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Summary

The dichotomous model of “drivers” and “passengers” in cancer posit that only a few mutations in 

a tumor strongly affect its progression, with the remaining ones being inconsequential. Here, we 

leveraged the comprehensive variant dataset from the Pan-cancer Analysis of Whole Genomes 

project to demonstrate that – in addition to the dichotomy of high- and low-impact variants – there 

is a third group of medium-impact putative passengers. Moreover, we also found that molecular 

impact correlates with subclonal architecture (i.e., early vs. late mutations) and that different 

signatures encode for mutations with divergent impact. Furthermore, we adapted an additive-

effects model from complex-trait studies to show that the aggregated effect of putative passengers, 

including undetected weak drivers, provides significant additional power (~12% additive variance) 

for predicting cancerous phenotypes, beyond PCAWG-identified driver mutations. Finally, this 

framework allowed us to estimate the frequency of potential weak-driver mutations in PCAWG 

samples lacking any well-characterized driver alterations.

Graphical Abstract
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Introduction

Previous studies have characterized variants within coding regions of cancer genomes (Ding 

et al., 2018; Weinstein et al., 2013). However, given that the majority of cancer variants 

occupy non-coding regions (Khurana et al., 2016), investigation into the overall molecular 

functional impact of variants influencing both coding and non-coding genomic elements are 

needed. The extensive Pan-cancer Analysis of Whole Genomes (PCAWG) variant dataset 

(Campbell et al., 2017) includes >2,500 uniformly processed whole-genome sequences of 

cancer samples. Moreover, this dataset contains a full spectrum of variants, including 

somatic copy number alterations, structural variants (SVs), single-nucleotide variants 

(SNVs), and small insertions and deletions (INDELs).

Of the 44 million SNVs in the PCAWG variant dataset, thousands of mutations have been 

identified as drivers (i.e., positively selected variants that favor tumor growth), with most 

tumors having ~5 driver mutations in total (Campbell et al., 2017; Vogelstein and Kinzler, 

2015). The remaining ~99% of SNVs are termed passenger variants (referred to as putative 
passengers in this work), with poorly understood molecular consequences and fitness effects. 

Recent studies have proposed that some putative passengers may weakly affect tumor cell 
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fitness by promoting or inhibiting tumor growth. In prior studies, these variants have been 

described as “mini-drivers” (Castro-Giner et al., 2015) and “deleterious passengers” 

(McFarland et al., 2013), respectively.

In this work, we explored the landscape of putative passengers in various cancer cohorts by 

leveraging the comprehensive information in the PCAWG project on variant calls (Campbell 

et al., 2017; Li et al., 2017), driver mutations (Campbell et al., 2017; Rheinbay et al., 2017a), 

transcriptome profiles (Fonseca et al., 2017), mutational signatures (Alexandrov et al., 

2018), and subclonal status (Gerstung et al., 2017). More specifically, we built upon and 

applied existing tools (Balasubramanian et al., 2017; Fu et al., 2014) to annotate and predict 

the molecular functional impact of variants. This effort generated a comprehensive resource 

of annotated PCAWG variants, which we leveraged to quantify the aggregated burden and 

molecular impact of putative passengers on various genomic elements in different cancer 

cohorts. We observed that disruption of regulatory elements in non-coding regions correlated 

with altered gene expression. Moreover, our analysis of signatures indicated that various 

mutational processes have differential impacts on coding genes and regulatory elements. 

Similarly, we found that the predicted molecular functional impact of variants correlated 

with patient survival time and tumor clonality.

All the above observations potentially could be explained by alterations in the mutational 

processes in various cancers and/or by the action of selection. Additionally, we note that 

selection acting on somatic cells is dynamic throughout tumor progression. Thus, putative 

passengers that initially have no fitness impact could provide cellular fitness advantages at a 

later phase, when treatment is given or when cancer spreads to another organ. Hence, we 

assessed possible non-neutral roles for putative passengers. We found that the aggregated 

impact of putative passengers provides significant predictive power – beyond common driver 

mutations – to distinguish cancer from non-cancer phenotypes, even after controlling for 

known mutational processes and background mutation rates. This observation is particularly 

prominent among tumors without known drivers (Campbell et al., 2017; Rheinbay et al., 

2017a) or with fewer driver variants than expected. Although the non-neutral effects of these 

putative passengers can only be detected in aggregate (by our model), our findings motivate 

future studies aimed at identifying such weak drivers, especially within non-coding regions 

of the genome.

Results

Molecular functional impact of putative passengers

In this work, we restricted the majority of our analyses to the core set of non-driver 

mutations that were absent from the PCAWG driver mutation catalog (Campbell et al., 

2017). Briefly, the PCAWG driver and functional interpretation group integrated results 

from multiple driver detection methods to identify a consensus set of driver genes and non-

coding elements including promoters, untranslated regions, and enhancers. Subsequently, a 

comprehensive workflow was applied to distinguish driver mutations from putative 

passengers within these predicted driver genes and elements (Campbell et al., 2017). 

Additionally, this approach nominated mutations as drivers based on their presence in 
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previously known driver genes (based on predictive methods, and experimental or clinical 

validation) (Campbell et al., 2017; Rheinbay et al., 2017a) (STAR method section 10.2).

To characterize the landscape of putative passenger mutations in PCAWG, we first surveyed 

the predicted molecular functional impact (quantified by FunSeq score (Fu et al., 2014)) of 

somatic variants at the pan-cancer level. Briefly, the FunSeq tool assigns a molecular 

functional impact score to a mutation based on various features. These features include 

interspecies conservation; gain or break of transcription factor (TF) motifs; disruption of 

known enhancer-gene interactions; and centrality in the gene-regulatory or protein-

interaction network. The predicted functional impact distribution varied among cancer types 

and genomic elements.A closer inspection of the pan-cancer impact score distribution for 

non-coding mutations demonstrated three distinct regions. The upper and the lower extremes 

of this distribution were enriched with high-impact strong drivers and low-impact neutral 

passengers, respectively. In contrast, the middle range of this distribution corresponded to 

putative passengers with intermediate molecular functional impacts (Fig. 1a & supplement 

Fig. S1a). A majority of these medium-impact putative passengers were found in metabolic, 

immune response, and essential genes. (We highlight this finding specifically for 

nonsynonymous and promoter mutations in supplement Fig. S1d.)

Subsequently, we investigated how the fraction of higher impact passenger mutations (STAR 

Method section 3.2 for classification) related to total mutational burden (i.e., number of 

mutations). Naively, we would expect this fraction to remain constant, assuming that 

passengers were not under selection. In contrast, we observed a decrease in higher-impact 

putative passenger frequency for tumors with a high mutational burden, which could be 

construed as evidence of weak negative selection. Alternatively, one might explain this in 

terms of changed mutational signatures in such tumor samples. This trend was particularly 

strong in central nervous system (CNS) medulloblastoma (p < 4e-8), lung adenocarcinoma 

(p < 3e-4), and other specific cancer cohorts (Fig. 1b & supplement Fig. S1c).

In addition to SNVs, SVs play an essential role in cancer progression. Thus, we quantified 

the functional impact of putative passenger SVs after excluding driver deletions and 

duplications (Rheinbay et al., 2017a). Briefly, we built a machine-learning framework, 

which utilized conservation, epigenomic signals, and overlaps with known cancer genes to 

assign an SV impact score (STAR method section 4.2). A close inspection of both putative 

passenger SV and SNV impact scores suggested that some cancer subtypes harbor many 

high-impact SVs, while others contain a large number of high-impact SNVs (Fig. 1c). Many 

of these correlations have previously been observed (Ciriello et al., 2013). For example, 

large deletions are known to act as the predominant drivers in ovarian cancer; in contrast, 

SNVs often exclusively drive clear cell kidney cancer (Ciriello et al., 2013). However, the 

comprehensive PCAWG call sets allowed us to find new associations, such as the 

predominance of high-impact large deletions compared to impactful SNVs in the bone 

leiomyoma cohort. Similarly, a close inspection of high-impact large duplications and high-

impact SNVs suggested their differential association with different cancer cohorts 

(supplement Fig. S1e).
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Putative passenger burden among different genomic elements

Next, we investigated the overall putative passenger burden among different genomic 

elements in various cancer cohorts and observed differential burdening of specific gene 

categories and their regulatory elements. This is most straightforward to interpret for coding 

loss-of-function mutations (LoFs), where molecular impact is most intuitive. We thus 

examined the fraction of deleterious LoFs affecting genes belonging to several cancer-

related gene categories (Fig. 2a). Driver LoFs (i.e., LoFs included in the PCAWG driver 

catalog) showed significant enrichment among cancer-related gene categories (DNA repair, 

immune response, and essential genes, all with p < 0.001 and relative to uniform genome-

wide expectation) (Fig. 2a); in contrast, putative passenger LoFs were significantly depleted 

among DNA repair genes (compared to the uniform case, Fig. 2a). As mutational signatures 

might influence these observations, we also employed signature-corrected background 

randomization; using this, we observed that putative passenger LoFs were significantly 

depleted in additional cancer-related gene categories beyond DNA repair (including cell 

cycle, cancer pathway, and apoptosis) (supplement Fig. S2a). Finally, we note that a 

differential tendency towards mutation generation or mutation repair among gene categories 

may contribute to these observations (e.g., higher expression among essential genes may 

lead to both increased transcription-coupled damage and transcription-coupled repair 

(Hanawalt and Spivak, 2008)).

As with LoFs, we quantified the overall molecular impact burden of the non-coding SNVs in 

a cancer genome. For the majority of non-coding SNVs, the predicted molecular functional 

impact is less easy to gauge. An important exception is TF binding sites (TFBSes), where 

the impact of variants is clearly manifested through the creation or destruction of binding 

motifs (gain or loss-of-motif) (Melton et al., 2015; Yiu Chan et al., 2019). In both cases 

(gain or loss in a TFBS), we observed significant differential burdening of putative 

passenger mutations among different cancer cohorts (STAR method section 6.1). For 

instance, based on a uniform background model, we detected significant enrichment of 

mutations creating binding motifs for various TFs including GATA, PRRX2, and SOX10 

(Fig. 2b, Supplement Table S1) across major cancer types, compared with genome-wide 

expectation. Similarly, in many cancer cohorts, mutations breaking motifs were highly 

enriched for TFs such as SP1, EGR1, EP300, and ETS (Fig. 2b, Supplement Table S1). 

Additionally, we quantified the overall burdening of TFs that undergo gain- or loss-of-motif 

events due to presence of INDELs (supplement Fig. S2c).

This overall enrichment or depletion provides insight into the particular regulatory 

subsystems most differentially affected in each cancer, via the action of mutational 

processes. Furthermore, to investigate the role of selection, we refined the analysis by 

repeating it using a signature-corrected background model. We observed significant 

enrichment of motif-gain events for the TFBSes of STAT in addition to PRRX2 and SOX10; 

similarly, loss-of-motif events were enriched for HNF4, ETS, and SP1 (Supplement Table 

S1 & supplement Fig. S2b). In contrast to the previous analysis with a uniform background, 

here the enrichment and depletion potentially suggests the role of selection. We note that the 

definitions of these motifs are derived from the ENCODE project (Dunham et al., 2012) and 

they may represent direct as well as indirect associations with corresponding TFs.
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For a given TF, one can identify the associated target genes that are affected due to the bias 

towards the creation or disruption of specific motifs in their regulatory elements (promoters 

and enhancers). For instance, putative passengers that induced motif creation events among 

TFBSes belonging to the ETS TF family influenced their target TERT genes across multiple 

cancer types (Fig. 2c). Similarly, motif alteration bias events among ETS TFBSes also 

influenced other genes (including BCL6), albeit in fewer cancer types. Moreover, the 

enrichment of putative passenger mutations in select motifs led to gain and break events in 

promoter, significantly perturbing the overall expression of downstream genes (Fig. 2d & 

supplement Fig. S2d–S2e). For example, mutations in many cancers are strongly biased to 

create new motifs for TFs belonging to the ETS family, which, in turn, drive expression 

changes in their target genes including TERT and BCL2 (with p-values of TERT=5.49e-5 

and BCL2=3.4e-4). In contrast, in skin-melanoma, mutations break many ETS motifs, and 

this is associated with the downregulation of the RPS27 gene.

Finally, we analyzed the overall burden of SVs (specifically, large deletions and 

duplications) in various genomic elements and compared the pattern of somatic SVs in 

cancer genomes to those in the germline (Fig. 2e). Using a uniform background model, we 

observed that somatic SVs were more enriched within functional elements compared to 

germline SVs (Fig. 2e & supplement Fig. S2f); this was expected, because the latter will be 

under negative selection against functional disruption. Furthermore, we observed a distinct 

pattern of enrichment for SVs that split a functional element versus those that “engulf” an 

entire element. As previously noted (Khurana et al., 2013; Sudmant et al., 2015), we found a 

greater enrichment of germline SVs that entirely engulf an entire element rather than for 

those that partially break one. Interestingly, here, we observed the same pattern among 

somatic SVs (Fig. 2e & supplement Fig. S2f).

Characterizing mutational processes underlying putative passengers

Mutational processes underlying putative passengers have a stochastic but unevenly 

distributed nature, which can potentially explain the differential burdening of various 

genomic elements. Thus, we carefully inspected the mutational processes generating 

putative passengers in both coding and non-coding regions. Among coding mutations, we 

found that the LoF mutation spectra in many cancers were reasonably close to what one 

would expect from a possible theoretical mutational spectrum generating all potential 

premature stops in coding regions. However, there were differences between different 

cancers. In particular, variants creating premature stops showed a higher percentage of T>As 

in renal cell carcinomas (RCCs) compared to the pan-cancer average (18% vs. 8%) (Fig. 3a 

& supplement Fig. S3a). Furthermore, a close inspection of the penta-nucleotide spectrum 

associated with premature stops suggested a high correlation between the frequency of 

observed LoF mutations and in- or out-of-frame mutational stop patterns within specific 

cancer cohorts (supplement Fig. S3b). Moreover, there are fewer LoFs than we expect from 

the theoretical distribution in kidney-RCC and skin-melanoma cohorts (supplement Fig. 

S3b).

Similarly, we analyzed the mutational spectrum underlying variants in TFBSes. We note that 

different TFs tend to have different nucleotide contexts in their TFBSes, making them 
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differentially sensitive to different mutational processes. For instance, the mutational 

spectrum of SP1 motif-breaking events suggested a predominant contribution from C>T and 

C>A mutations (Fig. 3a). In contrast, motif-breaking events for HDAC2 and EWSR1 have a 

relatively uniform mutational spectrum (Fig. 3a).

Based on the mutational context, we can further decompose observed mutations into a linear 

combination of signatures, each of which represents different mutational processes 

(Alexandrov et al., 2013; Helleday et al., 2014). Each signature (Alexandrov et al., 2018) has 

a different contribution towards the mutational processes in a given cancer type. We 

compared the signature distributions of low- and high-impact putative passengers in different 

cancer cohorts. Briefly, for each cancer cohort we compared the contribution of individual 

signatures underlying high- and low-impact putative passengers using a non-parametric 

statistical test (method section 7.4). We identified a subset of signatures that had significant 

differential contributions for low- and high-impact putative passengers across multiple 

cancer types. In particular, we observed distinct signatures for the low-and high-impact 

putative passengers in pancreatic, esophageal, lymphoma, and ovary cohorts (Fig. 3b). A few 

signatures (1, 6, 7,19, 28, and 35) consistently had a higher contribution toward high-impact 

putative passengers across multiple cohorts; in contrast, other signatures (20, 22, 27, and 39) 

had consistent lower contributions. These observations imply that differing mutational 

processes could potentially explain the divergence of functional impacts among a subset of 

putative passengers.

Finally, we observed that cancer samples with microsatellite instability (due to the failure of 

DNA mismatch repair) have a higher percentage of high-impact non-coding putative 

passengers compared to those with stable microsatellites (supplement Fig. S3c).

Subclonal architecture and mutational heterogeneity of putative passengers

Cancer is an evolutionary process, often characterized by the presence of different sub-

clones. We can categorize these subclones as early and late based on the overall subclonal 

architecture of a cancer sample (STAR method section 8.1). Here, we explored the relative 

population of high- and low-impact putative passengers in different sub-clones of a tumor 

sample (Gerstung et al., 2017). Intuitively, one might hypothesize that high-impact 

mutations achieve greater prevalence in tumor cells if they are advantageous to the tumor, 

and a lower prevalence if they are deleterious. As expected, we observed this to be true 

among driver variants (Fig. 4a). Interestingly, we found that high-impact putative passengers 

in coding regions had greater prevalence among parental subclones (STAR method section 

8.1) – an effect consistent with their presence in tumor suppressor and apoptotic genes (Fig. 

4a). In contrast, high-impact putative passengers in oncogenes appeared slightly depleted in 

parental subclones. Similarly, we observed a depletion of higher impact putative passengers 

overlapping with DNA repair genes and cell cycle genes in early subclones (Fig. 4a). We 

obtained similar results when we categorized mutations by variant allele frequency (VAF) 

(supplement Fig. S4). We note that a prior analysis (Gerstung et al., 2017) suggested that 

there are small differences in signatures between early and late subclone mutations. Thus, 

signature differences between early and late subclones could potentially contribute to our 

observations.
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In non-rearranged genomic intervals, the VAF of a mutation is expected to be proportional to 

the fraction of tumor cells bearing that mutation. Previous studies (Mroz and Rocco, 2013) 

have used variability in VAFs as a proxy to quantify overall intra-tumor heterogeneity. In 

particular, we used this approach to quantify heterogeneity amongst low- and high-impact 

putative passengers for different cancer cohorts (STAR method section 8.2). Overall, we 

observed lower mutational heterogeneity among high-impact putative passengers for both 

coding (with p-value < 2e-5) and non-coding regions (with p-value < 2e-5) (Fig. 4b). 

Furthermore, we correlated the predicted molecular functional impact (measured by GERP 

score) of each variant with their cellular prevalence estimated by VAF (STAR method 

section 8.3). Our VAF-GERP correlation analysis indicated that within driver genes and their 

regulators, variants that disrupt more conserved positions (high GERP score) tend to have 

higher VAF values (Fig. 4c). This trend remained even after excluding SNVs that have been 

individually classified as driver variants, suggesting that within cancer driver genes, there is 

either a presence of weak drivers or yet-uncalled standard drivers (potentially among high-

impact putative passengers). We also found that outside of driver genes, variants that disrupt 

more conserved positions tend to have lower VAF values (Supplement Table 2A). This 

observation could be potentially related to the presence of a subset of putative passengers 

undergoing weak negative selection in tumor cells.

Beyond the clonal status of a tumor, clinical outcomes (such as patient survival) provide an 

alternative measure of tumor progression. Therefore, we performed a survival analysis to 

determine if somatic molecular impact burden – measured as the mean GERP of putative 

passenger mutations per patient – predicts patient survival within individual cancer subtypes 

(STAR method section 9). We used patient age at diagnosis as a covariate in the survival 

analysis. We obtained significant correlations between somatic molecular impact burden and 

patient survival in two cancer subtypes after multiple test correction (Supplement Table 2B). 

More specifically, we observed that somatic molecular impact burden predicted patient 

survival well in lymphocytic leukemia (Lymph-CLL, p-value 2.3e-4) and ovary 

adenocarcinoma (Ovary-AdenoCA, p-value 2e-3) (Fig. 4d). The use of average impact 

ensures that these results do not merely reflect more advanced progression (i.e., more 

mutations) of cancer at the time of sequencing. The prolonged survival of high mean GERP 

patients in these subtypes is consistent with the possibility that an important subset of 

mutations at conserved positions are deleterious to tumor cells and benefit the patient. We 

note that unmeasured patient clinical characteristics or tumor molecular subtypes may 

partially influence these correlations.

Categorizing putative passenger variants

The comprehensive characterization of the passenger mutational landscape in PCAWG 

highlighted many key attributes of putative passengers. Some of these results provide 

mechanistic insights and potentially reflect the underlying mutational processes. In addition, 

they may be indicative of selective effects among a subset of these mutations. If a subset of 

putative passengers indeed possesses fitness effects, then we can extend the dichotomous 

model of drivers and passengers into a continuum. Conceptually, in such a model, somatic 

variants can be classified into multiple categories while considering their impact on tumor 

cell fitness: drivers with strong positive selective effects and putative passengers with 
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neutral, weak positive, and weak negative selective effects. We can further refine this broad 

classification into subcategories based on ascertainment-bias and the putative molecular 

functional impact of different variants (Fig. 5a). Previous power analyses (Kumar and 

Gerstein, 2017; Lawrence et al., 2014; Rheinbay et al., 2017b) suggest that existing cohort 

sizes only allow the identification of strong, positively selected driver variants, common 

within a cohort, but are underpowered to detect many weaker drivers and even some rare 

(low frequency) strong drivers. However, these missing driver variants can also provide a 

fitness advantage to tumor cells. Further, we note that weak drivers possibly include variants 

with a small effect size that can contribute to cancer progression through epistatic 

interactions or aggregated/additive effects.

Concerning the functional-impact-based classification, any positively or negatively selected 

variants will have some impact in terms of molecular function (e.g., an effect on gene 

expression). The relevance of molecular functional impact is intuitive for driver mutations 

(under positive selection) and deleterious passengers (under negative selection) (McFarland 

et al., 2013). However, the potential for a dissociation between impact and selective effect on 

tumorigenicity also exists. For instance, variants with strong functional impact may be 

selectively neutral because they alter gene expression or activity in ways that are not 

ultimately relevant for tumor fitness. Likewise, variants with weak molecular functional 

impact may be selectively relevant due to the particular cellular systems they impact (Castro-

Giner et al., 2015). Thus, a full continuum of positive and negative selective effects can be 

used to generate various subcategories of cancer mutations (Fig. 5a).

Additive-effects model: Aggregated effects of putative passengers

It is interesting to note that in a cancer genome the presence of a few drivers (with high 

positive fitness effects) and large numbers of putative passengers (with weak or neutral 

fitness effects) could be considered analogous to prior observations in genome-wide 

association studies (GWAS) that implicated a handful of variants in complex traits. These 

modest numbers of variants explained only a small proportion of the genetic variance, thus 

contributing to the “missing heritability” problem in GWAS for traits such as height or 

schizophrenia (International Schizophrenia Consortium et al., 2009; Yang et al., 2010). 

However, studies subsequently found that aggregating the remaining variants with weak 

effects could explain a significant part of the “missing heritability” (Yang et al., 2010) and 

was predictive of phenotype (Furlong, 2013). In a similar fashion, subclonal growth rate may 

be considered a “subclonal trait” in a cancer in which the genetic architecture may be 

polygenic to varying extents across cancer subtypes. In general, the subclonal heritability of 

growth rate may depend on both genetic and epigenetic factors (STAR method section 10). 

Although the degree of “missing heritability” in subclonal growth rates has not been directly 

assessed experimentally, the lack of driver mutations in a subset (~10%) of PCAWG samples 

suggests (Campbell et al., 2017) the importance of investigating the cumulative effect of 

putative passengers.

To address this problem, we adapted an additive-effects model (Yang et al., 2010, 2011), 

initially used in complex trait analysis to quantify the relative size of the aggregated effect of 

putative passengers compared to known drivers for a proxy binarized trait (cancer vs. no 
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cancer) (Fig. 5b, STAR method section 10). Briefly, we created a balanced dataset of the 

observed tumor and matched neutral (null) model samples, using a background model that 

preserves mutational signatures, local mutation rates, and coverage bias (STAR method 

section 1.1.b). Subsequently, we used an additive effects model to implicitly associate a 

positive or negative effect (coefficient) to each SNV, considering all the coefficients to be 

sampled from a normal distribution (STAR method section 10.1). Furthermore, in this model 

the individual effects of SNVs were not explicitly estimated; instead, their overall 

contributions to the total variance of phenotype were evaluated using the restricted 

maximum likelihood (REML) approach (Yang et al., 2011), where separate variance 

components can be associated with SNVs falling into distinct categories. We further utilized 

two additional local background models to validate the robustness of our findings (STAR 

method section 1.1.a–c).

We compared several versions of the additive effects model in eight cancer cohorts with a 

sample size >100. In the first model, we separated the mutations into two categories, 

corresponding to drivers (from PCAWG) and putative passengers (Fig. 5ci). We included 

putative passengers in the model only if they were found in at least two samples from a 

cohort (any combination of observed and simulated samples). Additionally, to maximize the 

predictive potential of the driver mutations, we used a binary variable, which indicated if any 

driver mutation was present in a sample, as a predictor (STAR method section 10.1). This 

approach effectively isolates the effect of putative passengers in tumors without driver 

mutations. In this model, we observed an increase in the variance from ~49.9% using drivers 

alone to ~59.4% with putative passengers included, when averaged across all cohorts. The 

putative passenger contribution was significant at FDR<0.1 in all cohorts (except kidney-

RCC), further supporting that non-neutral effects are present among the putative passenger 

mutations (Supplement Table 3A). We further tested a different model in which we split 

mutations into coding, promoter, and other non-coding categories, where coding mutations 

are a superset of the PCAWG drivers (Fig. 5cii). As expected, the coding mutations 

accounted for most of the overall variance (~50.7% averaged across cohorts), while 

promoter and other non-coding mutations contributed less but still significant amounts of 

extra variance (~1.9% and 6.9%, respectively, with cohort-specific contributions from each 

category at FDR<0.1, Supplement Table 3B). Although the total contribution of the 

promoters was lowest in this model, the additive variance per SNV, which we call 

“normalized variance,” was substantially higher in promoters than other non-coding 

mutations (Fig. 5ciii). As expected, the normalized variance for coding mutations was the 

highest. We also evaluated the sensitivity of our analysis for the influence of null models and 

possible overfitting effects using double-null samples and observed near-zero additive 

variance for all such cases (STAR method section 10.3).

Additive-effects model: Analysis of samples without strong drivers

By including a binary indicator for known drivers in our model, we expected the 

contribution of the putative passengers toward the additive variance to be higher among 

samples without known drivers (as well as all null samples). To confirm that the putative 

passengers were indeed contributing to the discrimination of samples without known drivers, 

we further calculated the additive variance exclusively for such samples in PCAWG. In 
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particular, we repeated the analysis of the eight cohorts above, while excluding samples with 

known drivers (including known SNV drivers, and any SNVs falling in known driver 

elements such as the TERT promoter). We observed an average of 12.5% additive variance 

in this calculation (Supplement Table 3C), which was higher than the 9.5% additive variance 

estimates based on putative passengers among all samples (with and without known drivers; 

p=0.01, 1-tailed paired t-test for an increase in per-cohort additive variance, all cohorts ≥ 20 

samples). This observation is consistent with a more critical role for the putative passengers 

among samples without a known driver, since they may have partially redundant effects in 

the samples harboring known drivers. To test the robustness of this result, we calculated the 

additive variance after excluding samples with driver SVs and copy number alterations 

(CNAs) in addition to samples with known driver SNVs, using a pan-cancer meta-cohort 

that pools all such samples (Supplement Table 3D). We observed a lower amount of additive 

variance (6.8%) for the pan-cancer meta-cohort, which may be due to tissue-specific effects 

that are lost at the meta-cohort level.

Additive-effects model: Recasting the model in a predictive form

All of the above analyses use a random-effects model to estimate the overall variance 

attributable to different categories of mutations. However, this model does not identify 

specific mutations as having large or small absolute effects. To determine a subset of key 

mutations, the additive-effects model can be recast in predictive form by calculating the best 

linear unbiased predictor (BLUP), which provides a point estimate of the effects associated 

with each variant. We used this approach first to test for overfitting, by calculating a BLUP 

predictor for each cohort on a subset of the data. We observed a correlation between 

predictive accuracy of the predictor on held-out data and additive variance of the SNVs on 

the training data. This approach showed that the additive variance is predictive of 

generalization on held-out data in the sense of crossvalidation (STAR method section 10.3).

Furthermore, we performed a BLUP calculation for individual cohorts after excluding 

samples with predicted SNV, SV, and CNA drivers (STAR method section 10.2), and used 

this calculation to estimate the number of weak drivers among samples lacking predicted 

PCAWG drivers (Campbell et al., 2017) (Supplement Table 3G, supplement Fig. 5a). This 

method conservatively predicted an average of 8.4 weak drivers per cohort. Furthermore, we 

identified putative weak driver genes based on the highest (absolute value) BLUP estimates 

for SNVs and compared them with the PCAWG driver element catalog for orthogonal 

support (STAR method section 10.2). We specifically looked for overlap between our weak 

driver genes and the PCAWG driver discovery set (Rheinbay et al., 2017a), particularly 

where the latter did not satisfy the statistical significance criterion during the driver 

discovery process, observing a substantial overlap between these two lists (Supplement 

Table 3H). Finally, we also tested for possible inflation of BLUP coefficients on the q arm of 

chromosome1(1q) due to the gain of 1q events (arm-level aneuploidy) in the samples 

without known drivers and found no effect (Supplement Table 3I–J).

Comprehensive resource for cancer genomics

In addition to exhaustively characterizing putative passengers, our work has generated 

multiple uniformly processed datasets. These derived datasets can serve as valuable 
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resources in future cancer studies. In contrast to previous investigations into a limited set of 

driver variants, we comprehensively characterized each mutation cataloged by PCAWG. Our 

analysis thus includes an exhaustive list of annotations and predicted molecular impact 

scores for each coding and noncoding mutation. Furthermore, we identified putative LoF 

mutations and their associated molecular impact scores. In addition to these primary 

resources, we generated various derived datasets that can be leveraged for future work. 

Finally, using a predictive recasting of our additive-effects model, we identified genes and 

genomic elements that are predicted to be weak drivers. Note that a subset of these elements 

– which we call putative weak drivers – were not previously identified as standard drivers, as 

they failed to meet the standard FDR threshold in the PCAWG driver discovery analyses 

despite being implicated in our approach through their combined effects. Thus, our list of 

putative weak drivers complements the PCAWG driver discovery exercise and potentially 

may be useful for testing in future functional assays (Supplement Table S4). These 

experimental studies could help decipher the roles of weak drivers in cancer progression. We 

have compiled these resources into an easy-to-use portal through a project-specific webpage. 

We note that in addition to resources generated through our study, other PCAWG studies 

have also created multiple resources (supplement Fig. S5b). We list these on our study’s 

resource website (http://pcawg.gersteinlab.org/).

Discussion

Although a typical tumor has thousands of genomic variants, very few (~5/tumor) are 

thought to drive tumor growth (Campbell et al., 2017; Vogelstein and Kinzler, 2015). The 

remaining putative passengers represent the overwhelming majority of mutations in each 

tumor, and their functional consequences are poorly understood. In this work, we 

comprehensively characterized putative passengers in the PCAWG dataset. We then 

quantified the cumulative fitness effects of these putative passengers on tumor growth 

through an additive-effects model.

Overall, we observed that the molecular functional impact has a multimodal distribution 

suggesting that the canonical dichotomy of drivers and passengers might not necessarily 

reflect the complex mutational landscape in cancer genomes (supplement Fig. S1b). 

Moreover, we observed a reduced fraction of high-impact putative passengers with an 

increase in the total mutation frequency. This could be attributed to the underlying 

mutational signatures or might signify the presence of weak negative selection among a 

subset of putative passengers. Additionally, we found a depletion of putative passenger LoFs 

in key gene categories, including DNA repair and cell-cycle, potentially suggesting the 

presence of weak negative selection (McFarland et al., 2013).

Furthermore, we detected differential mutational burdening for early and late sub-clonal 

mutations at the pan-cancer level. More specifically, we observed an opposing enrichment 

and depletion of putative passengers among tumor suppressors and oncogenes, respectively. 

This suggests that the subset of putative passengers in tumor suppressors may confer weak 

driver activity, while those in oncogenes may impair oncogenic activity to the detriment of 

tumor fitness. However, we note that the difference in signatures between early and late 

subclones can also contribute to these differences. Similarly, we observed a negative 
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correlation between conservation and VAF for putative passengers in non-driver genes, 

which also suggests negative selection (or could be attributed to the underlying mutational 

signatures). We note that even if mutational signatures are neutral with respect to direct-

offspring fitness (i.e. number of daughter cells generated by a given parent cell), they can 

acquire an emergent fitness value over longer timescales through the action of the mutations 

they generate over several generations (Warrell and Gerstein, 2019).

In the context of germline variants, mutations found significant in current GWAS studies 

typically only explain a small proportion of total heritability of quantitative traits. However, 

the remaining mutations can account for a large percentage of the heritability through 

additive effects. Inspired by this observation, here we quantified the degree to which the 

overall additive-effect of putative passengers explained the total variance between observed 

and null genomes in a cancer cohort better than known drivers alone. Our additive-effects 

model demonstrated that aggregating putative passengers in a cancer genome can indeed 

provide strong predictive performance in distinguishing between cancer and non-cancerous 

phenotypes. Moreover, this model can be utilized to obtain a conservative estimate of the 

number of putative passengers with weak positive and negative effects in various cancer 

cohorts.

We note that discussion of these selective effects is meaningful only in the context of a 

proper background (null) model. In this work, we applied multiple background models that 

were also applied in the PCAWG driver discovery work. Overall, our additive variance 

analysis was robust for these background models and suggested a clear role for a subset of 

putative passengers in tumor progression through cumulative effects. That said, our current 

background models of mutational processes may have some limitations; for example, 

unmodeled mutation processes might result in confounding effects.

Further, we note that our additive-effects models did not incorporate the effects of epistatic 

interactions. Hence, although some variants may have context-specific effects, the additive-

effects model can only capture a mean effect across all genetic backgrounds; thus, it may 

represent only the lower bound of the genetic contribution towards the cancerous phenotype. 

Moreover, our current framework can be extended by using more complex models that 

capture both additive and epistatic variance. This is an important future direction. 

Additionally, with larger cohort sizes and a clearer understanding of mutational processes 

underlying SVs, we can extend our additive effects model to capture the aggregated effects 

of putative passenger SVs in tumor growth.

Finally, our analyses further complement the PCAWG driver discovery study (Rheinbay et 

al., 2017a) by identifying key alterations beyond strong drivers. We have identified multiple 

genomic elements where the aggregated effects of putative passengers may play roles in 

tumor progression. In conclusion, our work highlights that an essential subset of SNVs 

currently identified as passengers nonetheless may not merely be going for the ride and may 

in fact have important functional roles in driving cancer.
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STAR Methods

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and request for resources and reagent should be directed to and will be 

fulfilled by the lead contact, Mark Gerstein(pi@gersteinlab.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All primary datasets included in this manuscript were generated as part of the PCAWG 

project. The PCAWG project uniformly processed more than 2500 cancer whole-genome 

sequences for multiple cancer types. PCAWG project created various cancer genomics 

resources based on analyses of these samples. In this work, we cite the appropriate reference 

to these works and guide readers to obtain more information on those primary analyses. 

Moreover, these primary datasets including variant calls and gene expression data are 

accessible through PCAWG data portals (http://docs.icgc.org/pcawg).

METHOD DETAILS

This section describes resources and methods that are common to many analyses, including 

the use of randomized datasets, the exclusion of blacklisted samples, and the use of different 

cancer-associated gene categories (e.g., apoptosis genes, essential genes, oncogenes/tumor 

suppressor genes (TSGs), etc.).

1. Data Preparation

1.1. Randomized dataset

1.1.a Signature preserving randomized datasets: PCAWG group generated randomized 

mutation datasets for each cancer cohort. Here, observed mutations were randomly shuffled 

within a 50,000-base pair (bp) window for every patient in a given cancer type. During the 

shuffling process, the tri-nucleotide context of a mutation was preserved. Mutations 

affecting known cancer driver genes were excluded from the generation of these randomized 

mutation sets. The result of this process is a control dataset, specific to a given cancer type, 

to be used for comparison concerning the observed cancer mutations. These shuffled 

mutation sets (synapseId: syn7187923) preserve mutational signatures associated with 

cancer while removing the local position-specific effects of cancer mutations within the 

range of the 50,000bp window.

1.1.b Signature and coverage preserving randomized dataset: In this randomization 

approach, the entire genome was divided into 50kb segments. For each segment, the 

mutation rate was calculated as a ratio of mutation frequency in that region across PCAWG 

to the total mutation frequency in PCAWG. The randomized mutation dataset was generated 

based on the region’s mutation rate. Furthermore, the permuted position was accepted if the 

trinucleotide context of the shuffled variant was the same as the original variant. 

Additionally, based on 1111 tumor and normal WGS pairs, each nucleotide in the genome 

was assigned a frequency quantifying the extent of coverage in PCAWG. While shuffling the 

mutation, the fraction of samples with enough coverage at the site was used as the 

nucleotide’s probability of being mutated (synapseId: syn7152699).
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1.1.c Covariate corrected randomized datasets: Prior parametric approaches to model 

variant distributions are useful when various whole genome signals that co-vary with the 

mutation density (i.e., covariates) are known. Furthermore, it is required that their 

contributions to the highly heterogeneous whole genome background mutation rate (BMR) 

are accurately modeled (Lawrence et al., 2013). However, there are potentially hundreds of 

covariates to model not all of which may be known or fully understood. Furthermore, some 

of the requisite covariate data is not available for some genomic regions, leaving the model 

incomplete.

For these reasons, we created a somatic variant simulation framework to generate 

distributions of background variants. Our approach uses an empirical, nonparametric method 

to derive the expected distribution of these variants. Our model doesn’t rely on fully defining 

every relevant influence, but instead only assumes that the BMR is substantially constant 

over sufficiently small genomic regions.

To define the size of the genomic regions over which we could safely assume a constant 

BMR, we analyzed a few of the covariates with the most substantial influence on the BMR. 

These covariates include DNA replication timing, GC content, Dnase I Hypersensitivity 

Sites (DHS), and gene expression. We obtained DNA replication timing data acquired by 

Chen et al. (Chen et al., 2010), which used bromodeoxyuridine-(BrdU) labelling to track 

each genome region’s timing in the synthesis phase (S-phase) in HeLa cells. Guanine-

cytosine content (GC-content) data was obtained from the University of California, Santa 

Cruz (UCSC) Genome Browser (Rosenbloom et al., 2013), which offers a range of publicly 

available whole genome resources. Moreover, we used a DHS signal track for the HeLa cell 

line. Finally, we used the average gene expression values from the Cancer Cell Line 

Encyclopedia (CCLE), as reported previously (Lawrence et al., 2013).

The first part of our analysis was to evaluate each covariate’s variance over genomic regions 

of varying spatial resolution. Our goal was to find the smallest resolution at which all three 

covariates can be considered constant. We first binned the human genome at a range of 

resolutions spanning 500kb, 100kb, 50kb, 10kb, 5kb, and 1kb. Then we calculated the 

standard deviation of each covariate’s value within each bin using the 

bigWigAverageOverBed tool available from UCSC’s genome utilities website (Rosenbloom 

et al., 2013). From this data, the mean standard deviation of DNA replication timing plateaus 

at a resolution of 10kb or less. DHS sensitivity appears to have a steadily decreasing mean 

standard deviation at all resolutions. Thus, we decided to use a 10kb resolution, as it turns 

out to be the smallest resolution at which we would still have computational tractability for 

the subsequent steps.

Subsequently, we divided the genome into 10kb bins. These bins were assigned to a cluster 

in the covariate space by k-means clustering. The number of groups was chosen, such that 

95% of the total variance in the covariates is captured. Randomized mutation datasets were 

generated by shuffling the original mutations to a 10kb bin on the same chromosome 

(including the bin it originates from). The shuffled position was accepted if the 

corresponding bin was present in the same cluster as the bin of the original mutation.
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Moreover, the permuted position was accepted if the underlying trinucleotide context was 

the same as the trinucleotide context of the original mutation. Finally, the shuffled position 

was disallowed if the position’s probability for being mutated was less than 80%. The 

probability value of being mutated was derived from the driver group study (Rheinbay et al., 

2017a). Briefly, the frequency of every base with sufficient read coverage was obtained by 

counting how many times it was covered sufficiently in the sub-selected PCAWG samples 

(1111 samples).

2. Annotation and functional impact score calculations

2.1 SNV annotation and functional impact calculation: We applied FunSeq2 (Fu et al., 

2014) to annotate and predict the molecular functional impact of each somatic mutation for 

each of the 2548 samples from PCAWG (syn12176719). Our predicted molecular functional 

impact scores were then further used for various downstream analyses. In this work, we 

applied the annotation dataset defined by the PCAWG annotation subgroup instead of using 

the default annotation data context as described in the original FunSeq2 work. The PCAWG 

annotation set was derived primarily from the GENCODE v.19 annotation resource (Harrow 

et al., 2012). In addition, for annotating the noncoding RNAs, additional annotations were 

gathered from multiple noncoding RNA databases including miRBase (Griffiths-Jones, 

2006), snoRNABase (Lestrade and Weber, 2006), MiTranscriptome (Iyer et al., 2015), rfam 

(Griffiths-Jones et al., 2003), and tRNAscan-SE (Lowe and Chan, 2016).

Furthermore, the original annotations were collapsed to obtain the consensus definition of 

various genomic elements including protein-coding parts (CDS), untranslated regions (UTR) 

and other noncoding regions of the genome. This annotation collapse was necessary to avoid 

complexities due to the presence of multiple transcripts for a gene. For example, for a given 

gene with multiple transcripts, the promoter was defined by taking the union of promoter 

regions for all individual transcripts. The promoter region for each transcript was defined as 

1,000 bases upstream of the transcription start site. Additionally, nucleotides falling in CDS, 

UTR, and other noncoding regions were subtracted. Definitions of transcription factor 

binding sites (transcription factor (TF) peaks and TF motifs) were based on the 

Encyclopedia of DNA Elements (ENCODE) Phase II Project annotation set (Dunham et al., 

2012). Similarly, enhancer region definitions were obtained from the Roadmap Epigenomics 

Project (Roadmap Epigenomics Consortium et al., 2015).

In addition to annotating each mutation, we also generated the core funseq score for these 

mutations. Briefly, the core funseq score is determined based on a weighted scoring scheme. 

In this approach, multiple features are used including functional annotations (regulatory 

elements, coding regions, HOT regions), inter-species conservation (GERP score), network-

related features (centrality in gene regulatory or PPI networks), and nucleotide level analysis 

for TF binding sites (motif gain or break events). These core funseq score for each mutation 

was utilized further for downstream analyses.

2.2 Annotation of Loss-of-Function Transcripts (ALoFT): In addition to FunSeq based 

annotation, we also applied the ALoFT tool to annotate and evaluate the impact of the loss-

of-function (LoF) mutations. We note that not all LoF mutation results in total gene loss of 
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function. The factors influencing the effect of a LoF mutation include the location at which a 

LoF mutation occurs within the coding sequence of a gene and the network centrality of a 

gene among its binding partners. For instance, a LoF mutation that truncates a functional 

domain, or loss of a protein that plays a central role in a gene regulatory network, is more 

likely to have a harmful effect.

ALoFT is a tool developed to identify the harmfulness of LoF mutations (Balasubramanian 

et al., 2017). ALoFT uses feature data associated with a LoF variant to predict the 

deleterious consequence associated with that variant. These features include variant 

frequency in population-scale databases (Exome Aggregation Consortium (Lek et al., 2016), 

and 1000 Genomes (1000 Genomes Project Consortium et al., 2015), the distance of the LoF 

mutation from the CDS stop site and cross-species conservation of region truncated by the 

LoF mutation. LoF variant annotation data is taken as feature input to a random forest 

machine learning algorithm trained to predict the functional impact associated with a given 

LoF mutation.

The output of the ALoFT machine learning algorithm is a predicted classification for each 

LoF variant input. ALoFT classifies somatic mutations as either tolerated or deleterious. For 

our analysis, all insertions and deletions (INDELs) and single nucleotide variant (SNV) LoF 

variants from the PCAWG cancer dataset were analyzed using the ALoFT annotation tool 

(syn12176699). Those LoF mutations that were predicted to have deleterious consequences 

via ALoFT were then carried forward for further analysis. Comparisons between the ALoFT 

mutation data set were made with a randomly generated data sets using a uniform 

randomization and signature corrected background models.

3. Sample selection and mutation categorization

3.1 Sample Inclusion criteria: In this work, we only considered variants from PCAWG 

samples which satisfy Pan Cancer Analysis of Whole Genomes-(PCAWG)wide quality 

control (QC) criteria and were included in the final release (Campbell et al., 2017). 

Additionally, certain cohorts such as prostate adenocarcinoma and lymphomas had replicates 

for certain patients. Among patients with multiple replicate samples, only one sample with 

the best overall QC metric was included per patient. Moreover, 38 hyper-mutated melanoma 

and lymphoma samples were excluded in this work. In total, we used variant calls from 2548 

PCAWG samples for our analysis.

3.2 Putative passenger categorization: In classical models of cancer, driver mutations 

exert a positive selective effect on cancer cells that is necessary for tumor growth. In this 

framework, non-driver mutations are considered either as the product of background 

mutation, or as the product of a functional process unrelated to cancer growth and 

development. Non-driver mutations are often termed passenger mutations (“putative 

passengers” in the current study), in relation to their dependency on driver mutations for 

reproduction and in relation to the hypothesis that these non-driver mutations do not affect 

cancer growth and development.

To the extent that these theoretical categories of selection are found in tumors, we 

hypothesized that the scale of the PCAWG cohort (~2500 patients with whole-genome 
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sequencing results) would allow for the detection of these categories of selective effect. 

Furthermore, whole genome sequencing would allow for the detection of these selective 

effects in non-coding regions, where the bulk of mutations in cancer are found.

In this work, we employed a predicted molecular functional impact based on the FunSeq 

software tool, to further categorize putative passengers as high impact and low impact 

putative passengers. For coding putative passengers, we classify them as high impact 

(FunSeq score >= 5.0), medium impact (FunSeq score >= 2.0 and Funseq score < 5.0) and 

low impact (FunSeq score < 2.0). Similarly, noncoding putative passengers are classified as 

high impact (FunSeq score >= 3.5), medium impact (FunSeq score > 1.0 and FunSeq score < 

3.5) and low impact (FunSeq score <= 1.0), respectively.

3.3 Various cancer-associated gene categories: In this work, we employed common set 

of gene list belonging to different functional categories to perform various downstream 

analyses. Most of these gene categories were obtained from prior studies or existing 

databases. For instance, essential gene set were obtained from previous study looking at 

CRISPR knockout in different cancer cell lines (Wang et al., 2015). Similarly, genes were 

categorized as oncogenes or TSG based on previous study (Vogelstein et al., 2013). Finally, 

genes involved in apoptosis, DNA repair and metabolic genes were derived from the 

Reactome pathway database (Croft et al., 2011).

QUANTIFICATION AND STATISTICAL ANALYSIS

This section describes various statistical analyses that were performed to analyze putative 

passenger landscape in PCAWG.

4. Annotation and impact of structural variations (SVs) in cancer

4.1 Burdening of structural variants in different genomic elements: We quantified the 

overlap between PCAWG defined annotated genomic elements (CDS, intronic regions, 

promoters, UTRs, ultra-conserved regions) and structural variations (SVs) to test the 

significance of enrichment (or depletion) compared to genome-wide background. We 

measured partial overlap as the number of genomic elements with at least 1bp of overlap 

with the SV(s) (syn7596712). Engulfing SVs were defined as the full embedding of a 

genomic element within an SV. Significance level (2-tailed empirical p-value) was 

determined by comparing the observed count with the null distribution count, calculated 

from intersecting genomic elements with randomly shuffled SVs (Sudmant et al., 2015). For 

SVs in each cancer subtype, we shuffled the SVs per sample 1,000 times, requiring that 

shuffled simulated SVs still locate on the same chromosome, and that grch37 gap regions are 

avoided. For somatic SVs, we filtered out the SVs that overlap with long arm deletions.

Part of genomic element annotation used in the analysis (including gencode.v19.cds.bed, 

gencode.v19.intron.bed, gencode.v19.promoter.bed, gencode.v19.utr.bed, 

ultra.conserved.hg19.bed) was based on a PCAWG-wide genome annotation as described 

earlier in section 1.3 (syn5259890). The rest of annotation files were obtained from data 

sources such as GENCODE (Harrow et al., 2012) and other literature (Fu et al., 2014).
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4.2 Functional Prioritization of Somatic SVs using Machine Learning Algorithms: To 

systematically prioritize structural variants in PCAWG, we have developed a machine-

learning based framework (Kumar et al., 2019). Briefly, in this framework, we utilize 

structural variants from the 1000 Genomes Project (1KG) (Sudmant et al., 2015) and the 

somatic (Li et al., 2017) and germline SVs (Campbell et al., 2017) from PCAWG cohorts. 

The 1KG SVs are treated as probable low impact variants that do not have a high functional 

consequence for tumor progression. Here, we assume that the majority of 1KG SVs are 

polymorphic variants that are seen in healthy individuals and are expected to have a neutral 

effect on cancer progression. Similarly, the PCAWG germline SVs are considered as a 

mixture of high and low impact SVs that are dominated by low impact SVs with little or no 

consequence for tumor growth. The somatic SVs, on the other hand, is expected to include a 

comparatively large number of high impact variants, including driver SVs.

These training classes are quite diverse. For example, the 1KG SVs and somatic SVs may 

have different molecular mechanisms of formation. We, however, hypothesize that the 

impact of an SV depends purely on the functional elements that it affects. We speculate 

further that any somatic SV that resembles a 1KG SV most probably will have low impact. 

We use the machine learning-based framework to classify any SV into these SV classes. The 

algorithm learns to discriminate the somatic SVs from germline SVs and the 1KG SVs. 

After the model is trained, if it assigns a high probability of being in the somatic SV class to 

a new SV, we assume that this SV does not resemble the low impact SVs and therefore 

potentially has high impact score.

In our scoring framework, we utilized a random-forest machine-learning methodology, with 

features based on functional genomics datasets from the ENCODE Project (Dunham et al., 

2012) (H3K36me3, H3K4me3, H3K27ac, H3K27me3 marks) and annotated genomic 

elements from the GENCODE project (Harrow et al., 2012). We chose to use these features 

because they mark important coding and non-coding functional elements in the genome. In 

addition, we built an extended model including features like conservation and overlap with 

COSMIC cancer census genes (Futreal et al., 2004). Note that unlike the SNV impact 

evaluation framework, SVs have variable lengths that can span over very large regions of the 

genome. This makes it hard to create a feature set for SVs with different lengths. To get 

around this issue, we first divided SVs into windows of 10 base pairs and computed the 

features over these windows. For instance, given an SV [a, b] which starts at genomic 

position a and ends at position b, we divide the interval into 10 base pair bins, i.e., n = b − a
10

bins. For the ith bin (n ≥ i ≥ 1), we compute the total H3K36me3, H3K4me3, H3K27ac, and 

H3K27me3 signals using the ENCODE Project datasets within the bin, which we denote, for 

example, by sH3K27ac(i). In addition, we computed the total PhyloP conservation signal 

(Pollard et al., 2010) over each bin. Furthermore, we calculated the maximum and average 

of the histone levels over all 10bp bins.

For H3K27ac, we compute these features as following:

max(sH3K27ac(1), sH3K27ac(2), …, sH3K27ac(n))
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and

(sH3K27ac(1) + sH3K27ac(2) + … + sH3K27ac(n))
n .

In addition, we overlapped each bin with the exon annotations from the GENCODE project 

and COSMIC cancer census genes. For each overlap, we computed the fraction of the bin 

that overlaps with the annotation element. Similar to the signal levels, we recorded the 

maximum and average of the overlap fractions. Putting these together, the total set of 

features can be summarized as:

SV [a, b]

šH3K27ac, s‒H3K27ac,
šH3K4me3, s‒H3K4me3,

šH3K36me3, s‒H3K36me3,
šH3K27me3, s‒H3K27me3,

šPℎyloP , s‒PℎyloP ,
šGENCODE, s‒GENCODE,

šCOSMIC, s‒COSMIC,

where š denotes the maximum of the signal over all the 10-bp bins within [a, b] and s‒

denotes the average signal over all the bins. We generate these 14 features and use them to 

build the model.

In order to train the model, we created a training set that included 3000 SVs (1000 SVs from 

each SV datasets including somatic, germline and 1KG) and built the model using 5000 

trees. Furthermore, for the training of the model, we required that SVs are less than 100,000 

bps. The size restriction of SVs is essential as large SVs tend to saturate the features, i.e. 

every feature has high values, which is not very informative for building the model. 

Subsequently, we scored the remaining SVs that were shorter than 10 mega-bases using the 

trained random forest algorithm. The random forest computes a probability for each SV 

class. When scoring an SV, we use the probability computed for the somatic SV class as the 

SV impact score (SVIS). This scoring is used for the SVs that are shorter than 10 mega-

bases long. We assumed that any SV longer than 10 mega-bases had a very high impact, i.e., 

impact score of 1.0.

After the model was built, we used the model to compute SVIS for the PCAWG somatic 

SVs. At this step, we need to assign a score for all the SVs, including the 3000 SVs that 

were used for training. This may introduce a bias because SVs used in the training will be 

assigned perfect scores to their respective classes. To get around this bias, we applied the 

following strategy: We generated 5 different training sets (Using 5x3,000=15,000 SVs in 

total) and we built a model using each training set, which yielded 5 random forest models. 

We then scored all the somatic SVs using these 5 models (Each SV received 5 scores). Next, 

for each SV, we computed the average of the 5 scores assigned to this SV. The average SVIS 

score for each SV was used as the final impact score.
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We utilized the SVIS and Funseq score to identify cancer cohorts harboring high impact SVs 

or SNVs. For this analysis, we classified an SV with impact score above 0.85 as a high 

impact SV. As mentioned earlier, coding SNVs with Funseq score >= 5.0 and non-coding 

SNVs with Funseq score >= 3.5 were identified as high impact SNVs. Subsequently, we 

plotted the log ratio of high impact SVs and SNVs in multiple cancer cohorts.

5. Loss of function mutation (LoF) analysis

5.1 Enrichment and depletion of LoF mutations by functional category: The 

percentage of observed and predicted deleterious LoF mutations impacting genes associated 

cancer growth. The percentage of genes harboring LoF mutations was compared between 

the original and randomized dataset. These percentages were calculated on a per-cancer type 

basis. Gene categories with a significant difference were identified using a Kolmogorov-

Smirnov (KS) test for each of the cancer cohorts. We also performed a similar comparison 

using driver LoF mutations – as determined by the PCAWG driver variant group – as well as 

a contrast to genome-wide expectation (using uniform and signature corrected background 

models) normalized to all possible LoF mutation locations.

5.2 Gene-level enrichment of predicted deleterious LoF mutations: Gene-level 

enrichment of deleterious LoF mutations was calculated across cancer types as well as for 

Individual cancer-types. For each cancer type, the number of patients with at least one LoF 

mutation in a given gene was determined to calculate the enrichment of mutations. For the 

enrichment analysis, we performed comparisons between original and randomized mutation 

data. A chi-square test was used to evaluate the statistical significance of the difference in 

LoF prevalence between the observed dataset and the randomized dataset.

6. Impact of somatic variants on the transcription factor binding landscape
—In this section, we describe all relevant analyses to evaluate the impact of somatic variants 

influencing different transcription factors and their target genes.

6.1 TFBS landscape mutational burden: We evaluated the putative impact of SNVs and 

INDELs affecting transcription factor binding motifs (TFMs) that may lead to creation or 

disruption of TFMs. The annotation of SNVs and INDELs that break or create TFM was 

obtained from the output of FunSeq2 (Fu et al., 2014). Briefly, FunSeq evaluates the 

significance of the changes in the score of the corresponding position weight matrix (PWM) 

for each putative TFM (as measured between the TFM with the reference allele compared to 

the alternative allele). Based on this annotation, for each TF we get the observed proportion 

of TFM gain pTFMG =
TFMG(TF )

TFMG(TFTotal)
, where pTFMG corresponds to the proportion of 

TFMs gained. This proportion is defined as the ratio between frequency of motif gain events 

observed for a particular transcription factor TF (TFMG(TF)) to the total frequency of gain 

events across all transcription factor (TFMG(TFTotal)). Similarly, we can compute analogous 

proportion for the TFM break(loss) events, where observed proportion of TFM loss 

pTFML =
TFML(TF )

TFML(TFTotal)
.
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The expected naïve genome-wide background for each TF was assessed as the proportion of 

coverage of each TFM sequences among the total number of entries from all TFs, 

pTFME = TFM(TF )
TFM(TFTotal)

. Whole-genome motif scanning generally discovers millions of 

motifs including a large fraction of false positives. Therefore, we focused our analysis on 

variants occurring within promoter regions as defined by the PCAWG annotation subgroup. 

Furthermore, we required that all motif coordinates should be located in regions 

corresponding to Chromatin Immunoprecipitate (ChIP-Seq) peaks or DNase hypersensitive 

(DHS) peaks, as defined by ENCODE (Dunham et al., 2012). The TF PWMs were obtained 

from ENCODE project, which include TRANScription FACtor database (TRANSFAC 

(Wingender et al., 1996)) and JASPAR (Mathelier et al., 2016) motifs.

We measured the depletion or enrichment of motif loss for each TF by computing the 

deviation between the above observed and expected values ΔL(TF) = pTFML − pTFME. 

Similarly, for motif gain, we compute the deviation ΔG(TF) = pTFMG − pTFME. For loss of 

motif and gain of motif, a positive value indicates enrichment (higher proportion of 

impacted motifs) while negative value shows depletion (lower proportion of impacted 

motifs). Moreover, we utilized same framework to quantify enrichment of TF gain and loss 

event in PCAWG data using a signature corrected background model.

6.2 Alteration bias score and target gene analysis: We defined an alteration bias score to 

quantify the overall mutational burden associated with TF binding alteration events (gain/

loss of TFM) influencing their corresponding target genes. Since the counts of transcription 

binding alteration events vary with respect to the localized mutational frequency, it can be 

challenging to compare mutational burden of transcription factor binding sites associated 

with different target genes. In order to solve this problem, we used the number of creation 

and disruption alteration events as a relative control to compute an alteration bias score. 

Creation and disruption counts were first normalized as the number of nucleotides available 

to disrupt or create a binding site differs significantly.

The relative difference between the creation and disruption counts were then computed as 

the alteration bias score. All mutations located within the promoter region of each gene 

together with the associated gene specific enhancer region (defined by the PCAWG) were 

matched against the ENCODE transcription factor binding motifs (Kheradpour and Kellis, 

2014) to detect significant changes in binding affinity. For a given transcription factor 

family, alterations influencing TF binding sites were aggregated to compute the alteration 

bias score. In this framework, TF motifs undergoing gain of event will be assigned a positive 

alteration bias score, whereas those with large number of break events will be assigned 

negative alteration bias score. Motif-gene pairs with alteration bias score greater than 0.4 

(absolute value) and with at least 15 alteration events were identified to perform the gene 

expression analysis described in the next section.

6.3 Target gene expression analysis: Since the level of expression differs both across 

genes and tissue types associated with the cancer cohorts, normalization of expression 

values is needed (syn3104297). Expression values were z-score transformed, leaving 

expression distributions across cohorts and genes with means equal 0 and standard 
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deviations equal 1. This allows for a direct comparison of expression values associated with 

subsets of TFBS mutation events across cohorts and genes in comparison to a background of 

all expression values for the same set of genes in all patients. We used non-parametric tests 

(Kolmogorov-Smirnov or Wilcoxon rank sum tests) to evaluate the statistical significance of 

gene expression changes.

7. Mutation spectrum and signature analysis

7.1 Mutation spectrum of LoF mutations: We analyzed the full mutation spectrum in all 

coding regions, specifically looking at those sequence alterations that lead to loss of function 

mutations (LoFs). We performed this analysis for both the pan-cancer cohort and the kidney 

renal cell carcinoma (Kidney-RCC) cohort.

7.2 Mutation spectrum of TF breaking mutations: For this analysis, we used the most 

common motif break events in the Kidney-RCC cohort, according to FunSeq assigned 

annotation. The spectrum is the result of mutations normalized by the number of each 

trinucleotide in the genome, ordered alphabetically by the mutational context in 

trinucleotides. That is, from A[C>A] A to T[T>G] T.

7.3 MSI/MSS analysis: We used the microsatellite stability assessment from PCAWG 

(syn8016399), where the majority of microsatellite instable (MSI) samples were observed in 

colorectal adenocarcinoma and uterine adenocarcinoma. We then compared the fractions of 

high-impact passengers between and microsatellite stable (MSS) and MSI cohorts in these 

two cancer types. We conducted a two-sided rank sum test in order to distinguish between 

MSI and MSS in these cohorts.

7.4 Signature comparison between different categories of putative passengers: We 

used signatures identified by the signature working group in the PCAWG (syn8366024). 

Briefly, signature group assigns signature contribution to each mutation identified in 

PCAWG. For each cancer cohort, we classify mutations as high- or low-impact based on 

FunSeq2 threshold defined above. Subsequently, we plot two distributions corresponding to 

contributions of high- and low-impact mutations for a given signature in a specific cancer 

cohort. We perform two-sided KS test to obtain a p-value for the signature contribution 

comparison. We repeat this analysis for every signature and all cancer cohort in PCAWG. 

We only display a subset of signatures in specific cancer cohort with significant differences.

8. Subclone architecture, tumor evolution, and functional impact score

8.1 Selecting and comparing early vs. late subclones: To identify subclones within bulk 

tumors we used the PhyloSub (Jiao et al., 2014) assignments from the PCAWG consortium. 

To ensure that we distinguished between early vs. late subclones, we defined early subclones 

as those that do not have any parental subclones. Moreover, we defined late subclones as 

those that were assigned a parental subclone but do not bear any children subclones. For 

example, between three subclones with parentage in the order A -> B -> C, we select ‘A’ as 

early and ‘C’ as late subclone. Conversely, if A->B and A->C, both C and B are considered 

as late subclones. To enhance the quality of the subclone comparison and sample, we have 

only selected samples that contain both early and late subclones with at least 100 mutations 
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assigned for each early and late subclone. Classification of mutations as high, medium, and 

low impact was based on the FunSeq score threshold described earlier (method section 1.4).

To determine whether higher impact putative passenger mutations are differentially selected 

compared with low impact putative passengers, we first compared the early vs. late subclone 

ratio of high impact putative passenger mutations. Furthermore, we characterized the early 

vs. late subclone ratio for high impact coding putative passenger mutations based on 

different gene categories. In addition to this subclone analysis, we obtained similar results 

when we divided each individual tumor sample into equal-size groups of higher and lower 

VAF.

8.2 Tumor heterogeneity measured through divergence in variant allele frequency 
(VAF): In order to correlate predicted molecular functional impact with underlying tumor 

heterogeneity, we categorized putative passengers as low, medium, and high predicted 

impact as described earlier. Furthermore, we quantified tumor heterogeneity by computing 

the mutant-allele tumor heterogeneity (MATH) score (Mroz and Rocco, 2013) for each of 

the three categories of putative passengers. For each category, the MATH score was 

computed by considering the median absolute deviation (MAD) and median of the variant 

allele frequencies belonging to a particular category.

MATH score = α x (100 * MAD/ median), where α = 1.4826 is a scaling factor as described 

in previous work.

8.3 Correlation between somatic VAF and conservation as measured by Genomic 
Evolutionary Rate Profiling (GERP): We further correlated prevalence (measured through 

VAF) of mutations with their putative functional impact (measured based on GERP score). 

The variant allele frequency (VAF) of a mutation is an estimate of the fraction of sample 

alleles bearing the alternate allele based on the relative abundance of sequencing products. 

Similarly, GERP is a measure of the degree of evolutionary conservation among mammals at 

a genomic site (Cooper et al., 2005). Variants were divided into two major classes: 1) 

variants in driver genes and their noncoding regulators; and 2) remaining putative passenger 

variants. Variants overlapping deletions or duplications were removed, since such copy 

number alterations complicate the interpretation of VAF. Variants in copy number altered 

regions were identified by applying intersectBed from Bedtools (Quinlan and Hall, 2010) to 

the PCAWG structural variant call set and SNP call sets. Within each major class, variants 

with similar GERP were aggregated to increase the signal to noise ratio. Specifically, each 

variant was assigned to one of 30 GERP bins (evenly spaced intervals), representing 

successive degrees of conservation.

9. Correlating functional impact of variants and survivability—We were 

interested in investigating whether functional impact of somatic variants was correlated with 

patient survivability as a descriptive exploration. A Cox proportional hazards model was 

used to predict patient survival as a function of the mean GERP (Cooper et al., 2005) of the 

patient’s somatic SNVs. As a measure of the degree of evolutionary conservation of a sites 

across mammals, GERP score is part of the FunSeq framework, with the advantage of direct 

comparability between coding and noncoding regions. In any cancer survival model, among 
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the most important confounders are 1) tumor type/subtype, 2) degree of tumor progression at 

diagnosis, and 3) patient age at diagnosis.

First, to control for the fact that some tumor types are more aggressive than others, separate 

survival models were trained for each eligible tumor type. 9 cancer types met the inclusion 

criteria of having 10 or more patient deaths: Breast-AdenoCa, CNS-GBM, Eso-AdenoCa, 

Kidney-RCC, Liver-HCC, Lymph-CLL, Ovary-AdenoCA, Panc-AdenoCA, and Skin-

Melanoma. While this stratification follows the official PCAWG histological categories, 

there may nonetheless be unmeasured subtypes with different risk profiles and genomic 

features. Of course, even if subtypes or sub-subtypes do carry different risk profiles, it could 

very well be the case that those different risk profiles are due to their differing underlying 

genomic features. Second, we sought to control for degree of tumor progression. Ideally, we 

would have stratified tumors by TNM staging. However, the PCAWG clinical data did not 

uniformly annotate the TNM staging of tumors. Therefore, we used somatic mutational load 

as a proxy for degree of tumor progression, since tumors tend to accumulate mutations with 

time. The way we incorporated mutational load was by normalizing the aggregate GERP of 

somatic variants against the number of mutations by tumor. This was equivalent to using 

mean GERP instead of summed GERP by tumor. Third, patient age at diagnosis was 

included as a direct covariate in the Cox proportional hazards model. The model was fit 

using the Survival package, version 2.40-1 in R 3.3.2. The supplemental table 2 below lists 

the obtained hazard ratios and associated p-values corresponding a one-quartile increase in 

mean somatic GERP and to 1 year of patient advanced age at diagnosis.

10. Additive effects model for detection of non-neutral aggregated effects—
We adapted an additive model with random effects, which has recently been applied to 

detect the contribution of germline variants to complex traits, to detect the aggregated non-

neutral effects of multiple somatic variants in cancer (International Schizophrenia 

Consortium et al., 2009; Yang et al., 2011). For a given cancer cohort, we generated a 

balanced sample set consisting of all observed somatic mutations and corresponding 

matched null (neutral) sample. The neutral sample set was generated by applying three 

distinct randomization schemes, designed to preserve mutational signatures and the 

dependence of mutation rate on local covariates. In particular, we use the Broad and Sanger 

randomization schemes, along with our own scheme designed to explicitly model local 

covariates (all randomization schemes described above in section 1.1). These multiple 

background models allow us to study the robustness of our approach.

We evaluated the existence of non-neutral aggregate effects among a set of variants by a test 

against the null hypothesis that their additive variance with respect to a binary phenotype 

(cancerous versus null) is zero, implying they have non-zero power to predict true cancer 

genotypes from ones generated from the neutral model. We note that our test is analogous to 

that for single driver discovery against a background model, and in the single variant case is 

equivalent to a test for whether the distributions of the variant in the cancer samples and 

neutral model are identical.

We first note some differences between our use of the random effects model and its use in 

germline complex trait analysis. In the latter case, the additive variance can be used as an 
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estimate of the narrow-sense (additive) heritability, which directly determines the response 

to selection in germline traits (Hartl and Clark, 2007). When modelled as an evolutionary 

process, somatic variants with non-neutral effects (e.g. drivers, weak drivers and deleterious 

passengers) determine the growth rate of a subclone, and hence the heritability of the fitness 

(or tumorigenicity) of the subclone, possibly along with epigenetic modifications and other 

non-genetic factors. The binary phenotype we construct can be thought of as a discretization 

of subclonal fitness into two levels, represented by the null samples (low) and the observed 

samples (high). However, the additive variance in our model does not directly estimate the 

heritability of this discretized trait in a given tumor, since it is estimated from a synthetic 

sample which is balanced to contain equal numbers of null and observed samples. The 

additive variance estimated could potentially be related to the narrow-sense heritability. 

However, only by monotonic rescaling if the proportions of subclones with fitness in the low 

and high categories in a given tumor were known (as in the case of balanced case-control 

designs (Lee et al., 2011)). Assuming therefore that the randomization model is sufficiently 

close to the mutational processes operating in a given tumor, we expect non-zero additive 

variance in our balanced sample to indicate non-zero narrow-sense heritability. In addition, 

we expect the relative amounts of additive variance assigned to categories of mutations to be 

informative about their contributions to narrow-sense heritability due to the implicit 

monotonic scaling relationship. This rationale can equally be applied to individual variants 

and is implicit when the impacts of individual drivers are compared using their departure 

from a null model. Finally, we note that since the response to selection is determined 

primarily by broad-sense heritability in clonal evolution as opposed to narrow-sense 

heritability in the germline (Hartl and Clark, 2007), higher-order epistatic interactions may 

significantly affect the differences in fitness among tumor sub-clones, which will necessarily 

be ignored by an additive model.

10.1 General and specific forms of the additive-effects model: For each SNV the 

additive-effects model implicitly associates a positive or negative effect (coefficient), 

considering them to be sampled from a normal distribution. The model has the form:

yj = μ + ∑
ik

zijkuik + ej, (1)

where yj is the phenotype (0 for null/1 for tumor) of sample j, zijk is the normalized SNV 

dosage (z-scored) of the i’th SNV belonging to category k in sample j (with each category 

indexed independently), ej is the residual effect for sample j, and μ is the mean phenotype 

(where μ = 0.5 for a balanced sample). uik’s are normally distributed with variance σk
2 mk, 

where σk
2 is the additive variance and mk the number of SNVs in category k (where the 

categories represent, for instance, coding, promoter and other non-coding mutations), and 

the ej’s are normally distributed with variance σE
2 (the ‘residual effects’ variance). The 

variance of y is denoted σP
2  (the ‘phenotypic’ variance), where σP

2 = Σkσk
2 + σE

2 . The 

individual effects ui are not explicitly estimated; instead the hyper-parameters σk
2 and σE

2  are 

optimized using restricted maximum-likelihood (REML) (Yang et al., 2011), and the 
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estimator σA
2 = Σkσk

2 can be used to predict the proportion of the phenotypic variance 

explained by the SNVs as σA
2 σP

2 .

The model in Eq. 1 measures the additive variance on the ‘observed scale’, since although 

the variables yj are discrete, they are treated directly as a continuous trait, where the 

estimators yj = μ + Σikzijkuik can take any real value. As pointed out earlier (Lee et al., 

2011), this underestimates the additive variance, since probability mass is wasted on values 

that the trait cannot take. An alternative is to measure the additive variance on the ‘liability 

scale’, using a probit linking function and threshold:

yj = I[Φ(μ + ∑
ik

zijkuik) > t], (2)

where I[.] is the indicator function which is 1 for a true proposition and 0 otherwise, Φ(.) is 

the standard normal cumulative density function, and t is a threshold set according to the 

prevalence of the binary trait (we set t = 0, using the balanced sample as our reference). The 

quantity lj = μ + ∑ikzijkuik models the liability of genotype j to give rise to a cancerous 

phenotype. In general, we find that the additive variance estimates are slightly higher on the 

liability than the observed scale, although the relative sizes between the variance assigned to 

different categories is qualitatively similar. (We note that, since our analysis is on a synthetic 

balanced sample, the absolute value of the additive variance on either the observed or 

liability scale is only indirectly related to narrow-sense heritability as outlined above.)

We now outline three variations of the additive-effects model which were used in our 

analyses. In each variation, SNVs are only included in the model if they appear in at least 

two samples of the cohort (either observed or null genotypes), all germline variants are 

removed, and we filter variants lying in hyper-mutated regions.

Model 1: Here, we divide the SNVs into two categories, k ∈ {1,2}, where k = 1 implies the 

variant is a PCAWG driver, and k = 2 includes all other variants. Rather than including the z-

score normalized driver variants individually in the model, we first construct a summary 

indicator which is 1 if any driver is present in a sample, and 0 otherwise:

xjdrv = ∨ixij1, (3)

where xij1 is the SNV dosage (0 or 1) of SNV i in sample j belonging to category k = 1 

(drivers). We ensure that xjdrv = 0 for all null samples by removing the PCAWG drivers in the 

simulations; the indicator xjdrv thus represents an optimal predictor on the basis of the 

PCAWG drivers. The z-scores zjdrv are then calculated using these indicators. Additionally, 

we allow the non-drivers in the model to be restricted to a subset Sf including only those 

variants whose functional impact score (calculated using Funseq, as described above) 

exceeds f:
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yj = μ + zjdrvu1 + ∑
i ∈ Sf

zij2ui2 + ej .
(4)

We optimize (σ1
2, σ2

2, σE
2 ) at the Funseq thresholds f ∈ {0,1,2,3,4,5,6}, and choose the 

threshold which optimizes σ2
2 for each cohort independently. A p-value for the contribution 

of the nondivers is then calculated by performing a log-likelihood ratio test for the full 

model against the constrained model in which σ2
2 = 0.

Model 2: We also test a version of the model in which we split SNVs into three categories, k 
∈ {1,2,3}, corresponding to those appearing in coding sequence regions, promoter regions, 

and all other non-coding regions respectively. Additionally, we let each category restrict the 

variants to those exceeding a functional impact threshold, so that the full model is:

yj = μ + ∑
k ∈ {1, 2, 3},

i ∈ Sfk
k

zijkuik + ej .
(5)

We optimize the model in piecewise fashion over (σ1
2, σ2

2, σ3
2, σE

2 ) and (f1,f2,f3) ∈ 

{0,1,2,3,4,5,6}3. In the first step, we fix (σ2
2 = 0, σ3

2 = 0) and optimize (σ1
2, σE

2 ) for each value 

f1 ∈ {0,1,2,3,4,5,6}, and choose the value f1
∗ for which σ1

2 is maximized. In the second step, 

we fix (σ3
2 = 0, f1 = f1

∗) and optimize (σ1
2, σ2

2, σE
2 ) for each value f2 ∈ {0,1,2,3,4,5,6}, and 

choose the value f2* for which σ2
2 is maximized. Finally, we fix (f1 = f1

∗, f2 = f2
∗) and 

optimize (σ1
2, σ2

2, σ3
2, σE

2 ) for f3 ∈ {0,1,2,3,4,5,6}, choosing the value f3
∗ for which σ3

2 is 

maximized. Having fixed (f1 = f1
∗, f2 = f2

∗, f3 = f3
∗), a p-value for the contribution of 

category k is calculated by performing a log-likelihood ratio test for the full model against 

the constrained model in which σk
2. Further, we evaluate the ‘normalized additive variance’ 

per SNV in category k as: σk
2 (σP

2 ⋅ ∣ Sfk
∗k ∣ ).

Model 3: Finally, we also test a version of the model with four categories, k ∈ {1,2,3,4}, 

where category 1 consists of the PCAWG drivers and uses the single summary indicator 

from Eq. 3, category 2 consists of all remaining non-driver coding sequence variants, and 

categories 3 and 4 consist of SNVs appearing in promoter regions and other non-coding 

regions respectively. The model thus has the form:

yj = μ + zjdrvu1 + ∑
k ∈ {2, 3, 4},

i ∈ Sfk
k

zijkuik + ej,
(6)

and we use a similar piecewise optimization to model 2 in order to set the thresholds 

(f2
∗, f3

∗, f4
∗).
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10.2 BLUP to estimate the SNVs frequency with non-neutral effects and predict 
phenotype: In order to provide a conservative estimate of the number of SNVs with non-

neutral effects, for a given cohort we find the size of the smallest set of SNVs for which the 

estimated additive variance exceeds a lower-bound on the additive variance from the model 

where all SNVs are included (defined using the lowest value of the 95% confidence 

interval). More specifically, we first exclude all samples from the cohort with a known SNV 

driver, or an SV or CNA variant occurring in a driver gene as explained in the main text. We 

then estimate the total additive variance, σA, tot
2  explained by all SNVs in the remaining 

samples using Eq. 1 with all SNVs belonging to a single category. To estimate the size of the 

smallest set of SNVs necessary to capture the total variance, we first calculate the Best 

Linear Unbiased Predictor (BLUP), u = argmaxu Pr u ∣ x, y, μ, σA, E, tot
2 , using GCTA (Yang 

et al., 2011). We then define an ordering of the SNVs according to the absolute values of 

their BLUP coefficients, writing π(r) for the index of the r’th SNV in the ordering, so that 

uπ(1) ≥ uπ(2) ≥ …, where ties are broken arbitrarily, and define associated nested 

subsets Sr consisting of the first r SNVs in the ordering, Sr = {π(1), π(2), … π(r)}. Finally, 

we take |Sr*| as a conservative estimate for the number of SNVs with non-neutral effects, 

where:

r* = min{r; σA
2 (Sr) ≥ σA, tot

2, † }

and σA
2 (Sr) is an estimate of the additive variance explained using only SNVs in Sr, 

calculated by running REML for a single category model containing only SNVs in Sr, and 

σA, tot
2, †  is the lowest value of the 95% confidence intervals (CI) around the estimate of σA, tot

2

calculated using all SNVs. This approach attempts to find the smallest set of SNVs having 

an estimated additive variance of at least σA, tot
2, †  (which, with 95% confidence, will not be 

more than the total additive variance) by greedily adding those SNVs with the highest 

predictive value (as measured by the BLUP scores) into the model first. We note that this 

approach assumes that there are not strong dependencies among the SNVs aside from those 

induced by the phenotype variable. In general, finding the smallest subset would require an 

exhaustive search over all subsets. However, if independence is assumed the greedy 

approach is sufficient, since the r SNVs which are individually most predictive will be those 

with the highest BLUP scores. Moreover, these will also be the most predictive in 

combination as a set of size r. Further, we can specifically estimate the number of SNVs 

with positive and negative effects (weak drivers and deleterious passengers respectively) by 

counting the number of SNVs in Sr* with positive and negative BLUP coefficients. To 

estimate the number of weak driver events per tumor, we subtract the per-sample average 

number of SNVs in Sr* in the null samples from the per-sample average in the observed 

samples (with positive BLUP coefficients).

As detailed in the main text, we estimated the BLUP for individual cohorts after samples 

with predicted SNV, SV and CNA drivers were excluded, including SNVs contained in 

predicted driver elements and used this to derive an estimate of the number of weak drivers 

among samples lacking predicted PCAWG drivers (Campbell et al., 2017) (Supplement 
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Table 3G). We conservatively estimated the number of weak drivers by finding the smallest 

set of SNVs whose additive variance is equal to the additive variance of all the SNVs. A per 

sample estimate of driver events is then derived by comparing the average number of SNVs 

from this set in the observed versus random samples. Using this approach, we estimated an 

average of 8.4 weak drivers per cohort, corresponding to approximately 0.81 weak driver 

events per tumor. We expect that these estimates are limited by sample size, and thus 

represent conservative lower bounds.

We also use the BLUP predictor to cast the model in a predictive form. In this form, we 

partition the data into training and testing partitions. We estimate the BLUP predictor on the 

training partition as above and predict the phenotypes on the testing partition using 

y = [(μ + x ⋅ u) > 0.5], where [.] is the indicator function. The predictive accuracy is 

proportion of correctly predicted test phenotypes.

Finally, we use the smallest subset analysis above to create a list of genes containing putative 

weak drivers. Since GCTA provides an estimate of the variance of σA, tot
2 , we use this to form 

the 99% and 95% confidence intervals (CI) around the estimate of σA, tot
2  under the 

assumption of normality, and form a list of putative weak driver genes for the lower-bounds 

on the additive variance associated with each CI (the 99% CI list nested inside the 95% list). 

The lists are formed by taking the smallest subset of SNVs necessary to explain the variance 

associated with each lower-bound and taking the union of the genes associated with each 

SNV (for all SNVs that can be associated with a coding or non-coding element of a gene). 

We compare our putative weak driver lists with various PCAWG driver discovery gene sets 

using the hyper-geometric test (Supplemental Table 3H). For this purpose, the union of the 

putative weak driver gene sets was taken across cohorts, and the PCAWG sets included 

candidate drivers at the cohort, meta-cohort and pan-cancer levels, from all elements of a 

gene, or coding sequence drivers only. We note that the PCAWG driver group has integrated 

results from multiple state-of-the-art cancer driver discovery tools. A very rigorous 

integration procedure was adopted to nominate elements as a driver using the FDR threshold 

of 0.1 (Rheinbay et al., 2017a). We note that the FDR cutoff used here is a standard in the 

field and was agreed upon by more than 800 researchers in the PCAWG. Overall, we 

observed a substantial overlap across these tests, providing orthogonal validation for our 

approach. Considering only those genes with PCAWG FDR thresholds between 0.1 and 

0.25, the overlap with our weak driver genes is significant at p=1e-5 for all elements, and 

p=2e-4 for coding elements only (p-values using the hypergeometric test). For all elements 

under the 0.25 FDR threshold, the overlap is significant at p=3e-13. Presumably, some of the 

genes with FDR thresholds between 0.1 and 0.25 are weak drivers and failed the statistical 

significance criterion due to limited cohort size and thus insufficient power in PCAWG.

10.3 Sensitivity analysis: We tested the sensitivity of our results to the choice of null 

model by repeating the analyses in (Fig. 5 c) using two other randomization schemes, and 

compared the variance on observed and liability scales, with quantitatively similar results 

(Supplement Tables 5A–I). We also verified that our model effectively controls for 

overfitting by observing near zero additive variance when a second randomized sample is 

substituted for the observed genotypes, and that the sensitivity of the results to changes in 
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the randomization window size is small (Supplemental Table 5J–K). To further verify that 

the model controls for overfitting, we split the data into test and training partitions, and 

showed that the additive variance on the training partition correlates with predictive accuracy 

on the test partition, using the Best Linear Unbiased Predictor (BLUP) to cast the model in 

predictive form as above (Supplemental Table 5L and method section 10.2).

DATA AND CODE AVAILABILITY: All primary datasets including mutations and gene 

expressions in this manuscript are made available to the community via ICGC and TCGA 

associated PCAWG data portals (http://docs.icgc.org/pcawg) using controlled data access. 

Alternatively, one can use the synapse repository (https://www.synapse.org) to access 

primary and intermediate data. We specify appropriate synapse accession codes in the 

method section for each dataset utilized or generated during our analyses. Software and 

workflows used to perform major analyses in the manuscript are properly cited in the 

resource table of the manuscript. Finally, all derived data and code used in this manuscript 

are also available from the resource website for this manuscript (http://

pcawg.gersteinlab.org).

ADDITIONAL RESOURCES: http://pcawg.gersteinlab.org/

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We characterize the passenger landscape in more than 2500 whole-genome 

tumors.

• Molecular impact correlates with the mutational signature and subclonal 

architecture.

• The aggregated effect of passengers plays role in tumorigenesis beyond 

standard drivers.

• Additive-effects model from germline studies can be repurposed for cancer 

genomics.
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Figure 1: Overall functional impact of PCAWG variants:
a) Functional impact distribution in non-coding (DNase hypersensitive sites averaged across 

multiple cell lines) regions: three peaks correspond to low-, medium-, and high-impact 

mutations. b) Correlation between the fraction of high- and medium-impact non-coding 

SNVs and the total mutational counts for lung adenocarcinoma cohort (left). Scatter plot for 

correlation coefficient (x-axis) and FDR-corrected p-value for various cancer cohorts (right). 

c) Log ratio between high-impact SV and SNV frequency in different cancer cohorts. Error 

bars correspond to variation within the cohort. See also supplement Fig. S1.
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Figure 2: Overall functional burdening of different genomic elements:
a) Percentage of genes in different gene categories affected by driver (grey band) and 

putative passenger (faded yellow band) LoFs compared to uniform background expectation 

(dashed black line). Data points in boxplot correspond to different tumor types. b) Heatmap 

showing enrichment (red color) and depletion (blue color) of motif gain (upper panel) and 

loss (bottom panel) events induced by putative passenger mutations for various TFs 

compared to a uniform genomic background. TFs highlighted in red are well-known cancer 

genes. c) Gain (positive alteration bias) and loss (negative alteration bias) of motif events 

observed among target genes (on x-axis) regulated by the ETS TF family. The green triangle 

denotes alteration bias on the pan-cancer level, whereas colored circles correspond to 

alteration bias for different cancer cohorts. The size of the circles corresponds to the 

frequency of motif-altering events. d) Q-Q plot showing genes that are differentially 

expressed due to gain-of-motif events in TFs belonging to the ETS TF family. e) Enrichment 

of germline and somatic large deletions that can engulf or partially delete coding regions and 

TF binding peaks. See also supplement Fig. S2.
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Figure 3. Mutational signatures associated with different categories of impactful variants:
a) Mutation spectra associated with premature stops and TF binding motif-breaking events 

in the kidney-RCC cohort. b) Comparison of underlying signature distribution between 

high- and low-impact putative passengers in different cancer cohorts for a subset of 

signatures. For a given signature, the size of a dot corresponds to the percent increase or 

decrease in their contribution to describe high-impact mutations compared to low-impact 

mutations. Blue and red colored dots represent positive and negative signature differences, 

respectively. See also supplement Fig. S3.
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Figure 4: Correlating functional burdening with subclonal information and patient survival:
a) Subclonal ratio (early/late) for different categories of SNVs (coding and non-coding) 

based on their impact scores. Subclonal ratios for high-impact SNVs occupying distinct gene 

sets. b) Mutant tumor allele heterogeneity difference comparison between high-, and low-

impact SNVs for coding (top) and non-coding (bottom) regions. c) Correlation between 

mean VAF and GERP score of different categories of variants on a pan-cancer level. d) 
Survival curves in CLL (left panel) and RCC (right panel) with 95% confidence intervals, 

stratified by mean GERP score. See also supplement Fig. S4.
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Figure 5. Conceptual classification of SNVs based on their functional impact and selection 
characteristics, and additive effects model:
a) In addition to canonical drivers, deleterious passengers (weak and strong) and mini 

drivers (weak and strong) represent additional categories of cancer mutations in the extended 

model. b) Additive effects model for putative passengers: The combined effect of many 

nominal passengers is modeled linearly and predicts whether a genotype arises from an 

observed cancer sample or from a null (neutral) model. c) Predictive power of known drivers 
and putative passengers using the additive effects model: (i) compares the maximum 
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possible variance that can be explained using known drivers; (ii) further splits the variance 

into contributions from coding, non-coding, and promoter variants; (iii) presents normalized 

additive variance explained exclusively by putative passengers in coding regions, by 

promoters, and by other non-coding elements of the genome. See also supplement Fig. S5.
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KEY RESOURCES TABLES

REAGENT or RESOURCE SOURCE IDENTIFIER

SNV & INDEL dataset ICGC data portal https://dcc.icgc.org/releases/PCAWG/consensus_snv_indel

SV dataset ICGC data portal https://dcc.icgc.org/releases/PCAWG/consensus_sv

Subclonal reconstruction ICGC data portal https://dcc.icgc.org/releases/PCAWG/subclonal_reconstruction

Driver mutations ICGC data portal https://dcc.icgc.org/releases/PCAWG/driver_mutations

Gene expression ICGC data portal https://dcc.icgc.org/releases/PCAWG/transcriptome/gene_expression

Mutation signatures PCAWG synapse page https://www.synapse.org/#!Synapse:syn11738306

Driver elements PCAWG driver paper biorxiv pcawg driver elemnts

SNV funseq output PCAWG synapse page https://www.synapse.org/#!Synapse:syn15574565

SNV ALoFT output PCAWG synapse page https://www.synapse.org/#!Synapse:syn12176699

Weak drivers Passenger resource webpage http://pcawg.gersteinlab.org/Datasets/Derived/weakDriver/
weak_drivers_95_CI_cutoff.xlsx

Software and Algorithms

FunSeq2 Gerstein lab Github https://github.com/gersteinlab/FunSea2

ALoFT Gerstein lab Github https://github.com/gersteinlab/aloft

Additive variance analysis code Gerstein lab Github https://github.com/gersteinlab/pcawgAdditiveVariance

Other

Derived resource files Passenger resource webpage http://pcawg.gersteinlab.org
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