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Abstract

Few if any experts believe that existing psychiatric diagnostic categories included in the DSM/ICD 

are actually discrete disease entities. Attention-deficit/hyperactivity disorder (ADHD) is 

emblematic of the problems in the existing psychiatric classification system. ADHD symptoms 

reliably cluster into two correlated dimensions in factor analysis. However, children with ADHD 

vary considerably in their symptom profiles, symptom trajectories, clinical outcomes, and 

biological and psychological correlates. Thus, the field has sought alternative approaches that 

harness the dimensions of emotional, cognitive, and behavioral functioning that underlie ADHD 

and other existing psychiatric categories to create informative phenotypes that improve clinical 

prediction and clarify etiology. Within ADHD, cognitive (neuropsychological) and temperament/

personality features have received considerable attention. In some cases, subphenotypes based on 

these features appear to improve on existing classifications and could eventually be translated into 

clinical practice. This review summarizes findings from sub-phenotyping efforts in ADHD that use 

cognitive, emotion-related, and other features to highlight major considerations for research 

applying person-oriented approaches to inform an improved psychiatric nosology. Considerations 

related to feature selection, validation of newly proposed divisions, defining populations of 

interest, and incorporating a developmental perspective are all discussed.
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The history of nosology in psychiatry, medicine, and biology has featured a fundamental 

split between two schools of thought (see 1, 2). One school of thought assumes that 

categories exist in nature and the job of the empirical nosologist is to discover them. The 

second school of thought eschews this assumption as either false or unknowable, and instead 

proposes that nosology should be functionally useful for some purpose beyond simple 

description. The related Diagnostic and Statistical Manual (DSM) and International 

Classification of Diseases (ICD) approaches are the most widely used psychiatric 

classifications, but few if any experts believe that the disorders included in DSM/ICD are 

actually discrete diseases, and there are welldocumented limitations on the functional utility 

of the DSM categories as well (3). Thus, the field has sought alternative approaches that 

harness the dimensions of emotional, cognitive, and behavioral functioning that underlie 

existing categories to create informative phenotypes that improve clinical prediction and 

clarify etiology. Dimensionally-based approaches to psychiatric nosology are not new (4–6). 

Two currently influential approaches are the Research Domain Criteria initiative (RDoC (7–

9)) and the Hierarchical Taxonomy of Psychopathology (HiTOP (10, 11)). RDoC places 

greater emphasis on linkage to biological systems while HiTOP emphasizes functional 

clinical description, but both seek to use quantitative traits to develop a new, or at least 

improved, empirically-informed nosology.

Attention-deficit/hyperactivity disorder (ADHD) is emblematic of the problems in existing 

psychiatric classification systems. ADHD inattention and hyperactivity-impulsivity 

symptoms reliably cluster into two correlated dimensions in factor analysis (some studies do 

find a third impulsivity dimension). However, children with ADHD vary considerably in 

their symptom profiles, symptom trajectories, clinical outcomes, and biological and 

psychological correlates (12–14). Sub-profiling of ADHD has been built into its 

conceptualization since at least DSM-III (15) when the option for diagnosis with and 

without hyperactivity was added to the diagnostic criteria. Several major theories of ADHD 

have also highlighted the potential for etiological heterogeneity (16–19). However, at 

present, there is no consensus about which subtypes will be informative nor even about 

which features are most relevant for subtyping efforts. As a result, calls for refinement of 

phenotypes have continued (20).

In this review we describe conceptual issues related to sub-phenotyping in ADHD using 

symptom-based, cognitive (neuropsychological), and personality/temperament features. This 

is not to suggest that these specific features are more important than a variety of others but 

rather to provide useful illustrative examples of the integration of categorical (e.g., DSM/

ICD) and dimensional (e.g., HiTOP (10), RDoC (21)) approaches. We highlight research 

that has applied statistical and mathematical clustering algorithms, rather than studies using 

arbitrarily defined cutoffs, because of the improved statistical accuracy and reproducibility 

that these methods afford. However, we also discuss issues related to clinical translation and 

limitations of these approaches. The overall goal is to highlight conceptual and 

methodological considerations that we see as critical to revising current nosology.
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Which features are relevant?

Clustering analyses are inherently feature dependent and exploratory (22)— the profiles or 

groups identified will depend on the features included in the model and then require 

validation in terms of their incremental improvement over existing clinical indicators or 

subgroups for a particular purpose. Relevant groups may exist but be missed due to incorrect 

feature selection. The opposite is also true. Input features may produce subgroups that 

reliably differ on model features but that are not clinically or etiologically useful. These 

challenges are analogous to familiar issues of reliability and validity in psychometric 

measurement theory. Groups that are not reliably detected with similar input features are 

unlikely to be useful. However, the existence of reliable groups, on its own, does not 

guarantee that groups are valid.

Here, we suggest that “valid” means that groups are informative in relation to: 1) etiological 

signal, 2) biological correlates, and/or 3) clinical prediction, recognizing that different 

features set may serve each of these purposes. In regard to clinical prediction, DSM-oriented 

categorical outcomes may be useful (e.g., prospectively predicting onset of new disorders 

over time is a marker of worsening clinical course). However, the same limitations in using 

them as predictors also weaken their value as outcomes. Considering a wider set of 

dimensional outcomes (e.g., functional impairment, ratings of positive adaptation) and 

granular defined outcomes (e.g., school dropout, encounters with law enforcement) will be 

important. Treatment response could also serve as an important outcome measure. Any 

improvements in the field’s ability to predict who will respond to specific treatments would 

be a large step forward. (As an anonymous reviewer rightly pointed out, treatment response 

could also be an input feature and used as a nosological probe to identify relevant groups for 

additional clinical study.)

DSM-based features

Common approaches that stay within the feature sets proposed by DSM have been to isolate 

subgroups based on comorbidity patterns (e.g., ADHD with and without conduct problems) 

or on symptom severity. Both approaches have been somewhat helpful as an initial 

rendering, but each has significant limitations. With regard to comorbidity, the associated 

disorders are themselves subject to arbitrary cutoffs, potentially adding to heterogeneity and 

decreasing diagnostic reliability (23, 24). With regard to symptom severity, sub-profiling 

using DSM ADHD symptoms demonstrates the problem of reliable but ultimately minimally 

informative groups. Latent class analyses with ADHD symptoms reliably identify classes 

corresponding to DSM inattentive and combined presentations, and these presentations are 

often further subdivided into severity classes (e.g., mild inattentive, severe inattentive) (25, 

26). However, groups add little incremental contribution to standard clinical practice, which 

already routinely accounts for symptom severity. In addition, individuals do not remain the 

same profile over time (26), ultimately limiting the predictive utility.

Non-DSM domains as features

Recent efforts have emphasized a broader set of phenotypic features outside of the scope of 

formal ADHD diagnostic criteria (e.g., sluggish cognitive tempo, 27f, 28). Here, we expand 
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on two specific attempts to broaden phenotypic features using: 1) cognitive functioning and 

2) temperament/personality (related to emotional functioning). Both domains have well-

established psychometric measurement properties that add to their appeal for subgrouping. 

Both are relatively well-understood in terms of potential biological correlates and thus lead 

directly to mechanistic hypotheses in the case that profiles are identified. Both also have 

consistent group-level findings implicating them in ADHD and are believed to be important 

sources of heterogeneity within the disorder (17, 29–32). Thus, this work directly relates to 

the RDoC and HiTOP frameworks, but also highlights how feature selection can be 

informed by the extensive prior work on DSM categorical diagnoses.

Cognitive profiles in ADHD

Using cognitive features (33–40) multiple distinct ADHD profiles are consistently identified. 

However, studies are inconsistent with regard to whether observed profiles reflect qualitative 

differences (i.e., profiles with specific strengths and weaknesses in different cognitive 

domains) or only quantitative differences (i.e., cognitive variation in ADHD follows a 

severity pattern similar to symptom-based subgroups) among individuals. The former would 

be more promising, while the latter is more likely to reflect a non-specific pattern of being 

“worse” across many domains.

Numerous computational methods are available for identifying profiles. In the case of 

cognitive profiling in ADHD, two methods have been applied most often: latent profile 

analysis (LPA; 41, 42) and community detection (43, 44). LPA represents one example of a 

supervised classification approach that tests how well data fit a specified model. It has the 

advantage of allowing direct comparison of the relative fit of models with different numbers 

of groups. Cognitive studies employing LPA have tended to identify profiles fully (35, 36) or 

partially (38, 40) explained by severity regardless of specific cognitive input feature set.

Community detection is an unsupervised approach which makes few assumptions. It has the 

advantage of several internal validation metrics to evaluate likelihood of “groupness” within 

the data. Studies employing community detection with cognitive input features in children, 

adolescents, and adults have often found evidence for qualitatively distinct profiles in 

ADHD rather than severity profiles (33, 34, 37). Although method-dependence is neither 

unexpected nor inherently problematic (22), studies that directly address clustering 

algorithm as a source of between-study variance are needed. Supervised and unsupervised 

approaches may ultimately be most valuable when used together given their different 

strengths (45, 46).

Regarding specific profiles, studies have used a wide variety of tasks and input features, so 

there is no clear consensus on which cognitive profiles will be most relevant in ADHD. 

Arguably, the two most consistently identified groups include a profile characterized by 

executive function deficits (i.e., problems with working memory and inhibition, which often 

though not always cluster together) and a profile characterized by slow and/or variable 

reaction times (33, 34). At least some standardization around domains of interest and 

measures will be an important next step in clarifying the reproducibility of cognitive profiles 
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across studies and samples. (We return to issues of data harmonization at the end of this 

review.)

Turning to the question of validity, it is somewhat surprising that the clinical validation of 

subgroups based on cognitive features is relatively weak given the prominence of cognitive 

theories of ADHD. In studies that have identified severity-based cognitive groups, 

differences on other clinical outcomes are sometimes found, however, those outcomes also 

generally follow a severity pattern (35, 36). That is, the more impaired cognitive groups are 

simply worse on everything (e.g., (35) found that the more impaired cognitive groups had 

lower IQ, worse academic performance, and more depression comorbidity than less 

impaired groups). In other studies, the cognitive subgroups fail to differ on either concurrent 

(33, 37, 40) or prospective outcome measures (38).

Findings suggest that a general distinction between ADHD with and without cognitive 

impairment (as has been made for many years) may be meaningfully related to severity of 

outcomes, but that greater granularity in cognitive profiles, even if present, does not 

incrementally contribute to understanding outcomes. Alternatively, the scope of outcomes 

considered to-date may be too limited. Most studies have focused on ADHD or comorbid 

disorder symptoms (but see (33) for an example of an extensive set of clinical, academic, 

and sociometric outcomes). It is also possible that standard cognitive performance metrics 

are too multi-factorially determined and use of computational parameters that distinguish 

different aspects of information processing would yield more informative profiles (47, 48). 

Finally, studies to-date may have been underpowered to detect between-profile effects given 

that even relatively large clinical samples (up to ~700 (35) but more often ~100 (33, 36–38, 

40)) become underpowered quickly when multiple subgroups are present.

As noted, however, subgroups may have different relevance depending on study goals and 

groups may be important for elucidating relevant aspects of neurobiological heterogeneity. 

Rossi et al. (39) recently identified two severity-based cognitive subgroups within ADHD 

that differed in terms of DTI-measured fractional anisotropy. Findings are intriguing; 

however, it was unclear whether differences could be explained by symptom severity. This 

emphasis on incremental validity— demonstrating that groups contribute unique information 

that would not be detected using existing groupings or measures— is critical to moving 

subtyping literature into clinical translation.

Temperament/personality-related profiles in ADHD

A decades-long literature has proposed that emotional dysregulation should be included as a 

core element of ADHD (49). More recently, there has been interest in anger regulation as a 

core problem in ADHD that may also extend across diagnostic boundaries (49–51). 

Temperament traits in children (and the related personality traits in adults (52, 53)) provide 

one framework for integrating emotional response and regulation (54) into models of 

psychopathology generally (52, 55) and ADHD specifically (56). Computational efforts to 

identify subgroups based on temperament/personality features, while still developing, appear 

quite productive. Growing evidence suggests that profiles can be retrieved and yield 

incremental information over and above ADHD severity (57–61).
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Although some differences between studies are seen, work in young children (59), school-

age children (57, 58) and young adults (61, 62) converge on at least partially reproducible 

profiles. First, a minority consistently emerge that show normative emotional functioning—

their problems are primarily in features that make up the core ADHD symptom domains. 

Second, a group consistently emerges characterized by high surgency/extraversion/

sensation-seeking. Finally, a group emerges that is characterized by negative affect/

neuroticism. Results hold across multiple clustering approaches (58).

Clinical validation is promising. The identification of a group with high negative affect 

converges with growing evidence from DSM-framed research of the importance of 

irritability and emotional lability as determinants of impairment in ADHD (51, 63–65). 

Evidence is reasonably strong that the emotionally-dysregulated profiles predict clinical 

outcomes better than ADHD symptom severity, baseline comorbidity, or impairment (57–59, 

62). Our own work and that of others suggests that the high negative affect/irritability profile 

prospectively predicts worsening clinical outcomes (57, 58, 62), but in other cases high 

surgency/extraversion profiles have been the primary predictive feature (59). These 

differences may relate to the developmental period (studies identifying surgency have 

included younger samples than those finding negative affect/irritability as the predictive 

feature), but may also suggest that a broad distinction between ADHD with and without 

emotional dysregulation is more clinically meaningful than a valence distinction. Future 

studies characterizing and refining specific profile description and emphasizing biological 

validation are needed.

Integration across feature sets

Understanding how features within specific domains operate to differentiate groups is 

promising but does not capitalize fully on a person-oriented framework, which seeks to 

understand the individual as a functioning whole (66). Traits may interact and the meaning 

of differences in one trait may depend on interactions with other characteristics. A small 

number of studies have begun to examine these cross-domain interactions. Van Dijk et al 

(67) used cognitive features in a clustering analysis and then compared cognitive groups on 

personality dimensions. They found little evidence for personality differences between the 

cognitive groups, suggesting partially orthogonal dimensions. Other studies have included 

both cognitive and emotional tasks in grouping analyses (e.g. an executive function battery 

plus either a reward discounting/sensitivity (36, 37, 40) or an emotion recognition (33) task). 

Findings are inconsistent with regard to whether distinct groups with cognitive and 

emotional impairment are identified (33, 37) or whether impaired groups tend to be impaired 

across domains (36, 40).

Understanding cross-domain interactions is necessary for unifying cognitive and emotional 

accounts of ADHD. Different profiles may emerge when multiple domains are considered 

simultaneously as input features. However, the task of integration is complicated by 

problems such as method variance (related to differences in how cognitive and emotional 

control tend to be measured) that can swamp other effects. Additional work to identify the 

functionally significant relationships among cognitive and emotional features in ADHD is 

needed to help clarify which features are relevant for grouping analyses.
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Feature reduction—Integration across domains should be useful, but as the number of 

features increases so does the number of idiosyncratic ways that these features can cluster 

within individuals (each person could theoretically have a unique profile). Clustering 

approaches assume that a select number of frequently emerging profiles will tend to occur 

(66). Clustering algorithms differ in their robustness to irrelevant and/or inter-correlated 

features and in the ideal ratio of features to sample size (41, 46). Given these limitations, 

selection of a small number of theoretically-driven input features may increase the 

likelihood of identifying clinically-meaningful, replicable groups that are easily interpreted 

and translated into clinical application. On the other hand, extensive a priori data reduction 

of input features rests on the assumption that it is possible to know the essential features of a 

group before the group is identified, which has proven untrue in other fields (1). It increases 

the possibility of missing novel, previously unrecognized patterns in the data that are 

etiologically or clinically informative.

In the case of both cognitive and temperament/personality features, the problem of feature 

reduction benefits from a well-established literature that has identified relevant traits and 

described the expected relationships between them. In contrast, sub-phenotyping work that 

emphasizes neuroimaging input features is in its relatively early days. Here it is less clear 

whether use of high-dimensional input features can yield informative groups or whether this 

will identify groups with small, non-meaningful differences. Perhaps due to this concern, the 

small number of neuroimaging sub-phenotyping studies in ADHD have generally applied a 

theory driven approach in which a small number of specific features are selected, such as 

fMRI measured activation in specific regions of interest (68, 69) or EEG-measured spectral 

power in pre-identified frequency bands (70). These promising early studies suggest that 

neurobiologically-based subgroups can be identified. For example, (69) found unique 

profiles using reward system connectivity maps as input features and validated groups based 

on impulsivity and reward task performance and (70) identified groups with different EEG 

frequency patterns who also differed in cognitive performance and comorbidity. However, 

reproducibility has yet to be demonstrated and mechanistic interpretation of groups 

(particularly for EEG profiles) and how they explain clinical functioning is not yet clear.

Moving forward, a key challenge is to balance exploratory analyses using a broad feature set 

with theory-driven approaches that emphasize a smaller number of features. Several recent 

advances facilitate this work, including development of canonical connectivity maps for 

fMRI and development of statistical approaches that offer step-wise consideration of 

individual and group-level neuroimaging data in the process of feature selection (71).

Who should be included in analyses?

Identifying the population of interest is also critical. One basic, yet still unanswered question 

in ADHD is whether and how sex should be considered in subgrouping analyses (and 

variation in gender identity, while potentially higher in ADHD than typically-developing 

groups (72), has not even been considered). At least one study has found that differences in 

cognitive liability may mediate increased ADHD risk in males (73). Yet several cognitive 

sub-profiling studies have not found significant differences in sex distribution between 

cognitive subgroups (33, 35, 37). Hartung & Lefler (74) offer recommendations for 
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reporting information about sex (and gender identity) that provide a starting point for 

accumulating information.

A second question involves how existing diagnostic categories should be incorporated into 

studies of heterogeneity. A purely dimensional perspective emphasizes how cognitive and 

emotional functioning operate to convey risk across existing diagnostic boundaries (and 

across typical and atypical development). From this perspective, over-sampling for 

psychopathology without regard for specific diagnosis might present the optimal strategy 

(75). This approach can identify transdiagnostically-relevant features.

However, to the extent that different features are relevant for different populations, their 

inclusion in a single-grouping analysis will emphasize large between-population differences 

at the expense of within-population variation. A common problem is that a clustering 

analysis yields profiles that largely replicate the typically-developing/not typically-

developing distinction. This is analogous to using an extreme groups design— it prevents 

discovery of new clusters within the extremes. Recruiting specific diagnostic subgroups and 

conducting sub-phenotyping separately in clinical and typically-developing groups can help 

emphasize within-group variation.

Several cognitive studies have demonstrated a step-wise approach to the issue of sample 

selection, and there is now consistent evidence that cognitive variability in ADHD is nested 

within similar heterogeneity in typical development (33, 34, 36, 37, 40, 76). Thus, many 

ADHD-related cognitive impairments reflect quantitative differences in the proportion of 

children with a particular profile, but not a qualitative departure from normal developmental 

patterns. In contrast, while there is undoubtedly large normative temperament variation (77, 

78), in ADHD studies have either failed to find strong evidence for distinct subgroups in 

typically-developing samples (57) or support broad distinctions between ADHD and 

typically-developing individuals but without evidence of nested variation when all children 

are included in analyses as once (59, 61, 62). This may be related to exclusion of “messy” or 

“subthreshold” cases that artificially limits the range of ratings in the typically-developing 

samples.

The question of how to understand ADHD variation in relation to normative variation is 

directly relevant to clinical application. Qualitatively distinct deviations from development 

may be most mechanistically important, whereas quantitative shifts that are also present for 

many individuals in the typically-developing population may be more likely to be 

epiphenomenon (76). Alternatively, models that consider quantitative feature shifts as part of 

an additive model (e.g., cognitive impairment is only relevant if the child also has emotional 

impairment) or as features that matter only in specific environmental contexts may be 

informative.

How should studies address development?

The majority of work in ADHD has asked, “What features are relevant for understanding 

ADHD-related heterogeneity?” This question assumes a static model of psychopathology 

rather than recognizing dynamic developmental continuity and discontinuity (66, 79–81). A 
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more refined question may be, “What features are relevant at what points in development?” 

One way to ask this question can be addressed is by examining the extent to which a) the 

same profiles are identified at multiple developmental phases and b) the same individuals 

remain in each group over time.

With at least moderate stability, groups may be useful for clinical prediction and, in fact, our 

own work suggests that assignment to an negative affect/irritable profile is predictive of 

increased risk for worsening clinical outcomes, even when this assignment is not fully stable 

over time (58). An approach that considers data at several distinct time points separately and 

then analyzes stability over time has the benefit of mirroring clinical practice. In many cases 

a clinician will have only a single time point of information on which to base their 

diagnostic decisions (although they may have retrospective reports, these are unfortunately 

often unreliable).

Another approach is to ask, “What trajectories are relevant?” and to integrate development 

into the classification algorithm (82–84). This has the benefit of directly corresponding to 

the dynamic developmental changes that are theorized to contribute to and maintain 

pathological states but relies on the assumption that measures carry similar meaning over 

broad developmental periods. Karalunas et al. (76) provide an example of a trajectory 

approach using cognitive features. Latent class growth models characterizing working 

memory development in ADHD from age 7–13 identified 3 trajectory classes: a cognitively 

normative group; a group with moderate, stable impairment; and a group with moderate 

impairment who recovered or caught up in working memory development by age 13. 

Improvement in working memory was related to improvement in inattention symptoms, 

whereas baseline levels of cognitive impairment were not, highlighting the importance of 

considering developmental change as part of predictive algorithms.

Summary and Translation to Clinical Practice

Currently, the field faces considerable controversy about whether the existing psychiatric 

syndromes should be scrapped and a new system built (75) or nosology should be revised in 

a gradual fashion (85), and in either case, how to do so. Here, we suggest that ADHD 

reflects a useful construct with some developmental continuity but that it requires refinement 

to explain the observed equifinality and multifinality. Our proposal is for a blended approach 

that integrates the vast literature on reliability and validity of DSM/ICD categories with 

emerging knowledge of neurobiological bases of dimensions of psychological functioning 

(7, 86, 87). We highlighted cognition and temperament/personality as two well-established 

domains that may be informative for future studies.

Several specific approaches may be useful as the field moves forward. In terms of sample 

selection, studies that recruit and include children with subthreshold symptoms or in 

diagnostic grey areas (e.g., lack of parent/teacher agreement) offer an opportunity to 

capitalize on ADHD’s trait-like aspects while still retaining the capability of mapping 

clinically-relevant cut points. Studies that test generalizability of features across disorders 

will also be needed. In addition, while ADHD-control comparisons may continue to be 

useful for identifying features that are relevant for many members of the ADHD group, it 
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may ultimately prove fruitful to shift away from studies seeking to identify markers or 

mechanism for a putative discrete disease (“ADHD”) and towards those identifying markers 

and mechanisms for specific subgroups or clinical outcomes (88). While the presence of 

discrete taxa is possible, we emphasize that different observable features may cluster in 

ways that are informative without requiring the assumption of correspondence to a “true” or 

“natural kind.”

To facilitate mapping across diagnostic boundaries, as well as to address concerns related to 

low power for validation when sub-profiles are compared, large datasets such as the 

Adolescent Brain Cognitive Development cohort (89) or the Philadelphia 

Neurodevelopmental Cohort (90) (or similar large cohorts in other nations) may provide an 

additional resource for tests of heterogeneity. Large samples also offer opportunity for cross-

validation (a method in which datasets are partitioned into separate testing and confirmation 

sets) to test of the reproducibility of results. In smaller datasets such cross-validation must 

rely on sub-optimal approaches, such as the leave-one-out procedure, which can inflate 

model performance (46). Large sample size almost invariably necessitates a methodological 

trade-off in terms of breadth and/or depth of measures. One useful strategy may be to be to 

use large but shallowly phenotyped datasets for discovery purposes and smaller, more deeply 

characterized cohorts for fuller understanding of functional meaning and clinical utility.

While capturing heterogeneity can benefit from integrating across different datasets, such 

approaches raise additional challenges. Lack of data harmonization on either input features 

or outcomes substantially limits conclusions in much of the literature we summarize here. 

Problems with lack of data harmonization apply broadly to all levels of data (e.g., 

beahvioral, imaging, genetic). For outcome measures, efforts are underway to create 

consensus lists for specific disorders that could facilitate translation of findings into clinical 

practice and support efforts at replication (91) and cross-validation, but there are not yet any 

consensus outcomes in ADHD (92).

Finally, while statistical clustering approaches are increasingly easily implemented in 

research contexts, how these should be translated into clinical practice remains unclear. One 

possibility is that feature identification using clustering algorithms can be combined with 

decision-making algorithms that define optimal clinical cutoff scores (e.g., ROC approaches 

(93)), which would facilitate clinical translation. Ultimately, one could envision an updating 

diagnostic algorithm in which relevant input features are assessed at repeated intervals (e.g., 

at annual well-child pediatrician visits or over the course of specialty psychological or 

psychiatric care) and used to update risk scores or diagnosis over the course of a child’s 

development.
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