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In recent years, it has become evident that plants perceive, integrate and com-
municate abiotic stress signals through chloroplasts. During the process of
acclimation plastid-derived, retrograde signals control nuclear gene expression
in response to developmental and environmental cues leading to complex
genetic and metabolic reprogramming to preserve cellular homeostasis under
challenging environmental conditions. Upon stress-induced dysfunction of
chloroplasts, GENOMES UNCOUPLED (GUN) proteins participate in the
repression of PHOTOSYNTHESIS-ASSOCIATED NUCLEAR GENES
(PHANGs). Here, we show that the retrograde signal emitted by, or communi-
cated through, GUN-proteins is also essential to induce the accumulation of
photoprotective anthocyanin pigments when chloroplast development is atte-
nuated. Comparative whole transcriptome sequencing and genetic analysis
reveal GUN1 and GUN5-dependent signals as a source for the regulation of
genes involved in anthocyanin biosynthesis. The signal transduction cascade
includes well-known transcription factors for the control of anthocyanin bio-
synthesis, which are deregulated in gun mutants. We propose that regulation
of PHANGs and genes contributing to anthocyanin biosynthesis are two,
albeit oppositely, co-regulated processes during plastid biogenesis.

This article is part of the theme issue ‘Retrograde signalling from
endosymbiotic organelles’.
1. Background
Owing to their sessile lifestyle, plants had to evolve strategies to cope instan-
taneously with biotic and abiotic stress such as pathogens, changing light
intensities, temperature and nutrient availability. On a molecular level, the stress
response includes acomplexgenetic andmetabolic reprogramming topreserve cel-
lular homeostasis and to allow growth under challenging conditions. The
processes of acclimation to a changing environment are active from the beginning
of germination through adolescence. In recent years, it became evident that abiotic
stress is perceived, integrated and communicated through chloroplasts, the energy
facility of photoautotrophic organisms. Stress responses which are initiated by
chloroplast-derived signals feed so-called retrograde signalling pathways that
aim at regulating the expression of nucleus-encoded genes. Although they
cannot always be strictly separated, retrograde signals can be distinguished
between those important during early developmental stages when the proplas-
tid-to-chloroplast transition occurs (biogenic control) and signals from fully
developed chloroplasts which are part of the so-called ‘operational control’ [1].
The latter group of signals, encompasses metabolites of biochemical pathways
such as the isoprenoid biosynthesis [2–4], nucleotide metabolism [5,6], tetra-
pyrroles [7,8], the redox-status of plastid components [9–11] as well as reactive
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oxygen species (ROS) emerging from photosynthesis [12–16],
intermediates, end and breakdown products of carotenoid bio-
synthesis [17,18] and fatty acids (derivatives). Plastid gene
expression also contributes to the regulation of nuclear-encoded
genes [11,19–22]. The retrograde signalling pathways preserve
cellular homeostasis mainly through transcriptional and post-
transcriptional regulationof (stress) specific genes in thenucleus
[23–26] but also through, for example, degradation of ROS-
damaged plastids [27] or adjustment of morphological traits
[28]. One of the retrograde signalling pathways acting during
plastid biogenesis depends on the plastid-localized GENOMES
UNCOUPLED (GUN) proteins, but the identity of the precise
signals and function of the contributing components and
mechanisms are still limited. In the course of plastid develop-
ment, nucleus-encoded PHOTOSYNTHESIS-ASSOCIATED
NUCLEAR GENES (PHANGs), such as genes encoding com-
ponents of the photosynthetic electron transfer chain (LIGHT
HARVESTING COMPLEX (LHCs) or PLASTOCYANIN (PC)),
are highly expressed. When plastid biogenesis is disturbed,
PHANGs are repressed [29–31]. GUN1, a plastid-localized pen-
tatricopeptide repeat protein identified as one component in the
retrograde communication pathway to regulate PHANG
expression, was isolated almost three decades ago [30]. Exten-
sive genetic and biochemical analysis revealed contributions
of GUN1 to various aspects of plastid physiology and biochem-
istry such as plastid gene expression, RNA editing, proteostasis
and protein import [32–42]. In addition to GUN1, genetic
perturbation of Mg-chelatase (MgCh), a key enzyme of
plastid-localized chlorophyll biosynthesis, leads to uncoupling
of PHANG expression from the developmental state of plastids.
Mutants of GUN4 (a positive regulator of MgCh), GUN5
(the catalytic subunit of MgCh) [43,44] and, although to a
lesser extend compared to gun5, also of the I and D subunit of
MgCh show a gun phenotype, i.e. reduced repression
of PHANGswhen chloroplast development is perturbed inAra-
bidopsis and barley [45,46]. Alteration of haeme metabolism in
gun2 (HEME OXYGENASE), gun3 (PHYTOCHROMOBILLIN
SYNTHASE), gun6 (FERROCHELATASE I overexpressor line)
and potentially also in gun4 and gun5 placed haeme, rather
than other tetrapyrrolic intermediates [47,48], in the centre of
current models for retrograde signal(s) emerging from tetrapyr-
role biosynthesis [7,37,49]. In addition, CRYPTOCHROME 1
(CRY1) and downstream signalling components such as
ELONGATED HYPOCOTYL 5 (HY5) [31] or GOLDEN2-LIKE
1 and 2 [50–52] play an important role for the retrograde control
of nuclear gene expression.

One of the major traits of plants suffering from adverse
environmental conditions, like high light or temperature
shifts, is the accumulation of coloured anthocyanin pigments
in above-ground tissues. Although dispensable for growth
under optimal conditions, these secondary metabolites were
shown to protect plants from excessive amounts of light
[53–55]. Anthocyanins are end products of a combined
pathway of cytosolic phenylpropanoid and flavonoid biosyn-
thesis, which produces a great diversity of polyphenolic plant
secondary metabolites [56]. After the conversion of plastid-
derived phenylalanine to p-coumaroyl CoA through PHENYL-
ALANINE AMMONIA LYASE (PAL), CINNAMIC ACID-4-
HYDROXYLASE (C4H) and 4-COUMAROYL COA LIGASE
(4CL), CHALCONE SYNTHASE (CHS) catalyses the initial
step of flavonoid biosynthesis (figure 1a). Subsequent reactions
provide the precursor(s) for various flavonoid derivatives [57].
The main route for the synthesis of anthocyanins branching
from core flavonoid/anthocyanin biosynthesis (FAB) is
initiated by DIHYDROFLAVONOL 4-REDUCTASE (DFR)
and LEUCOANTHOCYANIDIN DIOXYGENASE (LDOX)
[58–60]. The FAB pathway is divided into two major parts
which consist of enzymes encoded by ‘early biosynthetic
genes’ (EBGs), like CHS, and the ‘late biosynthetic genes’
(LBGs), such as DFR and LDOX. Diminished pathway activity
in FABmutants often coincideswith the lackof oxidized tannins
in the seed coat and a transparent testa (tt) (seed coat) phenotype
[58]. In leaves, enzymes and regulators of FAB are targets for
post-translational protein modifications [61–63]. EBGs are con-
trolled by a set of partially redundant transcription factors (TF)
MYB11,MYB12 andMYB111 [64,65]. By contrast, LBG transcrip-
tion ismainly regulatedbyanMBW-complex consistingofMYB,
bHLHandWD40TF.TogetherwithoneWD40variant (TRANS-
PARENT TESTAGLABRA 1),MYB75 encoding PRODUCTION
OF ANTHOCYANIN PIGMENT 1 (PAP1) and the bHLH TFs
TT8, GLABRA3 (GL3) and ENHANCER GL3 (EGL3) these
major factors concertedly regulate the composition and activity
of the MBW-complex [66–68]. The exchange of PAP1 by
MYBL2 inactivates the complex [69–72]. EBGs, LBGs and TFs
have been shown to be under the control of light signallingpath-
ways involving ultraviolet-, blue and red-light photoreceptors
and the downstream component HY5 [73–77]. The role of chlor-
oplast-derived signals (including phytohormones andROS) and
their downstream components on the regulation of the cytosolic
FAB pathway have been previously discussed [16,55,78–80].
However, the identity of signal molecules and the underly-
ing mechanisms by which, in particular, plastid biogenesis
contributes to the regulation of FAB are still scarce.
2. Results
(a) Induction of anthocyanin biosynthesis upon block

of chloroplast development
Norflurazon (NF) is an inhibitor of plastid-localized carotenoid
biosynthesis which is routinely applied to germinating
seedlings to suppress chloroplast development from undiffer-
entiated pro-plastids [30,81]. When germinated in the
presence of NF, plant leaves lack carotenoids and do not
accumulate chlorophyll and chlorophyll-binding proteins
resulting in the development of white cotyledons (figure 1b).
Also, and in contrast to control plants grown without NF,
light-grown, NF-treated Arabidopsis thaliana wild-type plants
(WT, Col-0) showed a purple coloration, which was attribu-
table to the accumulation of anthocyanins (figure 1b,c). While
etiolated plants showed the same basal level of anthocyanins
in the presence and absence of NF, anthocyanin accumulation
was stimulated by three to fourfold in light, when chloro-
plast development was perturbed (figure 1c). At the same
time, two light-inducible representative PHANGs (CA1 and
LHCB1.2), were repressed in the light, but not in the dark-
grown NF-treated plants (figure 1d,e). Visible accumulation
of anthocyanins in the NF-treated tissues resulted from
strong induction of EBG and LBG expression. In contrast to
the untreated control, transcripts coding for CHS, CHI, DFR
and LDOX were enriched by 5–10-fold when plants germi-
nated in the presence of NF (figure 1f–i). Higher expression
of FAB was explained by induction of three major TFs
(MYB12, MYB75 (PAP1) and HY5) as well as a reduced tran-
scription of the MYBL2 repressor in the light (figure 1j–m).
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Figure 1. Induction of flavonoid/anthocyanin biosynthesis (FAB) upon chloroplast dysfunction. (a) Schematic overview of the FAB pathway leading to the formation
of polyphenolic compounds. PAL1-4, PHENYLALANINE AMMONIA LYASE; C4H, CINNAMIC ACID 4-HYDROXYLASE; 4CL1-4, 4-COUMAROYL COA LIGASE 1-4; CHS, CHAL-
CONE SYNTHASE; CHI, CHALCONE ISOMERASE; F3H, FLAVANONE 3-HYDROXYLASE; F3’H, FLAVONOID 30-HYDROXYLASE; DFR, DIHYDROFLAVONOL-4-REDUCTASE; LDOX,
LEUCOANTHOCYANIDIN DIOXYGENASE. (b) Representative photograph of etiolated (dark) and continuous light-grown Arabidopsis thaliana Col-0 seedlings germinated
in the absence (control) or presence of norflurazon (NF). (c) Quantification of anthocyanins in seedlings shown in (b). Data are given as mean ± s.d. (n = 4). Letters
indicate statistical groups determined by Student’s t-test ( p < 0.05). FW, fresh weight. Black (control) and blue (NF). (d–m) qRT-PCR analysis of gene expression for
genes encoding PHANGs (CARBONIC ANHYDRASE1 and LIGHT HARVESTING COMPLEX B1.2), enzymes involved in FAB and transcription factors (MYB12, MYB75, HY5,
MYBL2). Seedlings were grown as described in (b). D, dark; L, light. Gene expression was calculated relative to the WT etiolated in the absence of NF and ACTIN2 as
reference (ΔΔC(t)method). Data are given as mean ± s.d. (n = 4). Letters indicate statistical groups determined by Student’s t-test ( p < 0.05).
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(b) Involvement of the GUN-dependent signalling
pathway

Because PHANGs were shown to be under GUN-dependent
retrograde control when chloroplast development is altered,
we tested if the same plastid-to-nucleus communication is
responsible for the induction of anthocyanin biosynthesis. For
this purpose, previously published leaky gun1-1 (electronic
supplementary material, figure S4), gun4-1, gun4-3 and gun5-
1 were compared with NF-treated WT plants, other mutants
of the tetrapyrrole biosynthesis pathway (e.g. chlm (encoding
MgP methyltransferase), ch1-2 (chlorophyll a oxygenase)) and
for components of the thylakoid protein integration pathway
(cpsrp43/54, see the electronic supplementary material, table
SII). After growth on NF, cotyledons of all genotypes—except
the four gun mutants—showed a strong purple coloration
(figure 2a). The gunmutants defective in retrograde signalling,
on the other hand, showed less purple coloration and accumu-
lated only 40–70% of the anthocyanin content detected in the
WT (figure 2d). Metabolic profiling confirmed the reduced
accumulation of the major anthocyanins but not of the
flavonoid/anthocyanin precursor phenylalanine in gun1,
gun4 and gun5mutants germinated in the presence of NF (elec-
tronic supplementary material, figure S1). As expected, the
expression of two representative PHANGs (CA1 and
LHCB1.2) was repressed to the WT level in chlm, ch1-2 and
srp43/54, but were less downregulated in gun1-1, gun4-1,
gun4-3 and gun5-1 mutants (figure 2a,b). We also examined
the role of GUN-dependent signalling during acclimation to
environmental stress and treated soil-grown WT, gun and
non-gun mutant genotypes with high light (HL) for a period
of 24 h anddetermined anthocyanin and chlorophyll (Chl) con-
tent (electronic supplementary material, figure S2). While the
gun1-1mutant showedWT-like Chl content,mutant genotypes
affected in Chl synthesis (gun4, gun5, chl27 (MgPMME oxi-
dative cyclase), ch1- 2) accumulated 50−70% of the Chl
amounts detected in the WT plants at the beginning of the HL
shift (electronic supplementary material, figure S2A). During
the 24 h ofHL treatment, the Chl content decreased byapproxi-
mately 30% in theWT, and a similar trendwas observed for the
mutants.HLexposure inducedWT-like accumulation of antho-
cyanins in gun1-1 mutant plants with a gradual increase of
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anthocyanin pigment content (electronic supplementary
material, figure S2B). By contrast, gun4-1, gun4-3, gun5-1 as well
as the non-gun genotypes (chl27, ch1-2) showed diminished
accumulationof anthocyaninsduringandat theend, respectively,
of the HL treatment (electronic supplementary material, figure
S2B). This finding indicates that de-regulation of FAB is a gun
specific property during early plastid biogenesis only.

To analyse the anthocyanin deficiency in gunmutants after
NF treatment further, we analysed global transcriptomeprofiles
of NF-treated WT, gun1-1, gun4-1 and gun5-1 using RNA-
sequencing. Heat map representation of the approximately
9300 significantly deregulated genes (SDGs) in at least one of
the gun mutants (0 < log2 fold change > 0, adjusted p-value
0.05, electronic supplementary material, table SI) revealed a
strikingly similar transcriptome response of the NF-treated
gun mutants compared to the NF-treated WT (figure 3a).
Because gun4-1 showedonlyaweak gunphenotype in compari-
son to, for example, gun5 (figure 2b,c) the overlap of SDG
between gun1 and gun5was always bigger than the overlap of
gun4-1 with the other genotypes (figure 3b,c). Out of the 5056
upregulated transcripts, 690 were significantly deregulated in
all gun mutants (figure 3b). Within this cluster, PHANGs were
identified (electronic supplementary material, table SI). By con-
trast, the cluster of commonlydownregulated transcripts (443 in
all gun, figure 3c) included genes of the phenylpropanoid/FAB
explaining the anthocyanin deficiency of the gun mutants. We,
therefore, analysed both, the upregulated and downregulated
clusters for transcripts whose gene products are involved in or
related to FAB. Because gun1-1 and gun5-1 showed an almost
similar transcriptome response, we focused on gun1-1 and
gun5-1 in further experiments. Expression of mRNAs coding
for enzymes involved in anthocyanin biosynthesis (PAL4,
4CL2,3,5, TT4, TT5, F3H, DFR and LDOX) as well as transcripts
ofmajor TFs such asMYB11,MYB111,MYB75were found to be
downregulated with the same tendency in gun1-1 and gun5-1
(figure 3d). On the other hand, 4CL1, PAL2 and the transcrip-
tional repressor MYBL2 were stronger expressed in gun1-1
and gun5-1 compared to the NF-treated WT, while the bHLH
TF TT8 was repressed in gun5-1, but induced in gun1-1
(figure 3d). We confirmed the differential expression of tran-
scripts identified by RNAseq with quantitative real-time
polymerase chain reaction (qRT-PCR) analysis using cDNA
obtained from independently grown seedlings and compared
the expression of the FAB genes in NF-treated gun relative to
NF-treated WT (figure 3e,f). A strong positive correlation
between expression values of RNAseq and qRT-PCR confirmed
the de-regulation of FAB gene expression in gunmutants when
plastid development is suppressed. However, it is important to
mention that the expression of LBGs (DFR, LDOX) was always
stronger affected than EBGs (CHS, CHI).
(c) Anthocyanins do not control PHANG expression
The strong negative correlation between PHANG and FAB
expression, i.e. gun phenotype and anthocyanin accumulation,
prompted us to hypothesize that anthocyanins might be
involved in the GUN-dependent signalling pathway respon-
sible for the repression of PHANGs. Therefore, a mutant of the
early steps of the phenylpropanoid biosynthesis preceding
FAB was analysed. As expected, the ref3-3 mutant, expressing
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a point-mutated C4H gene (figure 1a; electronic supplementary
material, figure S3A/B), showed reduced accumulation of
anthocyanins compared to WT when germinated in the pres-
ence of NF (figure 4a). Although anthocyanin accumulation
was even more impaired in ref3-3 compared to gun1, PHANG
expression was suppressed to WT levels after NF treatment
(figure 4b,c), indicating that anthocyanin levels do not deter-
mine the transcription rate of PHANGs. This finding was
further supported by the fact that diminished anthocyanin
accumulation in ref3-3 gun1-1 and ref3-3 gun5-1 compared to
the singlemutants did not lead to enhanced PHANG expression
(figure 4a–c). Likewise, knockout of the genes encoding the FAB
enzymes flavanone 3-hydroxylase (F3H), and LDOX desig-
nated tt6 and tt18, respectively (electronic supplementary
material, figure S3C/D) prevented the accumulation of antho-
cyanins after NF treatment but not the repression of LHCB1.2
(figure 4d,e). Additionally, overexpression ( pap1-D) and knock-
out of MYB75 (myb75) positively and negatively affected
anthocyanin biosynthesis upon NF treatment, respectively, but
did not trigger a gun phenotype (figure 4d–f). The lack of a
gun phenotype of mutants defective in FAB is in agreement
with gunmutant screenswhich yielded noFABmutant. In sum-
mary, anthocyanins are excluded to controlPHANG expression,
but the results reveal FAB genes as an additional target of
the GUN-dependent retrograde signalling pathway when
chloroplast development is perturbed.

(d) Activation of anthocyanin biosynthesis depends on
GUN1 and GUN5

To obtain detailed insights on how the GUN1 and GUN5
specific signals influence FAB, we compared light-exposed
gun1-1, gun5-1, and gun1-1 gun5-1 with the WT in the absence
or presence of NF (figure 5). While gun1-1 showed WT-like
anthocyanin levels in the control condition without NF,
gun5-1 accumulated less anthocyanins, and anthocyanin
deficiency was even more pronounced in gun1-1 gun5-1
plants (figure 5a,b). Stimulated expression of FAB genes
(figure 1) led to 2-3-fold higher anthocyanin content in the trea-
ted WT compared to the control without NF. By contrast, NF-
treated gun1-1 and gun5-1 accumulated only 60% and 30%,
respectively, of the WT anthocyanin content. To test if knock
out ofGUN1 exacerbates anthocyanin deficiency in comparison
to leaky gun1-1mutant and gun5-1,we additionally analysed a
loss-of-function allele of GUN1 (gun1-102, [38]). While knock
out ofGUN1 enhanced uncoupling of PHANG expression (elec-
tronic supplementary material, figure S4C), the phenotype
(electronic supplementary material, figure S4A) and anthocya-
nin content (electronic supplementary material, figure S4B)
of gun1-102 was indistinguishable from that of gun1-1 after
NF-treatment. In agreement, expression of FAB pathway
genes was reduced to the same extent in both GUN1 alleles
(electronic supplementary material, figure S4D). Stimulation
of FABwas hardly detectable inNF-treated gun1-1 gun5-1 com-
pared to the control condition, and anthocyanin level did not
even reach the level of the untreated WT (figure 5b). In stark
contrast to induced FAB genes in the NF-treated WT (figure 1
and figure 5c), NF-treated gun mutants showed diminished
induction of FAB genes compared to the control condition
(figure 5c). Furthermore, an additive effect of GUN1 and
GUN5 mutation was found in gun1-1 gun5-1 relative to the
single mutants on the expression, for example, of MYB75 and
DFR (figure 5c). Consequently, gun1-1 gun5-1 accumulated
feweranthocyaninpigments than the singlemutants (figure 5b).
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The blue light photoreceptor CRY1 and the downstream
acting TF HY5 are essential for light induction of FAB. As
reported previously, cry1-2 and hy5mutants showed amodified
expression of CHS and LDOX and, consequently, reduced
anthocyanin content compared to WT seedlings when treated
with NF (figure 5d,e). Reduced FAB gene expression was
more pronounced in cry1-2 seedlings and resembled the FAB
transcript level of NF-treated gun mutants. In summary, the
results suggest that FAB genes were downregulated by two
independent GUN signals and proper activation of FAB
depended on a concerted action of both plastid signals and
light signalling pathways.
(e) Evidence for a function of MYBL2
Regulation of gene expression for FAB is mediated through the
activity of the MBW-complex, which includes the essential
MYB component, such as MYB75 (PAP1). When MYBL2
replaces PAP1, the activity of theMBW-complex is diminished.
In the presence of NF, anMYBL2 knockout line (mybl2-2) accu-
mulated more anthocyanins compared to the WT (figure 6a),
which was explained by transcriptional induction of MYB75
(figure 6c), DFR and LDOX (figure 6d). This result confirmed
the important function of MYBL2 in counteracting FAB
gene expression and anthocyanin biosynthesis, respectively,
in NF-treated Arabidopsis seedlings [69,71]. Interestingly,
MYBL2 was expressed to a higher level in the gun mutants
compared to WT (figures 3 and 6c). We, therefore, analysed
crosses ofmybl2-2with either gun1-1 or gun5-1 for the potential
impact of MYBL2 on the downregulated FAB expression
(figure 6c). MYBL2 deficiency did not interfere with the gun
phenotype observed in the single mutants (figure 6b). Surpris-
ingly, and in stark contrast to mybl2-2, MYB75 transcript levels
did not differ between gun single and mybl2-2 gun1-1 or
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mybl2-2 gun5-1 (figure 6c). DFR and LDOX expression were
recovered to a mybl2-2 level in mybl2-2 gun1 but only to WT-
like level in mybl2-2 gun5-1 (figure 6d ). As a result, stimulated
expression of FABs in mybl2 gun double mutants gave rise
to higher anthocyanin contents, which increased compared to
the gun single mutants but were still lower compared
to mybl2-2 (figure 6a).
3. Discussion
(a) Plastid signals control flavonoid/anthocyanin

biosynthesis
Stimulation of FAB and accumulation of end-products of the
pathway, like anthocyanins, has been reported for plants
suffering from nutrient starvation, changes in light quality
and quantity as well as growth temperature (e.g. Kovinich,
Kayanja [82]). Essential factors for the transcriptional and
post-translational regulation of FAB, such as photoreceptors
[75,76] and components of hormone signalling [72,80] have
been described. Previous analysis also revealed a function of
GUN1 in the regulation of FAB when chloroplast biogenesis
is inhibited [16,36,41,83]. However, the knowledge about mol-
ecular mechanisms and factors of (gun-dependent) plastid
signalling functioning in the regulation of FAB and, in particu-
lar, the importance of the tetrapyrrole-dependent signalling
pathway is still incomplete. NF is commonly used to prevent
the development of chloroplasts from proplastids. By blocking
phytoene desaturase, NF diminishes the accumulation of
carotenoids, which are essential factors for the stabilization,
accumulation and function of the light-absorbing photo-
systems. When germinated in the presence of NF in the light,
plants develop white cotyledons lacking functional chloro-
plasts (figure 1 and [30], Nott et al. [81]). As a result of the
inhibition of plastid biogenesis, transcriptional induction of
FAB pathway genes and strong accumulation of anthocyanins
was observed (figure 1). Expression of genes encoding positive
transcriptional regulators of EBGs (MYB12) and LBGs (MYB75)
and ofMYB75 itself (i.e.HY5, Shin et al. [74]) was induced upon
NF treatment. By contrast, a negative regulator,MYBL2,which
concurrently interacts with MYB75 (PAP1) for binding to the
MBW-complex [71], was downregulated in NF-treated light-
grown seedlings, allowing high expression of FAB pathway
genes and anthocyanin accumulation. Diminished expression
of MYBL2 probably results from the stimulated expression of
HY5 [70,71,84]. Reduced accumulation of anthocyanins in
myb75 knockout mutants and elevated contents in a dominant
PAP1 (MYB75) overexpression line (figure 4), as well as over-
accumulation of anthocyanins in a NF-treated knockout
mutant line for the negative regulator MYBL2 (figure 6) also
verified their function in regulating the composition and
activity of the MBW-complex for the accumulation of antho-
cyanins when plastid development is suppressed. Stimulated
mRNA transcription and activity of CHS, a key enzyme in
the FAB pathway, was also observed inmustard seedlings trea-
ted with NF and the plastid specific translation inhibitor
chloramphenicol, respectively [85]. Also, perturbed plastid
development stimulated the strong accumulation of antho-
cyanins in young seedlings [41,83,86]. In summary, the
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results emphasize the important role of plastid-derived
communication in regulating the expression and activity
of the FAB pathway and synthesis of anthocyanins during
plastid biogenesis.
(b) Regulation of flavonoid/anthocyanin biosynthesis by
two GUN-dependent signals

Simultaneously to the induction of FAB genes, the block
in chloroplast development led to suppressed PHANG
expression in WT seedlings (figure 1). The repression of
PHANGs is known to be mediated, at least partially, by the
GUN-dependent retrograde signalling pathway and, conse-
quently, gun mutants accumulated more CA1 and LHCB1.2
mRNAs upon perturbed plastid development (figure 2).
At the same time, the modified function of GUN1, GUN4 and
GUN5 prevented WT-like accumulation of anthocyanins
(figure 2). Anthocyanin deficiency of gun mutants was found
to be a result of modulated FAB gene expression (figures 3
and 5), rather than a shortfall in the supply of phenylalanine,
the precursor of all phenylpropanoids and their derivatives
(electronic supplementary material, figure S1). Even more
important, although strongly induced in NF-treated WT seed-
lings, FAB genes were markedly less induced in gun mutants
compared to the control without NF (figure 5). This result is
indicative for either a negative signal emitted from gun plastids
or a stimulating action of a FAB repressor (e.g. a TF) in gun
mutants. Indeed, FAB is negatively affected by MYBL2, which
interferes with the composition of the MBW TF complex
[69,71]. MYBL2 was significantly upregulated in gun1, and
gun5 (figure 6) and knockout of MYBL2 rescued the modified
LBG expression of gun1 but only partially that of gun5. These
results indicated that MYBL2 contributes to GUN1-dependent
control of FAB but plays aminor role inGUN5-mediated signal-
ling. Hence, FAB/FAB regulation might also involve another
dominant repressor (or the lack of an activator) in gun5.

The altered accumulation of anthocyanins in gun1-1 seed-
lings observed here is in agreement with previous studies
revealing anthocyanin deficiency of gun1mutants when plastid
development is inhibited [36,41,83]. The recently demonstrated
impairment of plastid protein import in gun1 seedlings upon
block of chloroplast biogenesis, helped, in addition to other
studies, to distinguish GUN1-dependent from the tetrapyrrole
biosynthesis-dependent signalling (i.e. GUN4/5) and verifies
the synergistic effects of two independent signals emerging
from GUN1 and tetrapyrrole biosynthesis, respectively [34,87].
In this context, double mutation of GUN1 and GUN5 exacer-
bated the anthocyanin deficiency of the single mutants
(figure 5). Interestingly, the NF-treated gun1 gun5mutant accu-
mulated similar amounts of anthocyanins as etiolated WT
seedlings and the anthocyanin content did not even reach that
of the light-grown WT in the absence of NF. Therefore, it
could be assumed that, during the process of plastid biogenesis,
regulationofFABgenes exclusivelydependsonplastid-derived,
GUN-mediated signals. The blue light receptor CRY1 and the
TF HY5 were shown to be positive regulators of (abiotic
stress-induced) anthocyanin biosynthesis [74,75,88,89] and
knockout of both factors also led to anthocyanin deficiency
after NF-treatment (figure 5 and Ruckle & Larkin [83]). Because
anthocyanin content of cry1-2 and hy5 resembled that of gun1
gun5, it is reasonable to speculate that GUN-dependent signal-
ling acts in concert with components of light signalling
pathways to regulate FAB [31,83]. Indeed, the two FAB repre-
sentatives CHS and LDOX were downregulated in hy5 and to
a stronger extent in cry1-2 compared to WT, where the
expression of these genes was comparable to that in gun1 and
gun5. On the other hand, while CRY1 expression was slightly
induced in gun1 and gun5 compared to the NF-treated WT,
expression ofHY5,which is induced inNF-treatedWT (figure 1)
and in a mutant with defects in plastid protein import [51], was
reduced in gun1 and gun5 (figure 5; electronic supplementary
material, table SI). Reduced expression of HY5 correlated with
modified expression ofFABgenes in gunmutants. Furthermore,
accelerated proteasomal degradation of HY5 in cry1-2 [90,91]
can, at least partially, explain thederegulation ofFAB expression
in the photoreceptor mutant. Although differently interpreted
at that time, previous work already indicated that GUN1-
dependent signalling requires CRY1 and HY5 for WT-like
accumulation of anthocyanins when plastid development is
blocked by lincomycin in blue light [83]. Therefore, a yet
unknown connection of GUN1 and tetrapyrrole specific retro-
grade signals and the action of CRY1 and HY5 regulating the
expression of FAB genes is proposed.

We cannot rule out that GUNs are also involved in a puta-
tive retrograde signalling cascade regulating FAB genes in
high light (i.e. during operational control, Pogson et al. [1]),
but our results rather suggest a correlation between the chlor-
ophyll content and the ability to accumulate anthocyanins
in various genotypes (electronic supplementary material,
figure S2). While CRY1 and HY5 are essential, lack of
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GUN1 did not interfere with the accumulation of antho-
cyanins when plants germinated in high light [83]. In
conclusion, photosynthesis or a connected process might
serve as a signal for or is involved in FAB induction under
increased growth light intensities, which is in agreement
with previous assumptions [55,78,79]. It is also not excluded
that alteration of plastid tetrapyrrole biosynthesis interferes
with light signalling pathways needed to perceive and inte-
grate ultraviolet, blue or red light stimuli in order to induce
anthocyanin biosynthesis.

(c) Connection of flavonoid/anthocyanin biosynthesis
and PHANG

Although reduced expression of PHANGs correlated with a
stimulated transcription of FAB genes in NF-treated WT
(figure 1) and gun mutants show higher expression of
PHANGs but reduced induction of FAB genes after NF treat-
ment (figures 2 and 3), anthocyanins are probably not
involved in the retrograde signalling-mediated control of
PHANG expression. Firstly, lack of anthocyanins in FAB path-
way mutants (figure 4) [92], as well as cry1-2 and hy5
(figure 5), did notprevent repression ofPHANGs and, secondly,
stronger accumulation of anthocyanins in the dominant pap1-D
mutant resulted in WT-like repression of PHANGs when
chloroplast development was perturbed (figure 4). In addition,
even diminished accumulation of anthocyanins in ref3-3 gun
doublemutants compared to the singlemutants,didnot further
uncouple PHANG expression from the developmental state of
the plastids (figure 4). Thus, we propose that PHANGs and
FABs are inversely co-regulated sets of nuclear-encoded genes
whose regulation depends onGUN-proteins during biogenesis
of plastids. The proposed co-regulation depends on TFs recog-
nizing common regulatory motives in the promoter of their
target genes. Indeed, promotor regions of classical targets of
GUN-dependent signalling contain the G-box motif
(CACGTA) needed for light-induced regulation of PHANGs
[93,94]. Previous reports also revealed that FAB genes, includ-
ing CHS, DFR, LDOX andMYB75, are controlled through TFs
binding toG-BoxandACEelements.Oneof themost important
TFs for light-dependent stimulation of gene products involved
in FAB is HY5 binding to the regulatory elements [74,95–97]
supporting our and the results of other studies (figure 5;
Ruckle&Larkin [83]).HY5hasalsobeen shown toact as anega-
tive factor in GUN-dependent regulation of PHANGs when
plastid development is arrested [31,98]. Based on the previous
findings, the NF-induced expression in WT (figure 1) and
reduced expression of HY5 in gun mutants after NF-treatment
(figure 5), the assumed co-regulation of PHANGs and FABs
by a GUN signalling could be achieved through HY5.

In summary, our data reveal and emphasize the important
function of GUN-dependent retrograde communication for
the induction of FAB gene expression and accumulation of
protective anthocyanin pigments during plastid biogenesis,
one of themost sensitive processes in the course of plant devel-
opment and establishment of photoautotrophy. Repression of
PHANGs and induction of FABs through the same signalling
pathway allows proper acclimation when plants suffer from
adverse environmental conditions. Future research has to
reveal how the import of plastid proteins (GUN1 specific), tet-
rapyrrole biosynthesis as well as known and unknown factors
of light signalling cascades are connected to the regulation of
secondary metabolism during plastid development.
4. Methods
(a) Plant material and growth conditions
Unless otherwise stated, Arabidopsis seeds (genotypes are listed
in the electronic supplementary material, table SII) were sur-
face-sterilized and plated on half-strength Murashige-Skoog
(MS) medium (4.4 g l−1 MS medium, 0.5 g l−1 2-(N-morpholi-
no)ethanesulfonic acid, 1% agar, pH 5.7). After stratification
for 2 days at 4°C, plates were exposed to continuous light
(100 µmol photons m−2 s−1) at 20–22°C. For etiolation exper-
iments, plates were illuminated for 2 h immediately after
stratification and then transferred to darkness. In each case,
samples were harvested 5 days later. High light experiments
were performed with soil-grown plants. After two weeks of
growth at short day (10 h light) plants were transferred to con-
tinuous light for 2 days. Plants were then treated with high light
(350 µmol photons m−2 s−1) for the indicated time points.
Mutation, the presence of T-DNA or knockout of genes in the
mutants was confirmed with PCR-based methods using genomic
DNAor cDNAand primers listed in the electronic supplementary
material, table SIII.

(b) Treatments
All treatments of seedlings were carried out by diluting the
appropriate compounds in the growth medium. NF was added
(from a 5 mM stock solution in 100% acetone; Sigma-Aldrich)
to a final concentration (f.c.) of 5 µM.

(c) RNA isolation, cDNA synthesis and quantitative real-
time polymerase chain reaction analysis

For qPCR analysis at least four samples, each consisting of
about 50 pooled seedlings, were harvested, frozen in liquid
nitrogen and crushed in a steel-ball mill. Samples were stored
at −80°C until further use. RNA was isolated from crushed
plant material using the citric acid method [99]. Quality and
quantity of RNA were checked on 1.2% TBE agarose gels.
After DNaseI treatment (Thermo Scientific) aliquots of RNA
(1–2 µg) were transcribed into cDNA using Moloney Murine
Leukemia Virus (M-MuLV) reverse transcriptase (Thermo Scien-
tific) and oligo dT(18) primer. All steps were performed
essentially according to the manufacturer’s protocol. qPCR
analysis was carried out in a CFX96-C1000 96-well plate ther-
mocycler (Bio-Rad) using SYBR green dye (Bio-Tool). The
primers used are listed in the electronic supplementary material,
table SIII. Calculation of gene expression was performed with
the BIO-RAD CFX-MANAGER Software 1.6 using the ΔΔC(t)method
[100] and ACTIN2 as reference.

(d) RNA sequencing
RNA sequencing (RNA-seq) analyses were performed with total
RNA from 5-day-old seedlings grown in the presence of 5 µM
NF. RNA was extracted as described above. After DNase treat-
ment, RNA was purified using phenol/chloroform/isoamyl
alcohol precipitation protocol. After washing with 70% ethanol
(v/v), RNA was dried and resuspended in RNase-free water.
RNA-seq was performed by Novogene (China). mRNA was
enriched using oligo(dT) beads. mRNA was fragmented ran-
domly by adding fragmentation buffer, cDNA was then
synthesized using the fragmented mRNA as template and
random hexamer primers. After ligation and sequencing-adaptor
ligation, the double-stranded cDNA library was subjected to size
selection and PCR enrichment. Paired-end read libraries were
sequenced on the Illumina Platform HiSeq4000. The RNA-seq
experiment was performed once with three biological replicates,
each consisting of a pool of about 50 seedlings.
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(e) RNA sequencing data analysis
Base-calling was performed using bcl2fastq (v. 2.16.0.10). Differen-
tial expression analysis was carried out using a local installation of
the GALAXY platform [101]. Sequenced reads were processed
with TRIMMOMATIC (v. 0.36.2) [102] to eliminate adapters and low-
quality sequences. If at least one of the reads of a pair had a
length of less than 15 bp after trimming, both reads were dis-
carded. Remaining reads were mapped to the Arabidopsis
genome (TAIR 10) using the TOPHAT2 (v. 2.1.1) gapped-read
mapper [103]. After mapping, we used CUFFLINKS (v. 2.2.1.2) to
assemble our transcriptome using the Araport11 transcriptome
annotation as reference for each library independently. The assem-
blies were merged using CUFFMERGE (v. 2.2.1.2). Differential
expression analysis was performed using CUFFDIFF (v. 2.2.1.5)
[103]. Tools were run with default parameters, except that the
maximum intron length was set to 3000 bp. Venn diagrams were
constructed using the VENNY 2.1 web interface (http://bioin-
fogp.cnb.csic.es/tools/venny/). Heat maps were built using
PERSEUS software [104]. Gene ontology term (GoT) enrichment
analysis was performed with the GoTermFinder tool [105].

( f ) Quantification of anthocyanins
Anthocyanins were quantified according to the method described
previously [65]. Briefly, seedlings were harvested, frozen in liquid
nitrogen and homogenized using a ball-mill. Then, the frozen
powder was resuspended in 1 ml of extraction buffer (18% 1-pro-
panol and 1% HCl in water) and incubated for at least 2 h at
room temperature in darkness. After centrifugation for 15 min
(maximum speed, 4°C) absorbance (A) of the supernatant at
537 nm, 650 nm and 750 nm were determined. Anthocyanin
content was calculated using the following formula: (A537-
A750)-0.25×(A650-A750)/g fresh weight or dry weight,
respectively.
(g) Metabolite profiling
Profiling of anthocyanins and flavonoids was carried out exactly
as described previously [106].
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