Table A2.
Out-of-sample prediction performances using VT-trained predictors to predict injury on the NFL and SF datasets.
| Performance category | network (acc.) | network (sens.) | network (AUC) | MPS | alin (g) | arot (rad/s2) | vrot (rad/s) | |
|---|---|---|---|---|---|---|---|---|
| NFL | Accuracy | 0.755 | 0.623 | 0.643 | 0.640 | 0.755 | 0.830 | 0.774 |
| Sensitivity | 0.850 | 0.900 | 0.900 | 0.850 | 0.350 | 0.850 | 0.850 | |
| Specificity | 0.697 | 0.455 | 0.485 | 0.515 | 1.000 | 0.818 | 0.727 | |
| Testing AUC | 0.829 | 0.753 | 0.846 | 0.876 | 0.858 | 0.905 | 0.849 | |
| PPV | 0.630 | 0.500 | 0.514 | 0.515 | 1.000 | 0.739 | 0.654 | |
| SF | Accuracy | 0.782 | 0.627 | 0.636 | 0.782 | 0.927 | 0.736 | 0.855 |
| Sensitivity | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 0.500 | |
| Specificity | 0.778 | 0.620 | 0.630 | 0.778 | 0.944 | 0.732 | 0.861 | |
| Testing AUC | 0.894 | 0.898 | 0.917 | 0.889 | 0.935 | 0.926 | 0.889 | |
| PPV | 0.077 | 0.047 | 0.048 | 0.077 | 0.000 | 0.065 | 0.063 | |
| Injury threshold | N/A | N/A | N/A | 0.25 | 107.00 | 5068.89 | 31.08 |