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Convolutional neural networks explain tuning
properties of anterior, but not middle, face-
processing areas in macaque inferotemporal cortex
Rajani Raman 1✉ & Haruo Hosoya 1✉

Recent computational studies have emphasized layer-wise quantitative similarity between

convolutional neural networks (CNNs) and the primate visual ventral stream. However,

whether such similarity holds for the face-selective areas, a subsystem of the higher visual

cortex, is not clear. Here, we extensively investigate whether CNNs exhibit tuning properties

as previously observed in different macaque face areas. While simulating four past experi-

ments on a variety of CNN models, we sought for the model layer that quantitatively matches

the multiple tuning properties of each face area. Our results show that higher model layers

explain reasonably well the properties of anterior areas, while no layer simultaneously

explains the properties of middle areas, consistently across the model variation. Thus, some

similarity may exist between CNNs and the primate face-processing system in the near-goal

representation, but much less clearly in the intermediate stages, thus requiring alternative

modeling such as non-layer-wise correspondence or different computational principles.
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Recently, the neuroscience community has witnessed the rise
of the deep convolution neural network (CNN)1, a family
of feedforward artificial neural networks, in computational

modeling of the primate visual system. CNN models trained for
behavioral goals have exhibited remarkable similarity to ventral
visual areas in terms of stimulus-response relationship despite
that the network itself was not directly optimized to fit neural
data. For example, CNN models trained for image classification
were highly predictive of single-site and population-level neural
responses in the inferotemporal (IT) cortex2,3. Parallels along the
hierarchy have been discovered between layers of CNN and the
intermediate3–5 or lower visual areas6; analogous parallels have
also been reported in a decoding study of fMRI signals7. Such
predictive CNN model has further been used to generate “opti-
mal” stimuli for model validation8. A natural question arises here:
if CNN explains overall responses in IT, then does it also explain
responses in a subsystem of IT?

Among various subsystems of IT9–11, the most well-studied is
the macaque face-processing system12,13. This subsystem forms a
network consisting of multiple face-selective patches with ana-
tomically tight inter-connections14. The network putatively has a
functional hierarchy from the middle to the anterior patch areas
with a progressive increase of selectivity to facial identities and
invariance in viewing angles15. For each patch area, a number of
tuning properties to specific facial features have been documented
in a clear and detailed manner15–18. Given these experimental
facts, the macaque face processing system emerges as an ideal
testbed to examine our question regarding the generality of CNN
as a model of higher visual processing.

Thus, in this study, we have asked whether CNN explains
previously reported tuning properties of face neurons in macaque
IT (Fig. 1). More specifically, we explored a variety of CNN
models that were trained for classification with different archi-
tecture and dataset settings. We incorporated four major phy-
siological experiments that had been conducted on the middle
lateral (ML), anterior lateral (AL), and anterior medial (AM)
patches: (1) view-identity tuning in ML, AL, and AM15, (2)
shape-appearance tuning in ML and AM18, (3) facial geometry
tuning in ML16, and (4) contrast polarity tuning in ML17. While
simulating these experiments on each model, we attempted to
make a correspondence between the model layers and the
macaque face patches by matching the population-level tuning
properties. In particular, by exploiting the available multiple
experimental results on the same face patch, we aimed at per-
forming a strong plausibility test on each model layer. Our results
show that, for most of the explored CNN models, higher layers
give a reasonably good match with the multiple tuning properties
of AM, in particular, tuning related to invariance and appearance.

However, no single layer matches well the multiple properties of
ML simultaneously: the best-matching layer for each different
property of ML is either a lower, intermediate, or higher one.
Thus, although the near-goal representation in face processing
may be somewhat similar between CNN and macaque, such
similarity may be much weaker for the intermediate representa-
tion. Although a possibility for a more complicated, non-layer-
wise correspondence still remains, our result motivates us to
consider alternative approaches to model the computation in the
primate face-processing system.

Results
To investigate whether CNN can explain known tuning proper-
ties of the macaque face-processing network, we started with a
representative CNN model optimized for classification of face
images. Our model adopted an architecture similar to AlexNet19,
following recent studies relating CNNs with the ventral
stream2,4,7. The AlexNet architecture has seven layers in total.
The first five “convolutional” layers perform multi-channeled
local linear filters that are replicated across the visual field.
Repetition of such layers progressively increase the size of visual
receptive fields, mimicking the general structure of the visual
cortex. Then, two “fully connected” layers follow and cover the
entire visual field. (The network ends with a special layer repre-
senting the class, which is ignored throughout our analysis.) We
trained our CNN model on a large number of natural face images
for classifying facial identities (using the VGG-Face dataset with
data augmentation for size variation; see “Methods”). From here
on, we refer to this network as “AlexNet-Face.”

For our AlexNet-Face model thus constructed, we first iden-
tified a population of face-selective units in each layer (“Meth-
ods”); we call face-selective population simply “population” and
face-selective unit simply “unit” from here on. We then ran the
protocols (stimulus set and data analysis) of previous four
monkey experiments15–18 on our model and thereby investigated
whether each model layer replicated similar population-level
tuning properties to the corresponding published experimental
data (Fig. 1). Note that, in this approach, we need no raw
experimental data.

View-identity tuning. In the first study that we consider15, it has
been reported that different macaque face patch areas (ML, AL,
and AM) have different joint tuning properties to the facial view
and identity. Accordingly, we incorporated the same set of face
images as used experimentally, which consisted of 25 identities
and 8 views (frontal, left, and right half-profiles, left and right
profiles, up, down, and back). For each layer of our CNN model,
we first recorded the responses of all model units to those images.

?

Convolutional neural network

Macaque face-processing network Experimental tuning

V1

IT

ML
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Model tuning

Fig. 1 Schema of our investigation to compare the macaque face-processing network and a CNN model. We simulate previous four experiments (left
image sets) on a CNN model (bottom middle) to identify tuning properties (bottom right). We quantitatively compare the tuning properties between each
macaque face patch (from the past experiment) and each CNN layer (from the present simulation) to find out their correspondence.
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We then calculated the correlation between the population
responses to each pair of face images and constructed a popula-
tion response similarity matrix (RSM) of such correlations for all
pairs (“Methods”).

Figure 2 shows RSMs for layers 1, 3, 5, and 7, where the face
numbers are grouped according to the view (forming sub-matrices
of size 25 ´ 25) and sorted by identity in the same way within each
group. (For succinctness, we present, here and hereafter, compar-
ison results only for the odd-numbered layers since the remaining
layers generally give more or less interpolated results of the
presented layers.) In the intermediate layers (layers 3–5), the RSMs
had strong block-diagonal patterns, indicating that most units had
selectivity to a specific view, similarly to the corresponding RSM for
ML15 (correlation between the RSMs: 0:56, layer 3; 0.55, layer 5; see
“Summary of Correspondence” for more on the quantification). In
the top layer (layer 7), such block-diagonal structure disappeared,
but para-diagonal lines instead became prominent, indicating that
most units had selectivity to facial identity with some degree of view
invariance, similarly to AM15 (RSM correlation: 0:53). However, at
a closer look, the response similarities between the profile and
frontal views were weaker than those between the half-profile and
frontal views, which is likely due to our training image set including
fewer images in profile views than half-profile views (see relevant
results in Supplementary Fig. 1). In addition, a mirror-symmetric
pattern in view can be seen from layers 3 to 7, somewhat similarly
to AL15 (RSM correlation: 0:51, layers 3, 5; 0:36, layer 7), though
such symmetry was apparent only between the left and right profile
views, not the half-profile views. In sum, the intermediate-to-top
layers gradually shifted from view-specific to view-invariant and
identity-selective, which is reasonably consistent with the idea of
functional hierarchy in the macaque face patches15.

The same experimental study has also reported invariance
property in stimulus size15. Thus, we recorded the model unit
responses to a set of face and non-face object images of various
sizes (illustrated in Fig. 3a). Then, for each layer and for each
image size, we calculated the response, �Rsize

face, to face images
averaged over the population and the stimulus set; similarly, we
calculated the average response, �Rsize

object, to object images. We
quantified the degree of size invariance by how much robustly the
population-level selectivity to faces over objects retained for
different sizes: size-invariance index (SII) is defined as the
minimal fraction of image sizes at which the average response to
faces is reasonably larger than that to objects (�Rsize

face > 1:4�Rsize
object);

thus, a lower SI-index indicates a stronger size invariance
(“Methods”).

Not surprisingly, size invariance in our CNN model strength-
ened along with its depth (Fig. 3b). In particular, the top layer

(layer 7) had the strongest size invariance (SII: 1=4), where the
average response to faces (red) was always larger than to objects
(blue) for all tested sizes. The top layer also quantitatively came
closest, of all layers, to the face patches (ML/AL/AM), which all
give SII around 1=815 (see “Summary of Correspondence” for
more on the quantification). (Supplementary Fig. 2 shows
additional results on size invariance as well as position
invariance.)

Shape-appearance tuning. In the second experimental study18,
coding of facial shapes and appearances in the macaque face
patches (ML and AM) has been investigated. Similarly to their
method, we constructed a face space based on the active
appearance model20. The face space was described by 50-
dimensional feature vectors, consisting of 25 shape and 25
appearance dimensions, defined as follows. Using a set of natural
frontal face images with coordinates annotated on pre-defined
facial landmarks, the shape dimensions were the first 25 principal
components (PC) of the landmark coordinates and the appear-
ance dimensions were the first 25 PCs of the original face images
that were morphed so that the landmarks matched to their mean
coordinates (“Methods”); Fig. 4a illustrates the first shape and
first appearance dimensions. We then randomly sampled a set of
face images from this space and used it for all the subsequent
analyses.

Following the experimental study18, we examined whether and
how much each model unit preferred shape or appearance. We
first recorded the responses to the face images and estimated the
50-dimensional vector of spike-triggered average (STA), i.e., the
average of feature vectors of the face images weighted by the
responses. We then computed the shape preference index (SPI),
ðS� AÞ=ðSþ AÞ, where S is the vector length of the shape
dimensions and A is the vector length of the appearance
dimensions of the STA; a unit is considered to prefer shape
when SPI is positive and prefer appearance when SPI is negative
(“Methods”).

Figure 4b shows the distribution of SPIs for each layer (blue).
In the intermediate-to-higher layers (layers 5–7), most units had
appearance preference (mean SPI: �0:15, layer 5; �0:27, layer 7;
see “Summary of Correspondence”), with a distribution much
closer to the corresponding experimental data on AM (pink;
mean SPI: �0:19) than ML (gray; mean SPI: 0:29)18. However,
the lower layers (layers 1–3) broadly mixed both shape-preferring
and appearance-preferring units (mean SPI: 0:12, layer 1; �0:04,
layer 3), thus showing an intermediate property between AM and
ML, but somewhat closer to ML in layer 1 and to AM in layer 3
(both significantly deviating from the midpoint of ML and AM;

Fig. 2 View-identity tuning. Each plot shows the population response similarity matrix for each layer. The pixel values of the matrix indicate the pairwise
correlation coefficients (legend) for the population responses to face images. The elements of the matrix are grouped according to the view (indicated by
the images along the axes) with the same order of identities in each group.
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see “Summary of Correspondence” for the statistical analysis).
We also examined shape-appearance preference by counting the
number of significantly tuned units to each feature dimension; the
tendency was similar (Supplementary Fig. 3). Furthermore, we
investigated how much information on the face space was
contained in each layer by decoding feature vectors from
population responses; the top layer exhibited a better match with
AM than ML, but lower-to-intermediate layers showed large
discrepancies from both AM and ML (Supplementary Fig. 4). In
sum, in terms of shape-appearance tuning, the CNN model
exhibited prominently AM-like properties but less clearly ML-like
properties. (See also Supplementary Fig. 5 for additional results
on ramp-shape tuning properties).

The same experimental study also investigated view tolerance
in the face space representation in AM18. Accordingly, we first
constructed the feature representation for profile faces in a way
compatible with frontal faces. Namely, we built another shape-

appearance face space from left profile face images, similarly to
frontal faces, and established a mapping between the frontal and
profile face spaces via linear regression; we hereafter always used
feature vectors for profile faces that were mapped to the frontal
face space, which allowed us to use the same feature vectors for
both views of the same identity (“Methods”).

Figure 5a illustrates the first shape and appearance dimensions
for profile faces; note their compatibility with the frontal faces in
Fig. 4a. For each unit, we estimated the STA from profile faces,
similarly to frontal faces, and calculated the correlation between
the frontal and the profile STAs at each feature dimension across
all units in each layer (Fig. 5b, red and blue). As a result, the STA
correlations at the first half of the appearance dimensions (blue)
increased from lower to higher layers (mean STA correlation:
0:078, layer 1; 0:22, layer 7; see “Summary of Correspondence”),
indicating a gradual progression of view tolerance along with the
depth. In particular, the correlations in the top layer (layer 7)
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Fig. 4 Shape-appearance tuning. a Illustration of the first shape and first appearance dimensions for frontal faces. It shows how varying these dimensions
changes the image. The shown images correspond to the feature vectors with all zero except the indicated dimension is set to −3, 0, or 3. b The
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came closest, of all layers, to the corresponding data on AM
(black; mean STA correlation: 0:31), which is consistent with the
view-identity tuning in the top layer (Fig. 2). We also conducted a
decoding analysis using a mixed set of frontal and profile faces;
only the top layer showed similar decoding performance between
both views (Supplementary Fig. 6), consistently with AM18.

To gain further insight, we repeated the above analysis for all
available 10 non-frontal views including half-profile views. The
result for a left half-profile view (Fig. 5c) shows a similar tendency
to the left full-profile, but the overall STA correlations were
slightly higher, indicating stronger tolerance for the half-profile
view than the full-profile view. This result is again consistent with
Fig. 2, in which the frontal view is more strongly correlated with
the half-profile view than the full-profile view. Finally, Fig. 5d
plots the mean STA correlation between the frontal and the non-
frontal STAs (averaged over the feature dimensions) for all non-
frontal views and for all layers. The mean STA correlation
increased, thus view-tolerance became stronger, in a higher layer
and in a view closer to the frontal view.

Facial geometry tuning. In the third experimental study16, tun-
ing of ML neurons to local and global features in cartoon face
stimuli has been documented. Thus, we incorporated their sti-
mulus design of cartoon face images parametrized by 19 different
facial features (Fig. 6a). We randomly generated a set of such
cartoon face images. From the responses of each unit to those
images, we estimated a tuning curve for each feature parameter
and determined its statistical significance (“Methods”).

Figure 6b (blue) shows how many features each unit was
significantly tuned to (features-per-unit (FPU)) in each model
layer. Analogously, Fig. 6c (blue) shows how many units in each
layer were significantly tuned to each feature (units-per-feature
(UPF)). In both plots, upper layers showed very different
distributions from ML (gray; cosine similarity in FPU: 0.50,
layer 5; 0:49, layer 7; in UPF: 0:59, layer 7; not significantly
larger than random cases; see “Summary of Correspondence”
for the statistical analysis), accommodating more units tuned to
larger numbers of features and to more remaining features
absent in ML. Curiously, lower layers gave results somewhat
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closer to ML (cosine similarity in FPU: 0:82, layer 1; in UPF:
0:78, layer 1; 0:82, layer 3; 0:76, layer 5; significantly larger than
random cases): most units were tuned to a small number of
features, which were mostly geometrically larger features (i.e.,
face aspect ratio, face direction, feature assembly height, and
inter-eye distance) rather than smaller features (related to
mouth and nose). In addition, in all layers, a majority of units
had ramp-shaped tuning curves with peaks and troughs at the
extreme values (Supplementary Fig. 7), similarly to ML16 (see
“Discussions”).

Contrast polarity tuning. The last experimental study17 has
reported that ML units had preference for contrast polarities
between face parts in mosaic-like cartoon face stimuli17. Thus, we
again used their stimulus design of cartoon face images, which
consisted of 11 distinct face parts that were each assigned a
unique intensity value varying from dark to light (Fig. 7a). We
randomly generated a set of such face images and analyzed the
responses of each unit to those images for identifying its contrast
polarity tuning. That is, for each pair of face parts, A and B, out of
55 pairs in total, we determined whether the unit prefers part A
lighter than part B (part A > part B) or the opposite (part A < part
B); see “Methods”.

As summarized in Fig. 7b (blue and red), in all layers, most of
the units had preferences for contrast polarities mainly related to
the forehead, the largest geometrical area in the mosaic-like face.

This result is inconsistent with the experimental finding in ML17

(gray; cosine similarity: <0:51, layers 1, 3, 5, 7; not significantly
larger than random cases; see “Summary of Correspondence” for
the statistical analysis), where most neurons were tuned to eye- or
nose-related contrast polarities and the polarity directions were
consistent across the neurons.

Summary of correspondence. To see more clearly which model
layer corresponds to each macaque face patch, we next quantify
the similarities of tuning properties. Figure 8 summarizes the
results for our AlexNet-Face model. For each tuning property, we
use a different metric to quantify similarity between the results
from the model and the experiment. For view-identity tuning
(Fig. 8a), we use the correlation between the response similarity
matrices from each layer (Fig. 2) and each face patch15. For size
invariance (Fig. 8b), we compare the size invariance indices for
each layer (Fig. 3b) and each face patch15. For shape-appearance
preference (Fig. 8c) or view tolerance (Fig. 8d), we compare the
averages of shape-preference indices (Fig. 4b) or mean STA-
correlations (Fig. 5b) from each layer and the corresponding
experimental data18. For facial geometry tuning (Fig. 8e) and
contrast polarity tuning (Fig. 8f), we use the cosine similarity
between the distributions from each layer (Figs. 6 and 7,
respectively) and each face patch16,17. For most of these, we
introduce statistical criteria to test significance of the results (see
the caption of Fig. 8).
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feature parameters ranges from −5 to þ5, where ± 5 corresponds to the extreme features and 0 corresponds to the mean features. b The distribution of
the number of features that each unit is significantly tuned to. c The distribution of the number of units significantly tuned to each feature. Each plot
compares the result from a model layer (blue) with that from ML (gray) replotted from Fig. 3 of the experimental study16.
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Comparing between layers, AM data favor higher model layers
consistently across different tuning properties, namely, view and
size invariance as well as appearance tuning (Fig. 8a–d). However,
ML data favor different layers depending on each tuning
property: intermediate layers in view-identity tuning (Fig. 8a),
higher layers in size invariance (Fig. 8b), and lower layers in other
tunings (Fig. 8c, e). Comparing between face patches, higher
model layers also generally favor AM (Fig. 8a, c). However,
intermediate layers are slightly inclined to ML in view-identity
tuning (Fig. 8a) but to AM in shape-appearance preference
(Fig. 8c). In sum, AM clearly corresponds with higher layers,
while ML has no such clear correspondence since no layer is
simultaneously compatible with all the compared experimental
data on ML. (Note, however, that our study is confined to layer-

wise comparison; it remains open whether non-layer-wise
correspondence exists for ML; see “Discussions”.)

Model variation. How much robust are the results so far against
the training condition? To address this question, we investigated
various model instances while varying the architecture and the
dataset.

First, we examined three publicly available pre-trained net-
works: (1) VGG-Face network21, a very deep 16-layer CNN
model trained on face images, (2) AlexNet19, trained on general
natural images, and (3) Oxford-102 network, an AlexNet-type
model trained on flower images (“Methods”). Fig. 9 summarizes
the layer-patch comparisons for all three models (shown in
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different line styles), overlaid with the plots for AlexNet-Face
(Fig. 8) and for an untrained AlexNet-type network. For VGG-
Face network, we selected the layers that had the closest receptive
field sizes as the layers of AlexNet (“Methods”). The results from
these four trained models are overall similar: AM data tend to
match with higher layers, while ML data do not match with any
particular layer simultaneously for all the tuning properties.
Surprisingly, some extent of consistency can be found in the
models trained with non-face images (AlexNet and Oxford-102);
however, the tendency is overall weaker, in particular, view
tolerance (Fig. 9d), confirming the importance of training with
face images. The different strength of size invariance in the top
layer of different models (Fig. 9b) likely reflects the variety in
image size in the training dataset (AlexNet-Face used data
augmentation for size, while VGG-Face model did not; other
models used a dataset that had size variation in itself). The results
from the untrained model are, as expected, generally far from the
face patches, though some are surprisingly similar (Fig. 9c, e),
possibly due to the local computation inherent in the convolu-
tional architecture (see “Discussions”).

Second, to further explore the architecture space, we modified
the AlexNet architecture to construct six additional networks,
where four networks had five, six, eight, or nine layers and two
networks changed the number of convolution filters in every layer
to either half or double (Supplementary Table 1). We trained each
model on the same face image dataset (“Methods”). Fig. 10
summarizes the results from these six models in addition to

AlexNet-Face, where the layer numbers are normalized. Again,
the general tendency is similar across the architectures: AM
corresponds to higher layers but ML has no corresponding layer.
The weak view tolerance for the model with five layers or with
half numbers of filters (Fig. 10d) is probably because the depth or
the filter variety was not sufficient for gaining strong invariance.

Discussions
In this study, we have investigated whether CNN can serve as a
model of the macaque face-processing network. While simulating
four previous physiological experiments15–18 on a variety of
CNNs trained for classification, we examined whether the results
quantitatively match between each model layer and each face
patch. As a result, higher model layers reasonably replicated the
multiple tuning properties of AM, notably, strong invariance
properties in size and view. Although such invariance properties
in CNN are generally well-known as the model is trained to
classify size- or view-varied images as the same, our finding in the
fine-grained similarity to physiology in the view-tolerant
appearance code goes beyond expectation (Fig. 5b). On the
other hand, none of the CNN layers simultaneously captured
those properties of ML: either a lower, intermediate, or higher
layer showed the best match with ML for each different property.
These observations were largely consistent across the model
variation. Thus, despite the prevailing view linking CNNs and IT,
a clear layer-wise correspondence seems to exist for face pro-
cessing only in the last stage, not in the intermediate stage.

View-identity tuning

1 2 3 4 5 6 7
Layer

-0.5

-0.25

0

0.25

0.5

M
ea

n 
S

P
I

AM

ML

Shape-appearance preference

View tolerance  Facial geometry tuning (ML)  Contrast ploarity tuning (ML)

1 2 3 4 5 6 7
Layer

0

0.2

0.4

0.6
noitalerro

C

1 2 3 4 5 6 7
layer

1/8

1/4

1/2

1

S
II

AM/AL/ML

Size invariance

1 2 3 4 5 6 7
layer

0

0.1

0.2

0.3

0.4

noitalerroc
AT

S
nae

M

AM

1 2 3 4 5 6 7
layer

0

0.2

0.4

0.6

0.8

1

C
os

in
e 

si
m

ila
rit

y

1 2 3 4 5 6 7
layer

0

0.5

1

C
os

in
e 

si
m

ila
rit

y

Compared: AM MLAL

Features per unit
Units per feature

a b c

fed
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face patch (AM/AL/ML; Fig. 4d–f of the corresponding experimental study15). Each shaded region shows the ± 2SD range of correlations from random
cases, i.e., correlations between the experimental RSM and repeatedly generated random RSMs ("Methods"). b The size invariance index for each layer
(Fig. 3b) and for face patches (equal for AM/AL/ML; Fig. S10C of the corresponding experimental study15). c The mean shape-preference index for each
layer (Fig. 4b) compared with the mean indices for AM, ML, and their midpoint (estimated using Fig. 1e of the corresponding experimental study18). Each
shaded region shows 95% confidence intervals constructed by 200 iterations of bootstrapping on the experimental data ("Methods"). Note that the mean
SPIs for layers 1 to 4 exceed this interval for the midpoint. d The mean STA correlation for each layer (Fig. 5b) and AM (Fig. 6D of the corresponding
experimental study18). The shaded region shows the ± 2SD range of mean correlations between random STA vectors for the same population size as each
layer (“Methods”). e The cosine similarity between the distributions of the number of tuned features per unit (red) or the number of tuned units per feature
(blue) for each layer (Fig. 6) and ML (Fig. 3 of the corresponding experimental study16). f The cosine similarity between the distributions of contrast
polarity preferences for each layer (Fig. 7b) and ML (Fig. 3A of the corresponding experimental study17). In e, f, each shaded region shows the ± 2SD range
of cosine similarities between the experimental distribution and randomly generated random distributions (“Methods”).
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However, our approach crucially relies on the assumption that
each previous monkey study investigated a cell population that
was sampled from the entire target face patch without much bias.
However, since there is no supporting or contradicting evidence
on this, we cannot completely reject the possibility that the
multiple properties of ML could actually have been of different
sub-clusters of ML. Thus, despite our failure in finding a precise
layer-to-patch correspondence for ML, it still remains possible
that some other more complicated correspondence might exist,
e.g., combined multiple layers corresponding to a single
face patch.

Some previous studies have also compared CNN and face
patches for relating it with their main experimental findings or
computational model. One study18 found AM-like shape-
appearance tuning in the top layer of a face-classifying CNN
model (appearance preference and ramp-flat tuning), similarly to
our results (Fig. 4b and Supplementary Fig. 5, layer 7). Another
study22 tested view-identity tuning on several CNN models to
compare with their novel generative model (see below). Although
they showed RSM results similar to ours (Fig. 2), they incorpo-
rated a more sophisticated quantitative comparison with experi-
mental data15 and thereby revealed notable similarity in the later
stage and dissimilarity in the intermediate stage, which is gen-
erally compatible with our conclusion. Thus, these studies have
somewhat anticipated our perspective on CNNs in relation to the
face patches. However, our study has added a substantial assur-
ance by taking a much larger variety of face-patch experiments
and CNN models into consideration.

What insight did we gain from our results? First, appearance
representation is dominant in later stages in both systems (Fig. 4),
whereas shape representation lacks in intermediate-to-higher
stages in CNN (Figs. 4 and 6) and is dominant only in inter-
mediate stages in macaque. This may be because shapes are in fact
relatively unimportant features for classification and thus
neglected during the model training23. This implies that the goal
of the face-processing system may not be merely classification.
Second, lower-layer units often showed somewhat unintuitive
properties despite that they were expectedly less face-related: (1)
significant facial shape tuning (Figs. 4b and 6); (2) higher
decoding performance of facial features than higher layers
(Supplementary Fig. 4), and (3) ramp-shape tuning along STA
axis and flat tuning along the orthogonal axis, not limited to
higher layers (Supplementary Figs. 5 and 7). These may be partly
because lower-layer units, although simple, localized feature
detectors (e.g., Gabor or random filters), can in fact easily interact
with stimulus parameters controlling shape feature dimensions or
local facial geometry. Also, lower layers have much weaker
nonlinearity so that linear decoding would become easier. One
could argue that such low-level units should not be qualified as
face-selective from the first place, but might have been misjudged
so by the standard criterion due to the specific image statistics of
face images (e.g., emphasis on eyes). This point also suggests that
each single experiment generally has limitation in discriminating
between plausible and implausible models, which underscores the
importance of taking multiple experiments into account.

In general, relationship between artificial and biological neural
networks has been a recurring question. Since the brain has a
number of sub-networks with a hierarchical structure, it is
tempting to hypothesize that such sub-network is optimized for
some behavioral goal. Indeed, a classical study has shown that a
neural network trained for a coordinate transformation task
exhibits, in the intermediate layer, properties related to spatial
location similar to primate parietal area 7a24. As mentioned in
Introduction, more recent studies have argued that CNNs trained
for image classification have layers similar to higher2–4,7, inter-
mediate3–5, or lower6 areas in the monkey or human visual

ventral stream. Analogously, layer-wise correspondence has been
found between CNNs trained for audio classification and the
human auditory cortex25 or the monkey peripheral auditory
network26. Although all these studies are positive in the generality
of explanatory capabilities of goal-optimized neural networks, the
same story might not go all the way through. For the macaque
face-processing network, our study here showed that correspon-
dence with CNN should at least not be layer-wise. In addition,
some recent studies have pointed out potential representational
discrepancies between CNN and the ventral stream from beha-
vioral consideration22,23,27–29. (See also the related discussion on
the “computational gap” below.)

One should note that there are, in general, two fundamentally
different approaches for comparing a model with the neural
visual system. In one approach, which is more traditional and
taken in our study, a given model is tested whether it exhibits
tuning properties compatible with prior experimental observa-
tions (“tuning approach”). In the other approach, which is
recently more popular2,3,25, a given model is used as a basis
function and a linear regression fitting is conducted from model
responses to actual neural responses for predicting new neural
responses (“fitting approach”). In the tuning approach, although
the comparison is arguably more direct in the sense of involving
no fitting, tuning experiments have often been criticized for
biased and subjective stimulus design and for use of degenerate
summary statistics. Therefore showing consistency with experi-
mentally observed tuning may not be sufficiently supportive
evidence for the model. Note that, nevertheless, showing clear
inconsistency is strongly falsifying evidence, from the logical
contraposition of “if the model behaves similarly to the neural
system, then it should reproduce a similar tuning property.” Our
comparison with ML would be one such example. In the fitting
approach, on the other hand, the aforementioned criticism would
not occur since an arbitrary (randomly selected) set of stimuli can
be used. However, the necessity of linear fitting makes the com-
parison somewhat more indirect: correspondence is made
between an actual neuron and a “synthetic neuron,” i.e., the
output of a linear model after fitting2–4,30. Indeed, one example of
computational gap between CNN and IT neural responses has
been raised in Fig. 7 of the study by Cadieu et al.2, where the
population similarity matrices from IT and a CNN top layer were
strikingly different without fitting, although very similar with
fitting. One might therefore argue that it is a CNN plus a linear
regression, not a CNN itself, that has predicted neural responses.
Thus, both tuning and fitting approaches are complementary to
each other and neither is significantly better than the other.

If CNN does not fully explain all the facial tuning properties,
then what can be alternative models? Some hints can be found in
prior theoretical studies. First, although unsupervised learning of
feature representations from the image statistics has traditionally
been used for early vision31–34, recent studies have raised its
possible contributions in facial tuning properties. For example,
sparse coding of facial images can produce facial-part-like feature
representations, which explains surprisingly well most of the
facial geometry tuning properties found in ML35. Also, PCA-
based learning of face images can produce global facial feature
representations, which exhibit monotonic and mirror-symmetric
view tuning as in ML and AL36. Second, feedback processing is
ubiquitous in the visual system and therefore likely important,
but crucially missing in CNN. One standard theoretical approach
to incorporate feedbacks is to use a generative model. Although
such theory has also been typical for modeling early vision37–39, it
can potentially be important in higher vision. For example, a
particular generative model, called a mixture of sparse coding
models, has used multiple modules of feature representations
with competitive interaction, which can endow model units with
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a global face detection capability similar to the neural face
selectivity35. In another approach, a novel generative model
assumes a computer graphics algorithm that generates face
images from certain facial and scene feature parameters, while
employing a feedforward deep convolutional network trained on
those feature parameters22. Notably, certain three layers in the
feedforward network exhibited view-identity tuning properties
each similar to ML, AL, and AM in a way quantitatively better
than standard CNN models22. In a different approach, deep
networks added with recurrent connections have recently been
used to explain late-phase neural dynamics in IT40,41. Third,
invariance properties can be explained not only by supervised
learning as in CNN but also by image statistics. While spatial
statistics can explain well position or phase invariance in early
vision32,42,43, temporal coherence44 for learning the most slowly
changing features has been commonly used for explaining more
complex invariance properties in higher vision36,45,46 and
experimentally tested47. Although combining such invariance
learning into a generative model is theoretically not so obvious,
one approach extending variational autoencoders48 has been
developed49 and led to a novel deep generative model explaining
multiple tuning properties in ML and AM50. Taken together, for
clarifying the computational principle underlying the primate
face-processing system, it seems crucial to view this system as not
merely a classifier but having a richer repertoire of visual pro-
cessing, for which the present work would offer a solid
motivation.

Methods
Convolutional neural network. CNN is a family of feedforward, multi-layered
computational models51, which has originally been inspired by the mammalian
visual system. CNN allows for a variety of architecture design, stacking an arbitrary
number of layers with different structural parameters. Each layer in CNN under-
goes several operations. The layer typically starts with convolutional filtering,
which applies an identical multi-channel linear filter to every local subregion
throughout the visual field. Then, the results are given to a nonlinear function,
ReLUðxÞ ¼ maxð0; xÞ, at each dimension, for ensuring non-negative outputs. The
layer is optionally preceded by pooling and normalization. Pooling takes the
maximum of the incoming inputs within a local spatial region. Normalization
divides the incoming inputs by their squared norm. Generally, a CNN architecture
consists of multiple such layers, by which it progressively increases the effective
receptive field sizes and eventually achieves a non-linear transform of the input
from the whole image space to a space of interest (i.e., class). Often, the last several
layers of a CNN architecture have convolutional filters covering the entire visual
field, thus called fully connected layers.

Each layer operation is closely related to some neural computation discovered
in neurophysiology. Convolutional filtering mimics V1 simple cells, which replicate
their receptive field structures across the visual field52. The nonlinear function
proxies for neural thresholding giving rise to non-negative values of firing rates.
Pooling comes from the classical notion that V1 complex cells gather the outputs
from V1 simple cells to achieve position or phase invariance52,53. Normalization
stems from a gain-controlling phenomenon that is widely observed in the cortex
and often explained by the well-known divisive normalization theory54. Further,
the repetition of layers of similar processes is inspired by the hierarchy of the visual
cortex, for which the gradual increase of receptive field sizes and the congruent
micro-circuit structures are well known55. To dive deep in CNN, see introductory
materials56,57.

Trained CNN models. We show, most in detail, the results from a representative
CNN model called “AlexNet-Face.” This CNN model has the same architecture as
AlexNet19 with five convolutional layers followed by two fully connected layers.
(The network ends with a special layer for representing classes, but we ignore it in
our analysis.) The architecture parameters are given in Supplementary Table 1. We
trained it for the classification task using the VGG-Face dataset21, which contains
millions of face images of 2622 identities. We augmented the dataset with size
variation, allowing four-times downsizing. (Note that four-times downsizing was
limit in our case with full image size 224 ´ 224 since further downsizing would
make the images too small and impossible to discriminate and thus considerably
degrade the classification performance of the model.) We performed the training
by minimizing the cross-entropy loss function, a commonly used probabilistic
approach to measure the error between the computed and given outputs56; we
used the stochastic gradient descent method with momentum (SGDM) as opti-
mizer. The resulting CNN model gave classification accuracy 72.78% for held-out
test data. (This score is somewhat lower than state-of-art face recognizing deep

nets, which typically go over 90% of accuracy. This is likely because our size-varied
data augmentation yielded very small images that would be difficult to classify, e.g.,
Fig. 3a).

To test robustness of our results against structural change to the model, we
incorporated a set of six additional model instances modifying the architecture of
AlexNet. Four of them changed the number of layers to five, six, eight, and nine.
We designed the specific architectures for these by changing only the convolutional
layers, keeping the overall structure of increasing receptive field sizes. The
remaining two models changed the number of filters in every layer, one halved and
one doubled. The architecture parameters of the additional models as well as their
classification accuracies are given in Supplementary Table 1.

For all implementation, we used Matlab with Deep Learning Toolbox (https://
www.mathworks.com/products/deep-learning.html) as well as Gramm plotting
tool58 for visualization.

Pre-trained CNN models. To further test robustness, we included three publicly
available pre-trained CNN models using very different architecture or dataset,
namely, VGG-Face network21, AlexNet19, and Oxford-102 network. The VGG-
Face network is a very deep 16-layer CNN model that has been trained on VGG-
Face database for face classification (with no data augmentation for size variation).
For analysis of the VGG-Face network, we chose the layers that had the closest
receptive field sizes as the layers of AlexNet (Supplementary Table 2). Also, since
lower layers of VGG-Face were too large, we analyzed a subpopulation of randomly
sampled 30,000 (face-selective) units whenever the full population exceeded this
number. AlexNet is the well-known, original network trained on ImageNet data-
base59 for natural image classification. Oxford102 is an AlexNet network that has
been ‘fine-tuned' for the classification of flower images in Oxford-102 dataset60. We
imported these three network models from a public repository (https://github.com/
BVLC/caffe/wiki/Model-Zoo).

Experiments. On each CNN model, we first identified face-selective units and then
proceeded to simulation of four macaque experiments on these face-selective units.
The specific procedures are summarized as follows.

Face-selective population estimation. We determined the face-selectivity of a
unit by following the general approach used in experiments on IT15,16. That is, we
first recorded the responses of the unit to a set of 50 natural frontal faces from the
FEI image database (http://fei.edu.br/~cet/facedatabase.html) and to a set of 50
non-face object images obtained from the Web. Then, from the average responses
to the faces, �Rface , and non-face object images, �Robject, above the baseline response to
the blank image (all zero pixel-values), we estimated the Face Selective Index,

FSI ¼ �Rface � �Robject

� �
= �Rface þ �Robject

� �
: FSI was set to 1 when �Rface > 0 and

�Robject < 0, and to �1 when �Rface < 0 and �Robject > 0. We judged a unit as face-
selective if FSI> 1

3, that is, the unit responded to face images, on average, twice as
strongly as to non-face object images. (Zero FSI, for instance, implies an equal
average response to face and non-face images.) For the simulation of shape-
appearance tuning experiment described below, we used profile faces in addition to
frontal faces for selectivity determination. Below, ‘unit’ or ‘population’ always refer
to the face-selective ones.

View-identity tuning experiment. To simulate the experiment on view-identity
tuning15, we used the same set of “face-view” (FV) images as in the experimental
study, which consisted of 200 images of 25 identities and 8 views (left full-profile,
left half-profile, frontal, right half-profile, right full-profile, up, down, and back; see
the images along the axes in Fig. 2). To determine the view-identity tuning, we first
recorded the responses of the units to these images and calculated the correlation
between the population responses to each pair of FV images; we then constructed a
population response similarity matrix (RSM) from those values. The authors of the
experiment provided us the FV image set and the RSMs obtained from the
experiment (the data corresponding to the back view was missing). We quantified
the similarity between a model RSM and an experimental RSM by their correlation
coefficient and tested whether it exceeded the ±2SD range of the correlation
coefficients between the experimental RSM and repeatedly generated random
RSMs, i.e., symmetric matrices whose diagonals are all one and non-diagonals are
drawn from Gaussian distribution with the mean and variance matched to the
experimental RSM.

Size-invariance experiment. To simulate the experiment on size invariance15, we
took frontal as well as right and left profile face images of 8 individuals (24 face
images in total) from FEI face database, and 16 non-face object images obtained
from the Web. We then resized these images from the original size 224 ´ 224 pixels
down to 196 ´ 196, 168 ´ 168, 140 ´ 140, 112 ´ 112, 84 ´ 84, and 56 ´ 56 pixels (see
Fig. 3a), forming a set of 280 images in total. For each layer, we recorded the
responses of the units to those images and calculated the average across the
population and the image set, �Rsize

face or �R
size
object, separately for faces or objects, and

separately for each size. To quantify the degree of size-invariance, we define size-
invariance index (SII) as the minimal fraction of sizes at which the mean
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population response to faces is reasonably larger than objects: (�Rsize
face > 1:4�Rsize

object). (If
no image size gives the required level of face preference, SII is defined as 1.) We
compared the SIIs of the model layers and the face patches, where all ML, AL, and
AM give around the value 1=8, according to the experimental data (Fig. S10 of the
experimental study15).

Shape-appearance tuning experiment. To simulate the experiment on shape-
appearance tuning18, we followed their approach to create a face space based on the
active appearance model20. For this, we employed 200 frontal face images from FEI
face dataset, on which we annotated the coordinates of pre-defined 95 facial
landmarks. We here used the Face++ tool (https://www.faceplusplus.com) to
automatically annotate the landmarks supported by this tool and resorted to
manual annotation for the other landmarks. Our set of landmarks were in fact a
superset of the ones used experimentally (58 landmarks) since the automatic tool
happened to provide richer annotations, which would not (at least) impoverish our
result.

From the above annotated image dataset, we constructed a 50-dimensional
face space as follows. We first performed principle component analysis (PCA) on
the landmark coordinates of the 200 images, of which the first 25 principal
components provided the first 25 dimensions of the face space, called shape
dimensions or features. Thereafter, we normalized each image by morphing the
original image so that the warped landmark coordinates match the mean
landmark coordinates (across all images). We again performed PCA on the
resulting normalized images, of which the first 25 principal components
provided the last 25 dimensions of the face space, called appearance dimensions
or features. We then generated a set of 2000 face images by randomly sampling
feature vectors from the 50-dimensional isotropic Gaussian distribution and
reconstructing images by reversely following the above process. Fig. 4a shows
examples of generated frontal face images by varying the first shape and
appearance dimensions.

To identify shape-appearance preference of each unit, we first recorded the
responses to the generated 2000 face images and calculated the STA as the average of
the 50-dimenisonal feature vectors of those images weighted by the corresponding
responses. To quantify the preference to shape or appearance, we defined shape
preference index (SPI):

SPI ¼ S� Að Þ
Sþ Að Þ

where S is the vector length of the 25 shape dimensions and A is the vector length of
the appearance dimensions of the STA18. To compare the population distributions
of SPIs for the model layers and the face patches, we used their mean SPIs. We also
tested whether the mean SPI from each model layer exceeded the 95% confidence
intervals constructed from 200 bootstrap samples of the experimental data, which
were extracted from Fig. 1E of the experimental study18.

To investigate view tolerance, we repeated the aforementioned face space
generation process for the profile view. That is, we created a profile face space
from 200 profile face images from FEI database with manually annotated
landmark coordinates and randomly generated 2000 profile face images. We
established a mapping between the frontal and profile face spaces by linear
regression between the frontal and profile feature vectors of the same identities.
From then on, we always used the profile feature vectors mapped to the frontal
face space. Fig. 5a shows examples of generated left profile face images by
varying the first shape and appearance dimensions. We thereafter calculated the
STA for profile face images similarly to frontal face images. We quantified view
tolerance by correlation between the corresponding STA dimensions for frontal
and profile images across units. We also repeated the same process for all
remaining non-frontal views (10 views in total). See the original experimental
study18 for details. We compared the model and experimental results by the
mean of the STA correlations and tested whether it exceeded the ± 2SD range of
mean correlations between random STA vectors (drawn from standard Gaussian
distribution) for the same population size as each layer.

Facial geometry tuning experiment. To simulate the experiment using cartoon
face stimuli16, we used the same cartoon face design, where each face image had
seven elementary parts (hair, face outline, eyes, irises, eyebrows, mouth, and nose)
and the geometry of the parts were parameterized by 19 feature parameters (face
aspect ratio, face direction, height of assembly, hair length, hair thickness, eyebrow
slant, eyebrow width, eyebrow height, inter-eye distance, eye eccentricity, eye size,
iris size, gaze direction, nose base, nose altitude, mouth-nose distance, mouth size,
mouth top, and mouth bottom). Each of these parameters held values between �5
to þ5 (11 values), where zero corresponded to the average features (e.g., normal
inter-eye distance) and ± 5 corresponded to the extreme features (e.g., large or no
inter-eye distance). Fig. 6a shows example cartoon face images that vary the inter-
eye distance parameter over 11 different values.

Using the same method as in the experimental study16, we estimated a tuning
curve for each unit and for each feature. For this, we first generated a set of 5000
cartoon face images with random values for the 19 parameters. From the
responses to those images, we estimated a tuning curve for each feature
parameter by taking the average of the responses corresponding to each value
that the feature parameter takes, regardless of the values of the remaining

features; we smoothed the curve by a Gaussian kernel of unit variance. We then
determined the statistical significance of the tuning curve using the same
criterion as in the experimental study16. We examined the population
distributions of the number of significantly tuned FPU and the number of tuned
UPF. For both, we quantified the similarity between the model and experimental
distributions by taking their cosine similarity. We tested whether the similarity
exceeded the ± 2SD range of cosine similarities between the experimental
distribution and repeatedly generated random distributions. Here, a random
distribution for FPU was generated by assuming each unit having a random
number of tuned features drawn from the uniform distribution ranging from 0
to 19; a random distribution for UPF was generated by assuming each feature
having a random number of tuned units drawn from a uniform distribution
ranging from 0 to 100.

Contrast polarity tuning experiment. To simulate the experiment using mosaic-
like parameterized cartoon faces images17, we used the same stimulus design,
where each face image consisted of 11 face parts (forehead, left eye, right eye, nose,
upper lip, left cheek, right-cheek, lower-left cheek, lower-right cheek, mouth, chin)
based on a manual fragmentation of a mean face. Following the experimental
procedure17, we generated a set of 432 faces images by randomly giving a unique
intensity value to each part ranging between dark and bright (11 values), while
ensuring that, for every possible part-pair (55 part-pairs in total, e.g. forehead and
left-eye, forehead and right-eye) and every possible intensity level, the set included
at least one exemplar in which that part-pair had that intensity level. Fig. 7a shows
some examples of generated mosaic-like cartoon face images in the case of forehead
lighter than left eye or the opposite.

Following the experimental method17, we used the responses of each unit to
the above set of images to determine preference on the contrast polarity for each
of the 55 part-pairs. More specifically, for each part-pair (A and B), we
compared the average response between the condition where intensity of part A
was greater than part B (part A > part B) and the condition where intensity of
part A was lesser than part B (part A < part B) irrespective of what intensity
value the remaining 9 parts held. We then determined the significance of the
contrast polarity preference for each part-pair using the same criterion as in the
experimental study17. We examined the population results in terms of the
distributions of the number of significant preferences per part-pair. We
quantified similarity in the same way as facial geometry tuning (UPF)
described above.

Statistics and reproducibility. The statistical methods used in this study are
described above. All the results shown here are reproducible with the specified
datasets and parameters.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available within
the paper and its supplementary information files. All relevant data will be available upon
request. Requests can be made to the corresponding author.

Code availability
The code for training network models, simulating past experiments, and generating
figures was written in Matlab (2018b) with Deep Learning Toolbox and Gramm plotting
tool. The code is available publicly: https://github.com/HaruoHosoya/cnn_face.
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