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Background: Hepatocellular carcinoma (HCC) represents the second highest cause of cancer-associated 
deaths worldwide, and hepatitis B virus (HBV) infection is a major risk factor. Here, we aimed to identify 
genetic signatures of HBV-positive (HBV+) HCC and uncover potential carcinogenic mechanisms. 
Methods: Gene expression profiles of 124 HBV-positive samples, including tumor and non-tumor tissues 
were subjected to bioinformatics analysis. The expression levels of thymidylate synthase (TYMS) and 
CDC45 in patients’ samples were validated by immunohistochemistry (IHC) and their association with 
patient survival was assessed by the Kaplan-Meier method. 
Results: A total of 666 differentially expressed genes (DEGs) were identified. The 137 upregulated genes 
were mainly enriched in the cell cycle, P53 signaling pathway, and extracellular matrix-receptor interaction, 
whereas the 529 downregulated genes were enriched in cytochrome P450 xenobiotic and drug metabolism, 
and cytokine-cytokine receptor interaction. A total of 15 hub genes were identified from the protein-protein 
interaction (PPI) network and 10 of them were strongly associated with HBV+ HCC. The expression of 9 
hub genes (CDK1, NDC80, TYMS, AURKA, FOXM1, CDC45, ZWINT, PBK, and TPX2) was associated with 
poor overall survival. Validation of TYMS and CDC45 protein expression levels in clinical samples by IHC 
showed that they were higher in HBV+ HCC than in HBV- HCC or normal tissue and were associated with 
poor patient survival.
Conclusions: HBV may induce HCC through regulation of host gene expression. Among the hub DEGs 
identified, 9 key genes could be used as new prognostic biomarkers and treatment targets for HBV+ HCC.
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Introduction

Hepatocellular carcinoma (HCC) has dismal prognosis, 
remaining one of the leading causes of cancer-related deaths 
worldwide (1). Chronic persistent infection of hepatitis B 
virus (HBV) is the main risk factor associated with a sharp 
increase in the HCC rate (2). Recent extensive studies 
focused on the treatment of HBV-positive (HBV+) HCC 
have reported numerous biomarkers that are effective for 
the diagnosis of HBV infection and HBV+ HCC (3-5). 
Nevertheless, despite all the efforts HCC is still projected 
to become the third major cause of cancer-associated 
deaths by 2030 (6). Therefore, further elucidation of the 
mechanisms underlying the HBV oncogenic activity should 
aid in the development of effective therapies for HBV-
associated HCC, which has become increasingly urgent.

Recent advances of microarray and sequencing 
technologies have made possible simultaneous detection 
of thousands of genes, which are deregulated at the 
transcriptional level in cancer and which play a pivotal 
role in carcinogenesis and disease progression (7). Joint 
analysis of gene expression profiles and clinical data allows 
identification of many potential prognostic biomarkers 
and drug targets. Although a number of gene expression 
profiling studies on HCC have been conducted in recent 
years (8), few of them distinguished between HBV-positive 
and HBV-negative HCC and explored the precise oncogenic 
mechanisms triggered by HBV. Moreover, these studies 
may show inconsistent results because of tissue or sample 
heterogeneity, and some of them lack detailed clinical 
information necessary to determine the clinical value of 
differentially expressed genes (DEGs). To date, integrative 
analysis combining high-throughput technologies 
and bioinformatics makes it possible to overcome 
some of these disadvantages. Thus, Halgand et al. (9)  
carried out comparative microarray and transcriptomics 
analyses of HBV+ HCC and non-tumor liver samples. 
However, functional annotation and exploration of key 
genes among the DEGs and comprehensive evaluation of 
their clinical value remain to be performed.

In the present work, we identified hub genes upregulated 
in HBV+ HCC compared with normal tissue and explored 
potential pathways in which these genes might be involved. 
Our results indicate that 9 key genes might be used as new 
prognostic biomarkers and treatment targets for HBV+ 

HCC, and 5 compounds might serve as novel drugs for 

HBV+ HCC therapy.

Methods

Microarray data

Gene expression profiles were extracted from the GSE47197 
dataset, which was downloaded from the publicly available 
Gene Expression Omnibus (GEO) database. GSE47197 is 
based on the Agilent GPL16699 platform (Agilent-039494 
SurePrint G3 Human GE v2 8x60K Microarray) and has 
been submitted by Halgand et al. (9); it contains 124 HBV-
positive samples, including HCC and matched non-tumor 
liver tissues.

Screening of DEGs

To identify DEGs, transcriptional profiles of HCC and non-
tumor tissues were compared using GEO2R (https://www.
ncbi.nlm.nih.gov/geo/geo2r/), which is a freely available 
online tool enabling comparison of multiple sample groups 
after submission of a GEO series accession number (10). 
The DEG list was created based on the limma R package 
in GEO2R; P<0.05 and fold-change (FC) >2.0 were used as 
the cut-off criteria.

Gene ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis of DEGs

Multiple open online databases were used to annotate 
candidate DEGs and analyze their biological roles 
and pathway enrichment. Database for Annotation, 
Visualization, and Integrated Discovery (DAVID; https://
david.ncifcrf.gov/) (11) was used to analyze molecular 
functions (MFs), biological processes (BPs), and cellular 
components (CCs); P<0.05 was set as the cut-off criterion. 
KEGG Orthology-Based Annotation System (KOBAS) v3.0 
(http://kobas.cbi.pku.edu.cn) (12) was used for annotation 
and identification of the enriched pathways in the submitted 
gene set.

Construction of the protein-protein interaction (PPI) 
network and module analysis 

Search Tool for the Retrieval of Interacting Genes 
(STRING; https://string-db.org/) is a freely available online 
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database designed to explore functional interactions among 
proteins. STRING version 10.5, which includes 9,643,763 
proteins from 2,031 organisms, was used to construct the 
PPI network to determine potential relationships among 
the 666 identified DEGs; medium confidence ≥0.4 was 
selected as the cut-off criterion. The obtained PPI network 
was visualized using the Cytoscape software; the Molecular 
Complex Detection (MCODE) plugin was applied to screen 
the top 2 modules based on the following parameters: 
degree cut-off =2, node score cut-off =0.2, K-Core =2, 
and maximum depth from seed =100. Pathway enrichment 
analysis of the DEGs in the modules was performed to 
explore the corresponding potential biological functions.

Hub gene identification and expression level validation 

To determine the key genes among the DEGs, we used 
cytoHubba, a Cytoscape plugin enabling identification of 
the core genes in a biological network by ranking nodes 
with 11 different analysis methods (13). Among these 
methods, maximal clique centrality (MCC) showed greater 
accuracy in predicting essential proteins in the PPI network 
and was used to identify the key candidate genes among 
the DEGs, which might play vital roles in physiological 
regulatory functions. To confirm the precision of hub gene 
identification, mRNA expression levels of the selected 
genes were validated using the Chen Liver dataset in the 
Oncomine database (https://www.oncomine.org), an online 
interactive cancer database for analysis of DNA and RNA 
expression data (14,15), and GSE14520 and GSE121248 
datasets of HBV+ HCC, HBV− HCC, and non-tumor 
samples.

Survival analysis and prognostic value assessment of the 
hub genes

To further explore the prognostic value of the hub genes 
confirmed to be differentially expressed in the Oncomine 
database and GSE14520 and GSE121248 datasets, Kaplan-
Meier Plotter (http://kmplot.com/analysis/) was used. This 
database integrates published microarray datasets from 
GEO, European Genome-Phenome Archive (EGA), and 
The Cancer Genome Atlas (TCGA), enabling to assess the 
effect of genes on survival using samples of patients with 
cancer, including liver cancer. Hazard ratios (HRs) with 
95% confidence intervals (CIs) and log rank P values were 

computed and plotted. 

Patients

This retrospective study involved 77 patients with the 
pathological diagnosis of HCC who underwent surgery 
between 2011 and 2018 at the Fujian Medical University 
Union Hospital (Fuzhou, China); patients with alcoholic 
hepatitis and other types of hepatitis (such as caused 
by HCV) were excluded. Demographic and clinical 
characteristics of the 77 patients with HCC are shown in 
Table 1. The patients were followed up every six months, 
beginning at three months after operation until December, 
2018. Tissue samples were taken from resected primary 
tumors and survival data were collected through telephone 
and the Social Security Death Index. This research was 
approved by the Ethics Committee of the Fujian Medical 
University Union Hospital.

Immunohistochemistry (IHC)

The expression of thymidylate synthase (TYMS) and 
CDC45 proteins was analyzed in paraffin-embedded 
HCC tissues by IHC using rabbit polyclonal anti-human 
antibodies against TYMS and CDC45 (1:100 dilution; 
Proteintech, Chicago, IL, USA) as previously described (16).  
Each section was independently assessed by two pathologists 
blind to the patients’ clinical information and was assigned 
a mean score (0 to 3) based on staining intensity and the 
proportion of tumor cells demonstrating unequivocal 
positive reaction; scores 0 or 1 indicated low expression and 
2 or 3—high expression.

Exploration of co-regulated expression patterns and gene 
set enrichment analysis (GSEA)

Co-regulated gene expression models contain two sets of 
genes: those with the same expression patterns and identical 
behavior (up- or downregulation) and those with different 
expression patterns and contrary behavior. To explore the 
co-regulated expression model of the hub genes, we used 
the “corrplot” R package. The KEGG pathways for each 
hub gene were determined using GSEA (http://www.
broadinstitute.org/gsea/index.jsp), an efficient method 
to identify BPs regulated by highly expressed genes in a 
large gene set, which may be closely related to a disease 
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phenotype (17). P<0.05 and the False Discovery Rate (FDR) 
<0.05 were used as the cut-off criteria. 

Drug mining

Potential drugs for the treatment of HBV+ HCC were 
selected using the Connectivity Map (CMap) database 
(https://portals.broadinstitute.org/CMap/) containing 
numerous gene expression profiles from cultured cells 
treated with bioactive small-molecule compounds (18). 
By matching gene expression patterns of HCC and drug-
treated cells, we determined whether they had the same 
(positive score) or opposite (negative score) gene expression 
signatures, which would identify drugs with a potential to 
cause or treat the disease, respectively. The selection criteria 
were P<0.001 and Mean >0.5.

Statistical analysis

Differences between groups were statistically analyzed 
with one-way ANOVA. The difference in TYMS and 

CDC45 expression between HBV+ HCC and HBV− HCC 
was determined using Chi-square test and the correlation 
between TYMS and CDC45 levels and patient survival 
was evaluated by the Kaplan-Meier estimator followed by 
log-rank test. P<0.05 was considered to indicate statistical 
significance.

Results

Overview of gene expression profiles and identification of 
DEGs

The overall workflow of data processing is presented in 
Figure 1A. Comparison of HBV+ HCC and non-tumor liver 
samples revealed 137 upregulated and 529 downregulated 
DEGs in HCC (Figure 1B); the top 50 upregulated and 50 
downregulated DEGs are shown on a heat map (Figure 1C).

Functional annotation of DEGs by GO and KEGG 
pathway analyses

GO analysis of DEGs induced by HBV revealed that the 
upregulated DEGs were particularly enriched in such CCs 
as the nucleus, cytoplasm, and nucleoplasm, whereas at the 
MF level, they were enriched in protein binding, DNA 
binding, and ATP binding, and at the BP level—in cell 
division, mitotic nuclear division, and cell proliferation 
(Figure 2A).

The downregulated DEGs were mainly associated with 
extracellular exosomes, the extracellular region, and the 
cytosol at the CC level, protein homodimerization activity, 
and receptor binding at the MF level, and oxidation-
reduction process, immune response, and inflammatory 
response at the BP level (Figure 2B).

To further analyze the pathogenic mechanism of HBV, 
the identified DEGs were subjected to KEGG pathway 
analysis. The results showed that the upregulated genes 
were mainly associated with such KEGG terms as cell cycle, 
P53 signaling pathway, and extracellular matrix-receptor 
interaction (Figure 2C), whereas the downregulated genes 
were mostly enriched in metabolism pathways associated 
with P450 and pathways related to cancer (Figure 2D).

Identification of core modules and hub genes based on the 
PPI network

As the highest expression differences do not necessarily 
correlate with the biological significance of the gene, we 

Table 1 Patients’ characteristics (n=77)

Variable n %

Age

<60 56 72.7

≥60 21 27.3

Gender

Male 54 70.1

Female 23 29.9

HBV infection

Positive 67 87

Negative 10 13

TYMS expression

Low 46 59.7

High 31 40.3

CDC45 expression

Low 37 48.1

High 40 51.9

Survival

Alive 65 84.4

Dead 12 15.6
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Figure 1 Overview of the study design, gene expression profiling, and identification of differentially expressed genes (DEGs). (A) Flowchart 
describing the study design; (B) Volcano plot representation of 666 DEGs identified based on the criteria of P<0.05 and fold change ≥2.0. 
Black, genes cannot be considered DEGs as they do not meet the criterion of fold change ≥2; Red and green, DEGs with fold change ≥2. (C) 
Heat map of the top 100 DEGs: 50 upregulated (red) and 50 downregulated (green).
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analyzed the PPI network to discover core regulatory genes. 
Based on the STRING database, a total of 447 nodes and 
3,535 protein pairs were found with medium confidence 
≥0.4. The PPI network was visualized using Cytoscape and 
subjected to module analysis using MCODE; as a result, 
the top 2 modules were identified and protein interactions 
of DEGs from these modules were established (data not 
shown). Signaling pathway enrichment analysis showed 
that the first module was mostly related to the cell cycle, 
transcriptional regulation by p53, and FOXM1 transcription 
factor network (Table 2), whereas the second module was 
significantly enriched in platelet degranulation, response 
to elevated platelet cytosolic Ca2+, and platelet activation, 
signaling, and aggregation (Table 3). Using the MCC 
method, we identified top 15 hub genes, including CDK1, 
CCNB1, NDC80, TYMS, and AURKA (Table 4), which 
might play pivotal roles in the initiation and progression of 
HBV+ HCC, and constructed their interaction network using 
STRING. The results revealed the interactive relationship 
between the hub genes and the supporting sources of 
evidence, including experimental findings, databases, 
predicted interactions, and text mining (Figure 3A).  
Furthermore, there were differences in the expression of 
the hub genes between HBV-positive normal liver tissues 
and HCC (Figure 3B), suggesting that these genes may 
be involved in tumorigenesis and, thus, deserve further 
analysis.

Expression validation and survival analysis of the 
identified hub genes 

To further verify the reliability of the identified hub genes, 
we analyzed the data on HBV-positive HCC samples 
and non-tumor liver tissues from the Oncomine database 
and other HBV-related HCC datasets (GSE14520 and 
GSE121248). The results indicated that 10 upregulated 
hub genes were also significantly upregulated in all three 
databases (Figure 4A,B,C). We also assessed the prognostic 
potential of the hub genes based on Kaplan-Meier survival 
curves and found that high expression of CDK1, NDC80, 
TYMS, AURKA, FOXM1, CDC45, ZWINT, TPX2, 
and PBK was significantly associated with shorter overall 
survival of patients with HCC (Figure 4D).

Association of TYMS and CDC45 protein expression with 
HBV+ HCC and patient survival

 The results obtained from the analysis of public datasets 

were validated in 77 randomly selected HBV-positive and 
-negative HCC samples and normal liver tissues by IHC. 
The data indicated that the expression of TYMS and CDC45 
proteins was higher in HBV+ HCC than in HBV− HCC 
(P<0.05 by Chi-square test) or normal liver tissue (P<0.05 
by Chi-square test) (Figure 5A). Kaplan-Meier survival 
analysis showed that high TYMS and CDC45 expression 
was associated with poor patient survival (Figure 5B). These 
results are consistent with database analyses.

Exploration of co-expression pattern and GSEA

Co-expression models of the 9 hub genes were evaluated by 
correlation analysis, which revealed that all these genes had 
positive relationship with each other (Figure 6A), suggesting 
that they might be involved in the same signaling pathway 
regulating the development of HBV+ HCC. To verify this 
hypothesis, the KEGG pathways for the 9 genes were 
searched using GSEA. Consistent with the correlation 
analysis, the results indicated that these genes participated 
in eight signaling pathways (normalized P<0.05 and FDR 
<0.25; Figure 6B).

Mining potential drugs for patients with HBV+ HCC

In total, 16 small compounds that met the inclusion criteria 
were selected from the CMap database; among them, 11 
and 5 had positive and negative scores, respectively (Table 5). 
The gene expression patterns induced by the compounds 
with a positive score, such as adiphenine and isoflupredone 
were similar to that of HBV+ HCC, indicating that these 
drugs should not be used to treat patients with HBV+ HCC. 
In contrast, drugs with inverse gene expression signatures 
(negative score) could have a therapeutic effect on HBV+ 

HCC; among them, apigenin and phenoxybenzamine had 
the highest negative score and enrichment value, indicating 
that they might have better therapeutic effects than the 
other compounds.

Discussion

Although many basic and clinical studies have explored the 
carcinogenic mechanism of HBV infection and treatment 
approaches for HBV-positive HCC in the past decades 
(19,20), most of them focused on a single gene or evaluated 
a single cohort. To improve the reliability of analytical 
results, in this work we integrated different cohort datasets 
from GEO and Oncomine databases. The 666 DEGs (137 
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upregulated and 529 downregulated) identified from the 
GSE47197 dataset were subjected to GO, KEGG pathway, 
and PPI analyses, and the top 2 modules and 15 hub genes 
were selected. Considering that the application of only 
KEGG pathway analysis may result in missing some critical 
pathways, the modules were then examined using multiple 
online databases (KEGG, Reactome, Wikipathways, PID, 
and Biocarta). The expression of the hub genes and their 
association with disease prognosis were further validated 
using several datasets (Oncomine, GSE14520, and 
GSE121248) and multiple cases collected in our hospital. 
The obtained data was used to identify 5 compounds that 
might serve as novel drugs for the treatment of HBV+ HCC.

It has been reported that the deregulation of the 
inflammatory response and cell cycle progression are 
the two main causes of HCC (21,22). By escaping host 
immune clearance, HBV can continuously replicate in 
patients, leading to chronic hepatitis, which creates a 
favorable environment for the initiation and development 
of cirrhosis and HCC. Moreover, HBV can also induce the 
proliferation of HCC cells by promoting the expression of 
cell cycle-associated proteins. Consistent with this notion, 
our GO analysis showed that the upregulated DEGs were 
significantly enriched in the BP of the cell cycle, whereas 
the downregulated DEGs were mainly enriched in the 
immune response and inflammatory response. In agreement 

Table 2 Signaling pathway enrichment analysis of DEGs from module 1

Pathway name Count P value Source

M phase 14 1.06E-13 Reactome

Cell cycle checkpoints 8.74E-11 Reactome

Signaling by Rho GTPases 0.00000127 Reactome

Retinoblastoma (RB) in cancer 2.79E-13 WikiPathways

Cell cycle 2.65E-10 KEGG

G2/M checkpoints 1.97E-10 Reactome

Mitotic G1–G1/S phases 6.74E-10 Reactome

Mitotic G2–G2/M phases 1.62E-08 Reactome

G1/S transition 7.22E-11 Reactome

M/G1 transition 2.99E-11 Reactome

Transcriptional regulation by TP53 0.000236 Reactome

G1 to S cell cycle control 2.61E-09 WikiPathways

FOXM1 transcription factor network 5.94E-09 PID

PLK1 signaling events 6.87E-09 PID

Activation of ATR in response to replication stress 2.30E-09 Reactome

DNA repair 0.000691 Reactome

CDK Regulation of DNA replication 2.95E-09 Reactome

APC/C-mediated degradation of cell cycle proteins 0.000000124 KEGG

Unwinding of DNA 2.77E-10 Reactome

APC/C-mediated degradation of cell cycle proteins 5 0.000000244 Reactome
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Table 3 Signaling pathway enrichment analysis of differentially expressed genes from module 2 

Pathway name Count P value Source

Platelet degranulation 16 1.47E-31 Reactome

Response to elevated platelet cytosolic Ca2+ 2.75E-31 Reactome

Platelet activation, signaling and aggregation 4.27E-26 Reactome

Complement and coagulation cascades 5.21E-12 KEGG

Human complement system 1.45E-09 WikiPathways

IGF1R signaling cascade 0.000298 Reactome

Signaling by type 1 insulin-like growth factor 1 receptor 0.000302 Reactome

Extracellular matrix organization 0.000535 Reactome

Regulation of IGF transport and uptake by IGFBPs 0.00000264 Reactome

Apoptotic signaling pathway 0.000186 WikiPathways

Signaling by PDGF 3 0.00911 Reactome

Table 4 Top 15 hub genes with higher maximal clique centrality value of connectivity

Gene name P value logFC

BIRC5 1.96E-20 2.4007

CCNB1 6.00E-22

CCNB2 6.59E-18

UBE2C 1.87E-16

CDKN3 5.76E-19

NDC80 1.48E-21

PBK 6.72E-17

CDK1 7.08E-18

AURKA 1.82E-15

CDC45 3.35E-17

FOXM1 1.36E-14

TYMS 4.05E-09

TPX2 2.62E-12

ZWINT 5.97E-15

RAD51 5.42E-14 1.0024

MCC, maximal clique centrality; FC, fold change.
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Figure 3 Identification of core modules and hub genes based on the PPI network. (A) Protein interaction network of the top 15 hub genes; (B) 
Heat map showing differential expression of 15 hub genes in HBV+ normal liver and HBV+ HCC. HCC, hepatocellular carcinoma.

with GO analysis, the results of KEGG analysis revealed 
that the upregulated DEGs were associated with the cell 
cycle pathway, P53 signaling pathway, and pathways in 
cancer, whereas the downregulated DEGs were involved in 
cytokine-cytokine receptor interaction, chemokine signaling 
pathway, and other inflammation-related pathways. 
Evaluation of DEGs from the first module in the PPI 
network further confirmed these results. However, analysis 
of DEGs in the second module showed that most of them 
were significantly enriched in platelet-associated signaling 
pathways, including platelet degranulation, platelet 
cytosolic Ca2+, and platelet activation. A meta-analysis 
study has revealed that an increased platelet to lymphocyte 
ratio indicates poor prognosis for patients with HCC (23) 
and growing evidence suggests that platelets are involved 
in cancer through crosstalk between tumor cells (24).  
Currently, there are no reports on the association of 
platelets with HBV+ HCC, which should be clarified in the 
future.

Validation of the identified hub genes using several 
HBV-related datasets revealed that 10 genes were 
significantly upregulated in HBV-positive HCC compared 
with normal liver tissue and survival analysis indicated 
that 9 of them, CDK1, NDC80, TYMS, AURKA, FOXM1, 

CDC45, ZWINT, PBK, and TPX2, were associated with 
poor prognosis for patients with HCC, proving their crucial 
role in carcinogenesis. The functional significance of some 
of these genes in HBV-induced HCC has been investigated 
in previous studies. Thus, Lei et al. (25) reported that 
HBV could enhance the activity of CDK1 and promote 
hepatocyte mitotic entry by interacting with C53, suggesting 
that CDK1 might play a pivotal role in HBV-induced 
HCC. Consistent with our findings, it was shown that the 
expression level of Kinetochore protein NDC80 homolog 
was significantly increased in HBV+ HCC, whereas NDC80 
knockdown suppressed the proliferation of HepG2.2.15 
hepatoma cells stably expressing HBV (26) and promoted 
cell apoptosis and cell cycle arrest in the S-phase (27). The 
upregulation of Aurora kinase A (AURKA) was shown to 
induce epithelial-mesenchymal transition and cancer stem 
cell properties via the PI3K/ATK pathway (28), which was 
identified by KEGG pathway analysis as associated with the 
upregulated DEGs in this study. High expression levels of 
FOXM1 were correlated with malignant characteristics and 
poor outcome of patients with HBV+ HCC and FOXM1 
upregulation induced by the HBV X protein promoted the 
invasion and metastasis of HCC cells (29). Consistent with 
these findings, our pathway analysis of the genes in the first 
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Figure 4 Expression validation and survival association analysis of the hub genes. (A,B,C) Validation of the expression level of the hub genes 
using the Oncomine database (A) and GSE14520 (B) and GSE121248 (C) datasets downloaded from the GEO database; (D) prognostic 
value of the 9 hub genes. Red and black lines indicate high and low expression of the hub genes, respectively. HR, hazard ratio; GEO, Gene 
Expression Omnibus.
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Figure 5 Expression of TYMS and CDC45 proteins in patients’ tissues and its association with survival. (A) Representative images of TYMS 
and CDC45 staining in HBV+ HCC, HBV− HCC, and normal tissues; (B) Kaplan-Meier curves according to TYMS and CDC45 expression 
levels in HBV+ HCC and HBV− HCC samples from 77 patients; P value was determined by log-rank test. HCC, hepatocellular carcinoma.
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Figure 6 Co-expression patterns and gene set enrichment analysis (GSEA). (A) Correlation analysis of the 9 hub genes. The distribution 
of expression level of each gene is shown on the diagonal; dots represent the bivariate scatter plots with a fitted line, whereas values are the 
correlation coefficient of each gene pair; the red asterisk indicates the significance level. ***, P<0.001. (B) GSEA of each hub gene based on 
the GSE47197 dataset. Only eight representative functional gene sets involving all hub genes are listed.
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Table 5 Target drugs mining of DEGs

CMap name Mean N Enrichment P value Specificity % non-null

Adiphenine 0.893 5 0.93 0 0 100

Isoflupredone 0.857 3 0.957 0.0001 0 100

Viomycin 0.766 4 0.889 0.00014 0.0058 100

Atractyloside 0.655 5 0.827 0.00032 0.0056 100

Pheneticillin 0.696 4 0.859 0.00052 0 100

Thioperamide 0.62 5 0.811 0.0006 0 100

Nadolol 0.692 4 0.854 0.00062 0.0055 100

Tranexamic acid 0.632 5 0.804 0.00066 0.0061 100

Thiamphenicol 0.764 5 0.804 0.00066 0.0185 100

Cefamandole 0.634 4 0.852 0.00072 0 100

Felbinac 0.668 4 0.849 0.00074 0.0175 100

Apigenin −0.824 4 −0.921 0.00006 0.0054 100

Trifluoperazine −0.528 16 −0.518 0.00016 0.0865 75

Phenoxybenzamine −0.79 4 −0.886 0.00038 0.0091 100

Resveratrol −0.739 9 −0.632 0.00058 0.0556 100

Repaglinide −0.77 4 −0.856 0.00074 0 100

DEGs, differentially expressed genes. Mean: the average connectivity score; N: numbers of all the replicates of a single compound; 
Enrichment: enrichment score; % non-null: percent of non-null experiment. A positive connectivity score indicates that the compound 
presents similar expression signature with disease. A negative connectivity score indicates the compound exhibits an inverse expression 
signature with disease.

module showed that the FOXM1-regulated transcriptional 
network was associated with HBV+ HCC. A recent study 
revealed that ZWINT, known to be involved in kinetochore 
function, promoted HCC cell proliferation by regulating 
cell cycle proteins, including CDK1 (30), which is also 
an important hub gene identified in this study. TPX2, a 
microtubule-related protein, was found to contribute to 
the growth and metastasis of HCC, and targeting this gene 
suppressed carcinogenic processes by arresting mitosis 
and inducing genomic instability (31,32). It was also 
shown that the overexpression of a serine/threonine kinase 
PBK, another hub gene identified here, promoted the 
migration and invasion of HCC through the ETV4-uPAR  
pathway (33). However, there are no reports on the 
association of HCC with the hub genes TYMS and CDC45, 
which are involved in DNA biosynthesis. Therefore, we 
verified the expression levels of TYMS and CDC45 proteins 
in clinical samples and observed that they were higher in 

HBV+ HCC than in HBV− HCC or normal tissues and were 
associated with poor patient outcome. 

Comprehensive gene expression profiling of HBV-
positive tumors and non-cancerous tissues enabled us to 
reveal changes in gene activity and explore new candidate 
drug targets. Using CMap, we identified 16 bioactive 
molecules potentially capable of affecting, both positively 
and negatively, HBV-induced carcinogenesis. Several studies 
have discovered compounds targeting novel mechanisms 
involved in disease pathogenesis by using CMap analysis. 
Thus, apigenin was identified as a potential anti-fibrotic 
drug and its efficacy was proved in human hepatic stellate 
cells (34). Apigenin was also reported to have anti-liver 
cancer effects by inhibiting the expression and activity of 
NF-κB and Snail and to enhance the chemotherapeutic 
sensitivity of HCC cells through regulation of the miR-
520b/ATG7 pathway (35,36). In this study, CMap analysis 
also revealed that apigenin had the highest negative score, 



Annals of Translational Medicine, Vol 8, No 7 April 2020 Page 15 of 17

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(7):478 | http://dx.doi.org/10.21037/atm.2020.03.94

suggesting its potential as a drug to treat HBV-related 
HCC. We also found that trifluoperazine and resveratrol 
might have therapeutic effects on HBV+ HCC. Previous 
studies reported that trifluoperazine inhibited the growth 
of two HCC cell lines by activating the FOXO1-related 
pathway (37), whereas resveratrol improved fatty liver 
conditions by downregulating lipogenesis and protected 
HBV transgenic mice against HCC by upregulating 
antioxidant activity (38). Although many studies showed 
therapeutic effects of phenoxybenzamine and repaglinide in 
different cancer types, there are no such reports on HCC. 
Thus, the compounds identified via CMap in this work 
deserve further investigation as candidate drugs for patients 
with HBV-related HCC.

In conclusion, our bioinformatics analysis indicated 
that HBV may promote the development of liver cancer 
through regulation of host gene expression. The selected 
9 hub genes might serve as biomarkers and treatment 
targets in HBV+ HCC, whereas the 5 identified compounds 
could be considered as novel candidate drugs against 
HBV+ HCC. However, the potential HBV-associated 
carcinogenic mechanisms and the candidate drugs revealed 
by bioinformatics analysis need to be experimentally 
confirmed, and we aim to verify the functional activity 
of the 9 key genes associated with HBV+ HCC and the 
therapeutic effects of the 5 selected compounds in our 
future work.
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