a productive interaction with reinforcement learning
and artificial intelligence systems that incorporate replay
[8,94], (ii) the development of behavioural paradigms and
fMRI/MEG analysis methods to study not only reinstatement,
but also sequential replay in humans [95,96], and (iii) the devel-
opment of real-time causal interventions targeting SWRs and
SWR content [2–4,97,98].

These different lines of work drive current questions about
SWR content in increasingly complex experimental designs,
such as those involving more richly structured spatial environ-
ments with multiple possible trajectories, representation of not
only the self but other agents and multi-faceted non-spatial be-
haviour. The continuing evolution of wireless and recording
technologies further enable the exploration of larger environ-
ments, and longer continuous recordings. As these
developments push the boundaries of replay questions, poten-
tial issues, such as unequal behavioural sampling and temporal
drift, become increasing concerns. These are likely to be
combined with closed-loop approaches that will modify
SWRs and their underlying sequence tuning curves. Yet, as
we have argued here, these concerns are already prevalent
today, even in seemingly innocuous settings such as comparing
two arms of a maze or two different time points. There is ample
potential for biases in replay analysis that can lead to erroneous
inferences. While the potential for confounds and biases are
pronounced, by careful experimental design and consideration
of the assumptions underlying null hypotheses, these issues can
be understood and reasonably managed.
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