
Long-term test-retest reliability of event-related potential (ERP) 
recordings during treadmill walking using the mobile brain/body 
imaging (MoBI) approach

Brenda R. Malcolm1,2, John J. Foxe1,2,3,4,5, John S. Butler1,5,6,7, Wenzhu B. Mowrey8, 
Sophie Molholm1,2,3,4, Pierfilippo De Sanctis1,2,9

1The Sheryl & Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children’s Evaluation 
and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine, 
Bronx, New York 10461, USA 2Program in Cognitive Neuroscience, The Graduate Center of the 
City University of New York, New York, New York 10016, USA 3The Del Monte Institute for 
Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and 
Dentistry, Rochester, New York 14642, USA 4The Dominick P. Purpura Department of 
Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, 
Albert Einstein College of Medicine, Bronx, New York 10461, USA 5Trinity College Institute of 
Neuroscience, Dublin, Ireland 6Trinity College Dublin, Centre for Bioengineering, Trinity 
Biomedical Sciences Institute, Dublin, Ireland 7School of Mathematical Sciences, Dublin Institute 
of Technology, Dublin, Ireland 8Department of Epidemiology and Population Health, Albert 
Einstein College of Medicine, Bronx, New York 10461, USA 9The Saul R. Korey Department of 
Neurology, Albert Einstein College of Medicine, Bronx, New York 10461, USA

Abstract

Advancements in acquisition technology and signal-processing techniques have spurred numerous 

recent investigations on the electro-cortical signals generated during whole-body motion. This 

approach, termed Mobile Brain/Body Imaging (MoBI), has the potential to elucidate the neural 

correlates of perceptual and cognitive processes during real-life activities, such as locomotion. 

However, as of yet, no one has assessed the long-term stability of event-related potentials (ERPs) 

recorded under these conditions. Therefore, the objective of the current study was to evaluate the 

test-retest reliability of cognitive ERPs recorded while walking. High-density EEG was acquired 

from 12 young adults on two occasions, separated by an average of 2.3 years, as they performed a 

Go/No-Go response inhibition paradigm. During each testing session, participants performed the 

task while walking on a treadmill and seated. Using the intraclass correlation coefficient (ICC) as 

a measure of agreement, we focused on two well-established neurophysiological correlates of 

cognitive control, the N2 and P3 ERPs. Following ICA-based artifact rejection, the earlier N2 

yielded good to excellent levels of reliability for both amplitude and latency, while measurements 
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for the later P3 component were generally less robust but still indicative of adequate to good levels 

of stability. Interestingly, the N2 was more consistent between walking sessions, compared to 

sitting, for both hits and correct rejection trials. In contrast, the P3 waveform tended to have a 

higher degree of consistency during sitting conditions. Overall, these results suggest that the 

electro-cortical signals obtained during active walking are representative of stable indices of 

neurophysiological function.
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1. Introduction

Event-related potentials (ERPs) are an important tool in neuroscience research, providing 

temporally-precise electrophysiological correlates of information processing stages relating 

to perception, cognition and action (Foxe & Simpson, 2002; Kok, 1997). In order to support 

the use of ERPs as established indices of neurophysiological function, it is important to 

determine the degree to which ERP measurement procedures yield consistent results across 

time. Evidence of intra-individual stability, i.e. reliability, is necessary to establish the 

validity of results and will add greater weight to conclusions drawn from these studies. The 

potential use of ERPs as neurobiological markers also depends upon their stability over time 

(Duncan et al., 2009; Huffmeijer, Bakermans-Kranenburg, Alink, & van Ijzendoorn, 2014).

For most cognitive neuroscience studies employing electroencephalographic (EEG) 

recordings, participants engage in what could be considered a minimal behavior approach. 

This involves being seated in an environment designed to minimize all external stimuli, 

typically under instructions to limit task responses to simple button presses or saccadic eye-

movements. This approach facilitates focus on task-relevant stimulation and minimizes 

contamination of brain electrophysiological recordings related to motor movements. 

Numerous studies have evaluated the test-retest reliability of ERP amplitude and latency 

measures elicited from a variety of paradigms recorded under these typical conditions. 

Results vary but have typically ranged from moderate to high consistency for both earlier 

sensory-perceptual components and later-occurring cognitive ones (Brunner et al., 2013; 

Cassidy, Robertson, & O’Connell, 2012; Fallgatter, Bartsch, & Herrmann, 2002; Fallgatter 

et al., 2001). For example, Cassidy et al. (2012) administered four common ERP paradigms 

to the same group of participants one month apart. Components analyzed included early 

visual-evoked components (P1, N1), the face-processing associated N170, attentional 

resource allocation (P3a, P3b), error processing (error-related negativity, error positivity) and 

memory encoding (P400). Test-retest reliability was assessed with the intraclass correlation 

coefficient (ICC), a measure of consistency, or stability over time (Shrout & Fleiss, 1979). 

They found a high level of agreement for all component amplitudes but only latency 

measures for earlier occurring components (e.g., N170, P1, N1) (Cassidy et al., 2012).

Additionally, a few previous investigations have assessed ERP test-retest reliability over 

longer time periods, also with varied results. In one study, electrophysiological measures of 
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cognitive response control during a Continuous Performance Test were recorded an average 

of 2.7 years apart, yet still an excellent degree of consistency was shown for topographic 

measures, amplitude and to a lesser extent, latencies, of global field power (Fallgatter, 

Aranda, Bartsch, & Herrmann, 2002). Another evaluation of long-term (~2 years) test-retest 

reliability of the error-related negativity (ERN), thought to measure executive control 

functioning, revealed moderately stable ICCs for amplitude but a lack of reliability over time 

for latency measures (Weinberg & Hajcak, 2011). Finally, in a paradigm similar to the one 

reported here, an analysis of the P3 No-Go waveform produced during a visual Go/No-Go 

task, the authors found good (ICC > .75) test-retest reliability for amplitude and excellent 

(ICC > .90) agreement in latency measures over 6–18 months (Brunner et al., 2013).

While ERP studies conducted with the minimal behavior approach have provided invaluable 

information on cognitive processing, more recently there has been a significant push to 

develop and refine electro-cortical measurements while participants engage in real-world 

behaviors (De Vos & Debener, 2014; Debener, Emkes, De Vos, & Bleichner, 2015; 

Gramann, Gwin, Bigdely-Shamlo, Ferris, & Makeig, 2010; Gwin, Gramann, Makeig, & 

Ferris, 2010; Wagner, Makeig, Gola, Neuper, & Muller-Putz, 2016; Wagner et al., 2012). 

This approach, termed Mobile Brain/Body Imaging (MoBI), involves the continuous 

monitoring of cortical activity with lightweight EEG recording systems synchronized with 

measures of participants’ sensory experiences and body motion tracking (Gramann, Jung, 

Ferris, Lin, & Makeig, 2014; Makeig, Gramann, Jung, Sejnowski, & Poizner, 2009). In this 

way, the brain dynamics underlying many natural behaviors, such as walking and 

performing a cognitive task, can be assessed in concert with the behaviors themselves. 

Studies from other groups (Gramann et al., 2010) as well as our own (De Sanctis, Butler, 

Green, Snyder, & Foxe, 2012) have demonstrated the feasibility of obtaining 

electrophysiological measures with MoBI. We have previously assessed cognitive and gait 

performance at varying levels of walking speed (De Sanctis, Butler, Malcolm, & Foxe, 

2014) and characterized differences in behavior, gait and ERPs during dual-task walking that 

are associated with aging (Malcolm, Foxe, Butler, & De Sanctis, 2015).

Although portable, light-weight EEG-based MoBI systems represent a new frontier for 

neural investigations of human gross motor behavior, the reliability of such recordings has 

not been comprehensively assessed over an extended time frame. One study applied 

advanced signal processing, independent component analysis, to remove gait-related 

artifacts and assess the signal quality of ERP recordings (Gramann et al., 2010). They found 

that the N1 and P3 ERPs for a visual oddball task did not differ between standing, slow 

walking and fast walking conditions. Component amplitudes were comparable in all three 

movement conditions as evidenced by significant ICCs of .603 for N1 and .628 for P3, 

indicating that speed did not affect the amplitude of early or late visual ERPs (Gramann et 

al., 2010). More recently, in an effort to compare the suitability and functionality of wireless 

wet and dry mobile EEG systems, Oliveira et al. (2016) calculated the reliability of pre-

stimulus noise, signal-to-noise ratio and P300 amplitude variance for sitting and walking 

conditions across a time interval of 7–20 days (Oliveira, Schlink, Hairston, Konig, & Ferris, 

2016), reporting moderate to good reliability for these variables.
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Here, our goal was to evaluate the long-term test-retest reliability of ERPs recorded during 

ambulation. Participants walked on a treadmill, maintaining a speed of 5.1 km/hr, over two 

testing sessions, separated by an average of 2.3 years. We chose to focus our analysis on a 

well-established neurophysiological correlate of cognitive control, the N2/P3 ERP complex 

evoked during a Go/No-Go task. To evaluate the relative consistency of walking ERPs in 

comparison to those obtained during a traditional seated experiment, we also computed test-

retest reliability measures (ICC) for sitting ERPs recorded during the same sessions.

2. Results

2.1. Behavioral Results

Participants were asked to perform a speeded, visual Go/No-Go task, responding quickly 

and accurately to every stimulus presentation by clicking a computer mouse button, while 

withholding responses to the second instance of any stimulus repeated twice in a row. The 

probability of Go and No-Go trials was 0.85 and 0.15, respectively. A trial was defined as a 

Hit if a response was recorded during the time interval 150 – 800ms following a Go 

stimulus. A trial was defined as a Correct Rejection (CR) if no response was registered 

during the entire time period following a No-Go stimulus, and the previous trial had been 

classified as a Hit. Incorrect trials including misses (Go trials in which participants failed to 

respond) and false alarms (No-Go trials which were followed by an incorrect response) were 

excluded from the analysis. Behavioral results across testing sessions for both sitting and 

walking conditions are summarized in Table 1. Means, standard deviations and the results of 

paired comparisons between sessions are shown for the number of artifact-free trials and 

behavioral performance for Hits and CRs. There were no significant differences between the 

two recordings for any of the behavioral parameters. Whereas non-significant p values do 

not provide evidence in favor the null hypothesis, Table 1 also includes JZS Bayes factors 

for each comparison indicating if there is substantial evidence in support of the null 

hypothesis, the alternative hypothesis or neither (Z. Dienes, 2014). Three comparisons 

across testing sessions resulted in JZS values > 3: trial numbers for Hits in the sitting 

condition, and reaction times for both sitting and walking, signifying that for these 

comparisons the null hypothesis (i.e., no difference in task performance) is three times more 

likely than the alternative hypothesis, i.e., change in performance across sessions (Rouder, 

Speckman, Sun, Morey, & Iverson, 2009). All other comparisons revealed JZS Bayes factors 

ranging from approximately 1.1 up to 3.0, indicating a lack of evidence in support of either 

hypothesis.

2.2. Event-Related Potential Results

Figure 1 shows the mean and standard error of the mean for Hits and CR waveforms 

averaged across all 12 participants for both testing sessions. ERPs are displayed over three 

scalp regions: frontocentral, central and centroparietal. For comparison, ERPs recorded 

during treadmill walking are displayed adjacent to those recorded during sitting conditions. 

Not only do the ERPs exhibit a remarkably similar pattern between walking and sitting 

conditions, but the electrophysiological responses during both execution (Hits) and 

inhibition (CRs) of the cognitive task reveal, for the most part, a high degree of stability over 

an extended time frame. As an example of the relative degree of between-subject variability 
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(amongst the 12 participants) compared to within-subject variability (between the two 

testing sessions), single-subject waveforms are shown in Figure 2 for one walking condition, 

CRs averaged over central electrode sites.

2.2.1. N2 Component—Between-session Intraclass Correlation Coefficients (ICC) for 

mean amplitude and peak latency measures are presented in Table 2. Interestingly, the N2 

tended to exhibit a higher degree of test-retest reliability during walking conditions 

compared to sitting, for both Hits and CRs. This was especially true for measures of mean 

amplitude on Hit trials while walking, demonstrating a strong level of agreement between 

sessions with all ICCs > .74 (ps < .005), and to a slightly lesser extent CR amplitudes, 

showing an adequate level of consistency over central (ICC = .73, p < .05) and centroparietal 

scalp (ICC = .69, p < .01). Compared to amplitude measures, ICCs for peak latency revealed 

less discrepancy between sitting and walking conditions, however walking conditions still 

showed higher levels of reliability overall. For example, latency for Hits produced excellent 

measures of consistency between walking sessions (ICC = .93, p < .001) but there was less 

agreement, though still a good level of reliability for sitting (ICC = .81, p < .001). Averaging 

across scalp sites, CRs also showed a greater level of reliability in peak latency between the 

two walking sessions (average ICC = .66, all ps < .01) compared to the slightly less robust 

level of reliability between sitting sessions (average ICC = .62, all ps < .05). Overall, for 

both the N2 and P3 components, correlation coefficients for Hit waveforms tended to be 

more stable compared to CRs.

2.2.2. P3 Component—ICCs for mean amplitude and peak latency of the P3 

component are shown in Table 3. Generally, test-retest reliability was weaker for the P3 ERP 

compared to that of the N2, with the exception of a handful of measures assessed when 

participants performed the task while sitting, notably CR amplitude over frontocentral areas 

showed a good level of stability with ICC = .79, p < .005. The P3 also exhibited a different 

pattern of results in that, compared to the N2, only a few measurements revealed a higher 

degree of reliability for walking conditions compared to sitting, including Hit amplitude over 

centroparietal scalp (sitting ICC = .17, p > .05; walking ICC = .60, p < .01) and CR latency 

over frontocentral areas (sitting ICC = .22, p > .05; walking ICC = .56, p < .05). In fact, 

most P3 ICCs were stronger for sitting conditions, with the greatest discrepancy between 

sitting and walking being CR amplitude at all scalp sites (all sitting ICCs >.63 (all ps < .005) 

and all walking ICCs in the poor range < .46), and CR latency at centroparietal sites (sitting 

ICC = .51, p < .05; walking ICC = .15, p > .05). The weakest measures of consistency for 

the P3 component were Hit amplitude and CR latency, for both sitting and walking 

conditions.

3. Discussion

In recent years, innovative studies utilizing the Mobile Brain/Body Imaging (MoBI) 

approach by recording electro-cortical responses in actively behaving participants have made 

substantial contributions to further our understanding of brain-behavior interactions in real-

life circumstances (De Vos & Debener, 2014; Debener, Minow, Emkes, Gandras, & de Vos, 

2012; Gramann, Ferris, Gwin, & Makeig, 2014; Petersen, Willerslev-Olsen, Conway, & 

Nielsen, 2012; Wagner et al., 2012; Wagner, Solis-Escalante, Scherer, Neuper, & Muller-
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Putz, 2014). Here, we assessed the intra-individual stability of ERPs across two recording 

sessions, evaluating the test-retest reliability of the N2/P3 componentry acquired via a novel 

MoBI approach while walking, in addition to the traditional so-called minimal behavior 

approach during sitting.

Our results indicated a strong level of reliability for the earlier N2 component, with most 

amplitude and latency measurements in the good to excellent range, as assessed by the 

Intraclass Correlation Coefficient. ICC measures for the later P3 were generally less robust 

but overall showed adequate to good levels of stability in both amplitude and latency. 

Remarkably, the N2 exhibited a much greater degree of consistency, in terms of both mean 

amplitude and peak latency, across the two walking sessions compared to the sitting 

condition. This was true for both Hits and CR trials. In contrast, the P3 waveform tended to 

have a higher degree of consistency for sitting ERPs compared to those recorded while 

walking. The finding of a greater degree of stability in the componentry of the earlier N2 

ERP as compared to the later P3 has been reported for other longer latency components as 

well (e.g., P3a/b, Pe, P400) (Cassidy et al., 2012). This may be a result of earlier 

components, related to sensory and relatively automatic processing of stimuli, consisting of 

a largely stereotyped response function, while later ‘cognitive’ components may be more 

susceptible to individual variation. Following this line of reasoning, it may also be the case 

that the potential for increased individual variability in component structure at later latencies 

is additionally enhanced during active walking. This may have been a factor in our 

observation that the N2 was overall more reliable for walking and the P3 for sitting.

Many factors are thought to play a role in the test-retest reliability of ERPs, including 

sample size, age and arousal level of participants (Brunner et al., 2013; Kinoshita, Inoue, 

Maeda, Nakamura, & Morita, 1996) additionally, choices made during the analysis process 

with regards to averaging over various numbers of trials and electrode sites, as well as of 

course, the time interval between testing sessions (Huffmeijer et al., 2014). Longer time 

intervals may allow for significant physiological modulations, even amongst healthy 

participants, therefore it could very well be the case that for a reliability assessment 

conducted on a shorter time scale, ICC measures may improve further. Our results indicate 

that Hit trials tended to produce higher ICC values for both components assessed, compared 

to CR trials. This may have been due to the fact that Hit waveforms were comprised of many 

more trials (see Table 1). While a fewer number of trials may suffice for earlier components 

to reach an adequate level of reliability, it has been recommended that at least 50–60 trials be 

included for the evaluation of later, broadly distributed components such as the P3 No-Go 

signal (Brunner et al., 2013; Huffmeijer et al., 2014). In the current investigation, the number 

of CR trials accepted (following artifact rejection) fell into this range for the sitting 

condition, while the number of accepted trials for the walking-obtained CRs well exceeded 

these recommendations.

There are mixed results from the ERP reliability literature as to whether ERP amplitude or 

latency measures tend to be more consistent across time. This issue may obviously be 

impacted by the precise method used to calculate these measures, for example Cassidy et al. 

found that absolute peak amplitude was more reliable than mean amplitude for shorter 

latency components (Cassidy et al., 2012). Our results show generally more stable measures 
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of peak latency across time compared to component mean amplitude (an exception being the 

more consistent P3 amplitude measures recorded for CRs in the sitting condition), most 

prominently for the P3 on Hit trials, but also to a lesser extent, the N2. Similar results have 

been reported elsewhere for the P3 (Brunner et al., 2013) and have attributed this outcome to 

latency measures tending to be less susceptible to individual variations in physiological 

activity (Brunner et al., 2013). However, others have reported weaker and more variable 

ICCs for P3 peak latency compared to mean amplitude, using a modified flanker task 

(Huffmeijer et al., 2014), an auditory oddball paradigm assessed over eight sessions 

(Kinoshita et al., 1996) and one study comparable to ours in terms of time between 

assessments (~2 years) in which ICC values for amplitude (either peak or area) ranged 

from .56 to .67 (moderately stable neural measures) but peak latency measures were much 

weaker and would not be considered reliable (.29) (Weinberg & Hajcak, 2011).

Our findings have important implications as there is significant clinical interest in obtaining 

clean electrophysiological recordings during walking, and our data speaks to the quality of 

procedures to correct for mechanical and movement artifacts, an issue that remains a matter 

of vigorous debate (Gwin et al., 2010; Kline, Huang, Snyder, & Ferris, 2015; Nathan & 

Contreras-Vidal, 2015). Alternatively, it might be argued that gait-related artifacts did not 

affect the ERP components of interest. In other words, averaging across Go/No-Go trials 

time-locked to the stimulus onset might have eliminated mechanical or movement artifacts 

as they are randomly distributed in relation to the event of interest. In previous studies we 

have characterized modulations in gait pattern and electro-cortical responses (N2/P3) 

specific to dual-task walking demands in young adults (De Sanctis et al., 2014), while in 

older adults increased load (i.e., walking while performing the cognitive task) resulted in 

behavioral performance costs but minimal changes to gait and to the neural correlates of 

inhibitory processing (Malcolm et al., 2015). These findings were interpreted as an age-

related decline in the ability to flexibly allocate attentional resources across multiple 

domains. Furthermore, other investigations have reported kinematic EEG signals coinciding 

with specific gait phases (Gwin, Gramann, Makeig, & Ferris, 2011; Presacco, Forrester, & 

Contreras-Vidal, 2012; Seeber, Scherer, Wagner, Solis-Escalante, & Muller-Putz, 2014; 

Wagner et al., 2016; Wagner et al., 2012) as well as preceding imminent loss of balance 

control (Sipp, Gwin, Makeig, & Ferris, 2013). Studies are underway to determine the neural 

underpinnings of gait adaptation in an effort to probe motor deficits related to stroke, 

multiple sclerosis and Parkinson’s disease. Another crucial line of research for mobile EEG 

is the deployment of brain-computer interfaces (BCI) in rehabilitation therapies 

(Kranczioch, Zich, Schierholz, & Sterr, 2014). Demonstrating a sufficient level of 

consistency in the ERP measures obtained between testing sessions will add more weight to 

prior outcomes and advance the basic and translational utility of the MoBI technique.

In conclusion, this study characterized the test-retest reliability of two common ERP 

measures, the N2 and the P3, recorded during active walking conditions and for comparison, 

while seated. Intraclass correlation coefficients showed an adequate to excellent level of 

reproducibility over an average two-year period, indicating the potential for MoBI studies to 

access stable indices of noninvasive brain markers over time.
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4. Methods and materials

4.1. Participants

Twelve healthy adults (four females, eight males) took part in the experiment across two 

separate sessions. The average time between the two recordings was 2.3 years (range: 1.1 to 

2.9 years). All individuals reported normal or corrected-to-normal vision and were free from 

any neurological or psychiatric disorders. Participants were recruited from the lab’s existing 

subject pool and from flyers posted at the Albert Einstein College of Medicine. The mean 

age of the participants at the first recording was 24.2 years (SD = 3.0) while mean age at the 

second recording was 26.5 years (SD = 3.4). The Institutional Review Board of the Albert 

Einstein College of Medicine approved the experimental procedures and all participants 

provided their written informed consent. All procedures were compliant with the principles 

laid out in the Declaration of Helsinki for the responsible conduct of research.

4.2. Procedure

Participants performed a visual Go/No-Go response inhibition task while either seated or 

walking on a treadmill. Visual stimuli consisted of 168 affectively positive or neutral images 

from the International Affective Picture System (IAPS) (Lang, Bradley, & Cuthbert, 2008). 

Images were projected centrally (InFocus XS1 DLP, 1024 × 768 pixel) onto a black wall 

approximately 1.5m in front of the participant. Stimulus duration was 600ms with a random 

stimulus-onset-asynchrony (SOA) ranging from 800 to 1000ms. Participants were instructed 

to quickly and accurately click a wireless computer mouse button in response to the 

presentation of each image (Go trials), while withholding button presses to the second 

instance of any picture repeated twice in a row (No-Go trials). Probability of Go and No-Go 

trials was 0.85 and 0.15, respectively. Stimulus display was programmed with Presentation 

software version 14.4 (Neurobehavioral Systems, Albany, CA, USA). On average, images 

subtended 28° horizontally by 28° vertically.

The task was presented in blocks, each lasting approximately 4 minutes. During walking 

blocks all participants performed the experiment while walking at 5.1 km/hr, approximating 

the average gait speed of young adults (Silva, da Cunha, & da Silva, 2014). During the first 

recording session subjects participated in a variable number of walking blocks ranging from 

four to ten (mean = 5.75 blocks) and three sitting blocks. In the second session all 

participants performed five walking blocks and three sitting blocks. All blocks were 

conducted in a pseudo-random order and a practice block was performed before undertaking 

the main experiment. No specific task prioritization instructions (i.e., walking versus 

cognitive task) were given.

In addition to maintaining a constant walking speed, temporal parameters of the gait cycle 

were assessed to confirm that consistent gait patterns were upheld across sessions. 

Participants were equipped with three foot force sensors (Tekscan FlexiForce A201 

transducers) on the sole of each foot to measure stride time and stride time variability (De 

Sanctis et al., 2014; Malcolm et al., 2015). No differences between testing sessions were 

observed for either mean stride time (Session 1: 1066ms, Session 2: 1063ms, p = .74) or 

stride time variability (Session 1: 45ms, Session 2: 57ms, p = .46).

Malcolm et al. Page 8

Brain Res. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.3. Electrophysiological Recording and analysis

Continuous EEG was recorded with a 72-channel BioSemi ActiveTwo system array 

(digitized at 512 Hz; 0.05 to 100 Hz pass-band). Pre-processing and analysis was performed 

using custom MATLAB scripts (MathWorks, Natick, MA) and EEGLAB (Delorme & 

Makeig, 2004). Individual participant data was subjected to an independent component 

analysis (ICA)-based artifact identification and removal procedure (Gramann et al., 2010; 

Jung et al., 2000). ICA is a technique that attempts to separate the multiple generators 

contributing to task-evoked ERPs, including neural as well as artifactual activity (Makeig, 

Bell, Jung, & Sejnowski, 1996). Previous literature has demonstrated the feasibility of 

employing an ICA approach to detect and remove artifacts while preserving data that would 

otherwise be entirely rejected (Delorme, Sejnowski, & Makeig, 2007; Jung et al., 2000). In 

MoBI paradigms especially, ICA is beneficial to detect activity arising from blinks, neck 

muscles, cable sway, and the force of footfalls on the treadmill, which may otherwise 

obscure task-related neural signals.

EEG data was first high-pass filtered at 1.5 Hz using a zero phase FIR filter (order 5632) 

(Winkler, Debener, Muller, & Tangermann, 2015). Then all blocks from each condition type 

(sitting or walking) were appended into one dataset (separately for each of the two recording 

sessions). Noisy channels were identified and removed by visual inspection and by 

automatic detection of channels with signals more than five times the standard deviation of 

the mean across all channels. The remaining channels were re-referenced to a common 

average reference. EEG was then epoched into 1000ms intervals time-locked to image 

presentation, with 200ms before stimulus onset and 800ms following. Epochs were 

subjected to a manual visual inspection resulting in the rejection of any epoch that contained 

large or non-stereotypical artifacts. The aforementioned extended ICA decomposition was 

performed on the remaining epochs of interest using default training mode parameters 

(Makeig et al., 1996). Next, independent components (ICs) that appeared to exclusively 

represent non-brain or artifactual activity including blinks, line noise, walking artifacts, 

mechanical noise associated with cable sway and (especially neck) muscles were manually 

identified and rejected. Note that artifact rejection via ICs was performed for each condition 

(sitting, walking) and session (Run 1, Run 2) independently. Typically, these artifactual 

components were noticeably distinct from brainderived activity based on their activation 

time course, scalp topography, spectra and single trial ERP epochs (Castermans, Duvinage, 

Cheron, & Dutoit, 2014; Kline et al., 2015; Onton & Makeig, 2006). After artifact-free EEG 

signals were back projected and summed onto the scalp electrodes (Jung et al., 2000), data 

was again visually inspected and any epochs with remaining artifacts were rejected. This 

resulted in the rejection of very few epochs, indicating that the IC rejection process was 

quite effective. Lastly, previously discarded data channels were replaced using spherical 

interpolation, and a zero phase low-pass butterworth filter of 45 Hz (24 dB/octave) was 

applied.

4.4. Event-related potential analysis

Following preprocessing, 1000ms ERPs with a 50ms pre-stimulus baseline were computed 

for the two conditions of interest: Hits (Go trials followed by a correct response) and Correct 

Rejections (No-Go trials in which a response was correctly withheld) separately for the 
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sitting and walking blocks. The time windows and electrode sites considered for N2 and P3 

components were chosen a-priori based on previous literature (Bokura, Yamaguchi, & 

Kobayashi, 2001; Donkers & van Boxtel, 2004; Eimer, 1993; Falkenstein, Hoormann, & 

Hohnsbein, 2002; Nieuwenhuis, Yeung, van den Wildenberg, & Ridderinkhof, 2003) and 

confirmed by visual inspection of grand average waveforms. Thus, test-retest reliability of 

task-evoked N2/P3 focused on three regions along the midline, each composed of the 

averaged signal of three individual electrodes: frontocentral (FC1, FCz, FC2), central (C1, 

Cz, C2) and centroparietal (CP1, CPz, CP2). For each task condition and recording session, 

we used the grand average waveform’s peak amplitude to encapsulate a 100ms time window 

for the N2 and a 150ms time window for the P3, which were then used to compute mean 

amplitude and detect peak latency across the respective time periods. These ERP features 

were then used to assess reliability across the two recording sessions.

4.5. Statistical Analysis

Statistical analysis on all behavioral and ERP data was performed with IBM SPSS 21.0. 

Two-tailed paired-sample t-tests were computed to evaluate differences in behavioral 

performance between the two recording sessions. Additionally, a Bayes factor analysis was 

conducted to investigate evidence for the null hypothesis (that there is no difference between 

the first and second session) or the alternative hypothesis (that there is a difference between 

the sessions). The Bayes factor analysis is an alternative to a post-hoc power analysis but has 

the benefit that it takes into account the sensitivity of the data to distinguish between the null 

and alternative hypothesis (Butler, Molholm, Andrade, & Foxe, 2016; Z. Dienes, 2014; 

Zoltan Dienes, 2016). The Jeffreys, Zellner and Siow (JZS) Bayes factor was computed 

using the default effect size of 0.707 (Rouder et al., 2009). A JZS Bayes factor can be read 

such that a value greater than three favors the null hypothesis three times more than the 

alternative hypothesis, while a value less than one third favors the alternative three times 

more than the null, values between one third and three suggest that there is not enough 

evidence to favor either.

Test-retest reliability of mean amplitude and peak latency of the N2 and P3 ERP components 

was assessed with the ICC using a two-way mixed effect model with absolute agreement 

(Bartko, 1966; McGraw & Wong, 1996; Shrout & Fleiss, 1979). ICC is the most appropriate 

statistic to evaluate agreement in measurements over time, whereas a procedure such as 

Pearson’s product moment correlation (r) provides only a measure of association (Bartko, 

1991). ICCs were computed for single values of amplitude and latency and interpreted in 

terms of consistency. The higher the ICC value, the more stable the signal is over time. ICC 

values below .50 are generally considered a poor level of reliability, moderate reliability 

ranges from .50 to .75, good from .75 to .90 and excellent when higher than .90 (Portney & 

Watkins, 2009).

In addition, in response to a reviewer’s suggestion we also performed a time-frequency 

analysis of single trial data over a central electrode site (Cz), in order to examine changes in 

power (event-related spectral perturbations, ERSPs) and inter-trial coherence (ITC) across 

sessions. ITC represents the consistency of the phase of the evoked response and functions 

as a measure of inter-trial reliability (Butler et al., 2016; Delorme & Makeig, 2004). These 
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data are reported as Supplemental Materials and also lend support to the stability of the 

evoked response signal over an extended time frame.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

High-density EEG was collected during treadmill walking and seated conditions

Assessed long-term test-retest reliability of the N2 and P3 event-related potentials

Adequate to excellent N2/P3 stability was found during sitting and walking

Demonstration of reliability is essential for translational application of MoBI technique
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Figure 1: 
Grand mean ERPs for Hit and Correct Rejection (CRs) trials during walking and sitting 

conditions, for Session 1 (blue waveforms) and Session 2 (red waveforms). ERPs are plotted 

over three scalp regions: frontocentral (top row), central (middle) and centroparietal (bottom 

row). Stimulus onset occurs at 0ms. Shading represents standard error.

Malcolm et al. Page 16

Brain Res. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Correct Rejection waveforms for all individual participants (n=12) recorded during treadmill 

walking and averaged over central electrode sites C1, Cz and C2. Session 1 is shown in blue 

and Session 2 in red. Shading represents standard error.
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Table 1:

Means (standard deviations), paired t-test and JZS Bayes factor comparisons for the number of accepted trials, 

accuracy performance (percent correct) and reaction times between the two recording sessions.

Session 1 Session 2 Session 1 vs. Session 2

Number of Trials

 Hits Sitting 449 (9) 450 (12) p = .85 JZS BF = 3.425

 Hits Walking 788 (248)* 697 (44) p = .21 JZS BF = 1.682

 CRs Sitting 43 (12) 49 (9) p = .13 JZS BF = 1.244

 CRs Walking 76 (29)* 80 (17) p = .55 JZS BF = 2.965

% Correct

 Hits Sitting 96.9 (10) 99.9 (.17) p = .32 JZS BF = 2.217

 Hits Walking 98.6 (3.8) 99.8 (.17) p = .29 JZS BF = 2.089

 CRs Sitting 56.7 (13.2) 66.0 (11.3) p = .07 JZS BF = 1.259

 CRs Walking 59.6 (12.8) 67.4 (11.1) p = .08 JZS BF = 1.123

Reaction Time (ms)

 Hits Sitting 361 (48) 359 (31) p = .93 JZS BF = 3.467

 Hits Walking 383 (51) 378 (30) p = .63 JZS BF = 3.123

Note: CRs = correct rejections

*
The large variability in the number of walking trials during the first session can be attributed to the variable number of blocks performed by 

different individuals.
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Table 2:

Between-session intraclass correlation coefficients (ICC) for mean amplitude and peak latency of the N2 

component. ICC values are shown for Hit and Correct Rejection (CR) trials, for either sitting or walking 

conditions, and over three scalp locations.

Frontocentral Central Centroparietal

Hits

Amplitude Sitting .64* .60* .14

Amplitude Walking .84**** .81*** .74***

Latency Sitting .64* .78*** .81****

Latency Walking .78*** .64** .93****

Correct Rejections

Amplitude Sitting .19 .62** .42

Amplitude Walking .28 .73*** .69**

Latency Sitting .71*** .59* .55*

Latency Walking .67** .67*** .63**

Frontocentral: FC1,FCz,FC2; Central: C1,Cz,C2; Centroparietal: CP1,CPz,CP2

*
p < .05

**
p < .01

***
p < .005

****
p < .001
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Table 3:

Between-session intraclass correlation coefficients (ICC) for mean amplitude and peak latency of the P3 

component. ICC values are shown for Hit and Correct Rejection (CR) trials, for either sitting or walking 

conditions, and over three scalp locations.

Frontocentral Central Centroparietal

Hits

Amplitude Sitting .42* .46* .17

Amplitude Walking .32* .46* .60**

Latency Sitting .79**** .60* .85****

Latency Walking .53* .67** .80***

Correct Rejections

Amplitude Sitting .79*** .76**** .63***

Amplitude Walking .18 .37 .46*

Latency Sitting .22 .49* .51*

Latency Walking .56* .56* .15

Frontocentral: FC1,FCz,FC2; Central: C1,Cz,C2; Centroparietal: CP1,CPz,CP2

*
p < .05

**
p < .01

***
p < .005

****
p < .001
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