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Abstract

Objective Phase-contrast magnetic resonance imaging (PC-MRI) is a non-invasive method used to compute blood flow
velocity and volume. This systematic review aims to discuss the current status of renal PC-MRI and provide practical rec-
ommendations which could inform future clinical studies and its adoption in clinical practice.

Methodology A comprehensive search of all the PC-MRI studies in human healthy subjects or patients related to the kidneys
was performed.

Results A total of 39 studies were included in which PC-MRI was used to measure renal blood flow (RBF) alongside other
derivative hemodynamic parameters. PC-MRI generally showed good correlation with gold standard methods of RBF meas-
urement, both in vitro and in vivo, and good reproducibility. Despite PC-MRI not being routinely used in clinical practice,
there are several clinical studies showing its potential to support diagnosis and monitoring of renal diseases, in particular
renovascular disease, chronic kidney disease and autosomal dominant polycystic kidney disease.

Discussion Renal PC-MRI shows promise as a non-invasive technique to reliably measure RBF, both in healthy volunteers
and in patients with renal disease. Future multicentric studies are needed to provide definitive normative ranges and to dem-
onstrate the clinical potential of PC-MRI, likely as part of a multi-parametric renal MRI protocol.
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Introduction

The assessment of renal blood flow (RBF) is particularly
important for the diagnosis and monitoring of renal diseases,
including chronic and acute kidney diseases, renovascular
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disease, and autosomal dominant polycystic kidney disease
(ADPKD), because changes in RBF are prominent at the ear-
liest stages of disease. Different techniques have been used
to determine RBF in patients with renal disease; however,
these techniques may be unacceptably invasive or unable to
accurately measure RBF [1]. Color Doppler ultrasonography
is easily accessible, but is user dependent, and it can be tech-
nically challenging to make accurate flow measurements in
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overweight patients. RBF can be estimated from para-ami-
nohippurate (PAH) renal clearance. PAH is filtered freely at
the glomerulus and secreted by the tubules so that it is almost
completely removed from the blood that passes through the
kidneys. Therefore, the rate at which the kidneys can clear
PAH (measured during a continuous infusion) reflects total
renal plasma flow. However, the renal extraction rate of PAH is
not 100%, meaning that the calculated ‘effective renal plasma
flow’ (ERPF) tends to underestimate the true renal plasma
flow. Renal extraction of PAH is usually assumed to be 85%
in healthy subjects [2, 3], but can go down to 70% in patients
with renal impairment [2], and the individual reduction in PAH
clearance is rather unpredictable [4]. Since ERPF is calculated
by dividing PAH clearance by PAH renal extraction ratio, the
variability of the latter is a potential source of error [5] reduc-
ing the accuracy of the method. Phase-contrast magnetic reso-
nance imaging (PC-MRI) is a MRI technique for determining
blood flow velocity and volume in a specific vessel during the
cardiac cycle. PC-MRI is already used in mainstream clini-
cal practice in cardiology and has been extensively validated
[6]. It is also reliably used in newborns [7] whose vessel size
can be similar to adult renal vessels. PC-MRI, with no need
for contrast agents potentially associated with risks for renal
patients, provides a non-invasive alternative to measure RBF
in patients.

The present article aims to systematically review all
the existing literature on renal PC-MRI in healthy volun-
teers and patients with renal disease, to discuss the current
status of renal PC-MRI as an imaging biomarker, and to
provide practical recommendations which could inform
future clinical studies and renal PC-MRI adoption in clini-
cal practice.

Methodology (inclusion and exclusion
criteria)

A comprehensive search of all the PC-MRI studies in
human subjects or patients related to the kidneys, exclud-
ing animal experiments, and reporting renal blood flow
velocity or volume, was performed on 31 March 2019 using
PubMed, and crossed checked with references cited by the
related publications. Search terms are available as Online
Resource (supplementary material, Section S2). A total of
54 hits were found, identifying 39 papers meeting the inclu-
sion criteria. All the human studies involving renal PC-MRI
and reporting RBF values have been summarized in tables
and are available as Online Resource (see Supplementary
review table).
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PC-MRI acquisition and analysis
PC-MRI acquisition methods

PC-MRI technique is based on applying magnetic gradi-
ents such that the signal phase is made sensitive to the
velocity of moving tissue or blood. This is obtained by
insertion of a bipolar gradient pair between excitation
and signal read-out. The velocity or flow sensitivity of
the sequence is defined by the velocity encoding (Venc)
parameter, which can be modified by varying the ampli-
tude and duration of the bipolar gradient pair, and can be
computed using the following formula:

Ad

vy = — X Veng,
T

where A¢ represents the phase difference. As signal phase is
only unique between — = and +, this corresponds to veloci-
ties being unique from — Venc to + Venc [8]. The obtained
signal phase is carried over into the phase of the complex
reconstructed images, and therefore, after reconstruction,
two sets of images exist: the magnitude images and the
velocity maps, which are the phase images.

The renal PC-MRI sequence is usually based on a 2D
spoiled gradient echo pulse sequence with short repetition
time (TR) and low flip angle. In general, TR and echo time
(TE) should be the shortest possible to allow faster imag-
ing and less flow induced artifacts. On a modern scanner,
TE is usually below 6 ms, and TR is shorter that 13 ms.
The flip angle should be low to allow rapid imaging, but
is often slightly higher than the optimal flip angle, to
increase inflow enhancement. Usually, in renal PC-MRI,
flip angles between 10° and 30° are used. Since measure-
ment of RBF is most commonly performed in arteries,
ECG synchronization is normally applied. This can be
performed either by prospective triggering or retrospec-
tive gating. The retrospective method, for which data are
sampled continuously and sorted during reconstruction
using the acquired ECG signal, is most commonly used
currently. There have been attempts to measure renal
artery flow without ECG gating [9, 10], which is faster
and allows for breath-holding, but this reduces the spatial
resolution or temporal sampling, degrading the accuracy
and repeatability of RBF measurements [9].

PC-MRI scans are acquired as multi-phase or cine
images, where a number of temporal frames during the
cardiac cycle are acquired. The obtainable number of
frames is inversely related to total scan time, because the
number of sampled k-lines per frame (the turbo-factor)
determines the duration for each frame. The number of
frames used in renal artery blood flow measurements
ranges from 15 to 80, but typically 20-30 frames are used.
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Fig. 1 Schematic representa-
tion of phase-contrast magnetic
resonance imaging (PC-MRI)
acquisition and processing. a
Prescription of PC-MRI of the
right renal artery with acquisi-
tion plane perpendicular to the
vessel direction. b Acquired
coronal oblique magnitude (left)
and velocity (right) images,
with renal artery highlighted.

¢ Profile of renal artery blood
flow (RABF) in the acquisi-
tion plane defined in a. d 3D
reconstruction showing average d
RABF computed in the right
renal artery

As flow measurements are based on the signal phase, the
method is quite sensitive to B, inhomogeneity. There-
fore, two segments with different velocity sensitivity are
needed. These are acquired after each other, reducing the
temporal resolution or increasing total scan time. The
resulting velocity images are based on subtraction of the
phase images from the two segments. Due to eddy-current
effects and concomitant gradient fields, there might still
be offset artifacts in the velocity images, i.e., zero veloc-
ity is not shown as zero. This can be corrected during
post-processing by fitting a background plane to stationary
regions [11]. This is still sometimes applied, but modern
scanners have integrated correction methods for this error,
and, therefore, offset correction should no longer be nec-
essary [12]. When measuring blood flow in vessels which
are moving significantly with respiration, such as the renal
vessels, respiration control is often used. Three different
strategies can be followed: making the imaging sequence
so short (< 15 s) that breath-holding can be used [13];
using respiration gating [14, 15]; or making the scan time
duration sufficiently long that motion-induced artifacts
will partially be averaged out [16]. All three strategies
have been successfully applied. The scan time for measur-
ing in one artery, therefore, varies between 15 s [13] and
15 min [17]. Since a number of different functional MRI
measurements are often included alongside PC-MRI, the
scan time for the PC sequence should be kept below a few
minutes. The spatial resolution needed for obtaining rea-
sonably accurate mean flow values in vessels does not need
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to be too high. It has been shown that having just three
pixels across the vessel diameter provides accurate blood
volume flow rates [18]. With a renal artery diameter of
about 5 mm, an acquired pixel size of about 1.5 mm should
be sufficient. However, using a low spatial resolution may
complicate the identification of the vessels during analysis,
and, therefore, better spatial resolution is recommended,
if possible. Typically pixel sizes between 1.0 and 1.5 mm
have been used, and slice thickness of between 4 and
8 mm. Larger slice thickness would improve the signal-
to-noise ratio, but at the risk of partial volume errors [19].

In 2D PC-MRI, the orientation of the measurement slice
should be perpendicular to the vessel direction, as only
the through-plane velocity component is usually acquired
(Fig. 1). For measurements in renal arteries, a good survey
image, such as an angiography scan, is, therefore, strongly
recommended for clear depiction of the arteries, and also
to ensure that the plane is positioned prior to any bifur-
cations of the artery. Novel PC-MRI acquisition meth-
ods, such as the 4D flow [3D Cine PC MR angiography
(MRA)] technique, make the quantification of blood flow
in three dimensions possible, even during free breathing
[20, 21]. The main advantage of 3D PC-MRI over 2D PC-
MRI is that the former allows extracting blood velocity
and flow information on any plane, rather than in a single
double oblique 2D slice. Renal flow measurements can be
acquired on both 1.5 T and 3.0 T MR scanners. Both field
strengths are being used, and there is no clear conclusion
to which is preferable. Higher field strength will add to the
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Table 1 Recommendations for accurately measuring renal blood flow by phase-contrast MRI

Patient preparation
Hydration

Data acquisition

Slice orientation

TR, TE (ms)
Flip angle (°)

Velocity encoding (cm/s)
Spatial resolution

Motion compensation
Cardiac gating

Acquisition time

Potential confounder
Control by hydrating the patient whenever possible

Perpendicular to the vessel direction, prior to any bifurcations
Good survey scan (e.g., angiography) needed

Minimum to reduce acquisition time and flow-induced artifacts

Low to reduce acquisition time, but slightly higher than the optimal flip angle to
increase inflow enhancement [(10-30) range]

Higher than the peak velocity to avoid aliasing
Low enough not to compromise SNR (around 100)

Not too high-few pixels are enough
Not too low to reliably identify vessels

Breath-hold or respiratory gating

Recommended for arterial flow measurements
Either prospective or retrospective ECG

Below few minutes (to be compatible with multi-parametric MRI protocol)

Image post-processing
Offset correction

Fit background plane to stationary regions (unless correction already integrated in

the scanner)

ROI definition Circular or elliptic, covering the lumen but not the vessel wall
By manual, semi-automatic or automatic segmentation tools
To be adjusted to account for movement of the vessels during the cardiac cycle

uality control Careful visual inspection
y
Scan to be discarded in case of artifacts (even in few voxels of a single time frar 1e)

signal-to-noise ratio, but artifacts, such as offset errors,
might worsen. In most articles, the applied Venc is around
100 cm/s. It should be higher than the peak velocity to
avoid aliasing, but not much higher as this will compro-
mise the signal-to-noise ratio. Please refer to Table 1 for a
summary of practical recommendations.

In principle, RBF can be assessed in either renal arteries
or renal veins, and the results should be comparable. How-
ever, renal vein blood flow has been measured only in a few
papers [13, 19]. Measuring blood flow in the renal arteries is
generally preferred, because they are easier to locate and the
measurement planes are easier to position correctly. Alter-
natively, blood flow can be measured in the abdominal aorta
before and after giving rise to renal arteries (inflow and out-
flow), with total RBF computed from the difference between
the two aortic flows [22], based on the assumption that the
inflow value should be equal to the sum of measurements
of both renal arteries and outflow. The main advantages of
measuring blood flow in the aorta is the easier detection of
the vessel, the easier planning of the flow measurement slice,
and the limited motion during breathing limiting blurring
of the vessel contour [22]. Conversely, the main drawback
is the sometimes difficult placement of the inflow measure-
ment slice, due to the close proximity of renal arteries to the
mesenteric artery.

@ Springer

PC-MRI processing

Since blood flow measurement on PC-MRI is heavily
affected by aliasing artifacts, a careful visual inspection
beforehand is needed to have reliable RBF measurements.
In case of artifacts, even if only in few voxels of a single time
frame, the whole scan should be discarded [23].

Circular and elliptical regions of interest (ROIs) are com-
monly drawn on either the magnitude or the velocity images,
covering the lumen but not the wall of the vessel of interest,
with manual or semi-automatic methods using one of several
processing software programs [9, 10, 16, 24-27]. ROIs can-
not be kept constant across time frames, and should rather
be adjusted in each of them, to account for movement of the
vessels during the cardiac cycle, unless spatial registration
was performed beforehand. Alternatively, automatic ROI
segmentation techniques requiring no adjustment, such as
adaptive thresholding [28], graph searching [29], active con-
tour [30, 31], paraboloid velocity profiles [32] and k-mean
clustering [8], show promise.

The mean blood velocity (expressed in cm/s) is usually
computed as the average of the velocity images over all seg-
mented pixels of all time frames [22, 33]. Then, the mean
blood flow (Q, expressed in mL/min) (Fig. 1) is computed
by multiplying the mean velocity (v, in cm/s) by the

mean?
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ROI area (A) and the conversion factor between seconds and
minutes:

0 =60XAXVyem-

In case of 3D PC-MRI, 3D reconstruction modules from
a number of software programs can be used to visualize
streamlines, assess 3D blood velocity vectors, and compute
other hemodynamic parameters [20, 21]. However, at pre-
sent, despite 3D PC-MRI being possible, it still needs fur-
ther refinement in spatial and temporal resolution to robustly
allow for quantification.

PC-MRI biomarkers
Discovery

The feasibility of PC-MRI to measure blood flow in renal
vessels, using acquisition and processing methods described
above, has been well demonstrated in a number of clinical
studies (see Supplementary review table, Tables 2 and 3).
In1992, Sommer et al. first showed the promise of PC-MRI
to reproducibly measure blood flow in renal arteries and
veins [19]. Since then, a large body of studies have used
PC-MRI to measure RBF, alongside a number of derivative
biomarkers: renal plasma flow (RPF), computed as the prod-
uct of RBF times (1-hematocrit); renal vascular resistance
(RVR), computed as ratio between the mean arterial pres-
sure (MAP) and RBF, or ratio between (mean peritubular
capillary — renal venous pressure) and afferent RBF [15,
25, 34-36]; resistive index (RI), computed as [peak systolic
(PSV) — minimum diastolic velocity (MDV)]/PSV [12, 34];
renal blood flow index (RBFI), computed as RBF normal-
ized to body surface area [37]; filtration fraction (FF), com-
puted as percentage of the ratio between creatinine clearance
and RPF [17, 25, 38]; pulsatility index (PI), computed as
(PSV — MDV)/MDV [12]. An additional biomarker which
could be computed from PC-MRI is the systemic vascular
resistance index (SVRI), defined as (MAP — central venous
pressure)/cardiac index [38, 39].

Technical validation

Technical validation of quantitative PC-MRI has been per-
formed by comparison with alternative velocimetry/flow
measurement techniques both in vitro and in vivo (see
Table 4).

Comparison of PC-MRI against fluid collection in phantoms
of variable diameter Three studies have assessed PC-MRI
flow measures in phantoms with a range of diameters to
mimic the renal artery. King et al. [34] assessed RBF in a
flow phantom of diameters of 2 and 5 mm with pulsatile

flow. They showed PC-MRI accuracy was strongly related
to phase-encoding pixel resolution, but when optimized,
accuracy was excellent with errors in flow of < 1.4%. Dam-
breville et al. [40] performed prospective and retrospective
gated PC-MRI in phantom studies, validating steady state
and pulsatile PC-MRI flow measures against fluid collec-
tion. Results showed good accuracy, with deviations from
true flow consistently below 13% for vessel diameters of
3 mm and above. Spithoven et al. [41] validated PC-MRI
RBF measurements using flexible silicon phantoms of 5,
6, 7 and 8 mm renal artery diameter and 40% glycerol/60%
purified water to mimic blood. RBF determined simultane-
ously with PC-MRI and fluid collection showed excellent
agreement [correlation coefficient (7) of 0.97 (p <0.001)].

Comparison of PC-MRI flow against ultrasound in vitro
There are six studies using ultrasound measures as a refer-
ence technique for in vitro flow measurements, all of which
show a high degree of correlation. Hoppe et al. [42] showed
a good correlation (r=0.95) between PC-MRI flow meas-
urements in varying concentric stenosis with invasive Dop-
pler guidewire measurements. PC-MRI velocity has been
shown to be more accurate than Doppler ultrasound [43],
suggested to arise from the fact that ultrasound only meas-
ures flow velocities along the axis of the ultrasonic beam.
Laser Doppler velocimetry, which measures the velocity
component of a single particle at a “given point” perpen-
dicular to the axis of the light beam, has demonstrated a
wide range of accuracy for PC-MRI for both steady state and
pulsatile flows [44—46]. Particle image velocimetry, which
concurrently acquires 2D velocity information, has been
used to validate PC-MRI flow through stenotic phantoms
with various degrees of narrowing (r>0.99 and > 0.96 for
steady and pulsatile flows) [47].

Comparison of in vivo PC-MRI flow measures with alterna-
tive methods In vivo measures of RBF measured using PC-
MRI have been shown to yield a good correlation with “gold
standard” methods of RBF measurement, including PAH
clearance [41, 48-53], Doppler ultrasound flow probe meas-
urements [53], 99mTc-DTPA scintigraphy [48] or 133X enon
washout flow measurements [54] (see “Biological valida-
tion”). Studies have developed and validated more advanced
in vivo PC-MRI RBF measures. For example, Thomsen et al.
[55] validated segmented k-space velocity mapping against
conventional ECG-triggered PC-MRI, whilst Sommer et al.
[50] compared spiral PC-MRI techniques, showing a range
of agreement of +17.6% to +26.5%.

Reproducibility of in vivo PC-MRI flow measures Nine
studies have shown good reproducibility and low intra- and
inter-observer coefficient of variation (CV) of PC-MRI
RBF measures, as summarized in Table 5. Keegan et al.
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7 © gxp- - arteries [14, 22, 52]. However, as this approach is making
S — = B oy b S . . . ...
> = “ & g § £ £ 5 comparisons against the same measurement technique, it is
30 +Hd i‘ £ fa’“ é’- S 8 S o best considered an assessment of internal validity. Finally,
g 5= > s & 5 two of the included studies incorporated experimental arms
o g & & 5 » 8 O P p
° E g E2 38 Z 5 g in which PC-MRI was compared with direct measures of
a = = O S = 3 . . .
g 3 - = a ; 52 < 8 i vessel flow. Schoenberg et al. obtained in vivo reference
< N I 2 v o s £ = L . e .
n A S = H 2 g g 2 E ¢S _E] measurements using a transit-time US flow probe surgically
[ 5 . .
_ g CE z g @ «g‘ = implanted in the left renal artery of seven dogs [24] and
) 2 9 2 f E g —§ -_E < 3 using the same US method, Debatin compared measures of
- [ Zan=! > . . .
E = = 3 % 28 2 % > E’; flow in an ex vivo phantom constructed using a 6-cm seg-
= b5 2 'S o
5 o2 p § 822 = 5 £ = ment of human renal artery [49].
= Z 9 g 585 25 E 2
S > 3 £ 2222582387 ; ] i
2|3 P E é Seg 23 &3 Comparisons against PAH clearance All studies were small
e |3 2 = @ LEEET i in size (range 8—14 participants); five were undertaken in
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Table 5 Phase-contrast MRI of the renal arteries: inter-study, intra-observer and inter-observer reproducibility

Study Methods

Reproducibility results

King et al. [34] Repeated measurements
19 ADPKD patients
Bax et al. [22]

19 HVs

3 repeated scans (2 successive +7-21 days apart)

Intra-observer: CV=1.2% and 1.4%, ICC=0.987 and 0.983;
inter-observer: CV =2.5%, reliability coefficient=0.983

Inter-study CV =17% (successive scans) and 23% (longer time
interval)

Dambreville et al. [40] 6 repeated scans (2 successive+4 ones 1-week apart) Inter-study RBF difference =30.8 +3.5 mL/min (successive

6 HVs

Wentland et al. [20] 2 repeated scans (n=2)
10 HVs

2 repeated scans (1-2 weeks apart)
11 HVs and 9 CKD patients

2 repeated scans + repeated measurements
10 HVs

Repeated measurements
21 ADPKD patients

2-3 repeated scans
11 HVs

2 repeated scans (24-210 h apart)
10 HVs

Khatir et al. [15]

Keegan et al. [12]

Spithoven et al. [41]

Cox et al. [13]

Kline et al. [36]

scans); CV=10.6% (overall), CV=9.0% (weekly interval),
CV =4.2% (successive scans)

Inter-study RBF difference =14.0+12.5% (2D PC-MRI),
15.1+15.6% (4D PC-MRI)

Inter-study CV=8.3% (HVs) and 12.9% (CKD); ICC=0.92
(HVs) and 0.78 (CKD)

RBEF difference: 38.5 +£20.0 mL/min (inter-observer), 17.9 +44.8
(inter-study, observer 1), 24.2 +59.0 (inter-study, observe R?

Intra-observer: CV=2.3%, ICC=0.997 and 0.995; inter-
observer: CV=3.5%, ICC=0.991

Inter-study CV=14.4+4.3%,ICC=0.844

Inter-study reproducibility: 10.1 +7.8%

PC, phase contrast; ICC, intraclass correlation coefficient; RBF, renal blood flow; HVs, healthy volunteers; ADPKD, autosomal dominant poly-
cystic kidney disease; CKD, chronic kidney disease; CV, coefficient of variation; CCC, concordance correlation coefficient

HVs [19, 38, 49-51], one in people with CKD [48] and
one in renal transplant recipients [1]. Direct comparisons
between studies are difficult as a variety of methods for PC
acquisition were used, and in two studies more than one
method were reported [14, 49, 50]. In addition, there was
heterogeneity across studies in whether ERPF or RBF val-
ues were used as the comparator and in statistical analy-
sis approaches. Three of the studies in HVs reported good
agreement between PC-MRI renal artery flow and PAH
methods. Debatin reported that the best of three different
PC-MRI techniques studied had a low mean difference of
2.8 +7.1% versus PAH RPF [49]. In a similar study that also
assessed different PC-MRI methods, Sommer et al. found
mean differences that ranged from 0 mL/min (95% CI — 166
to 166 mL/min) at best to 95 mL/min (95% CI — 154 to
341 mL/min) [50]. Wolf et al. also reported good agreement
[39 mL/min mean difference (95% CI — 100 to 177 mL/
min)], although results differed slightly depending on
velocity encoding [51]. A single study in nine participants
reported better correlations between PC-MRI measures of
renal vein flow and PAH as compared to arterial flow [50];
this informed a follow-on study in 14 renal transplant recip-
ients with preserved renal function that found both good
correlation (r=0.92) and low mean difference (20 mL/min,
95% CI — 214 to 254 mL/min) between the two techniques
[1]. The only study that included participants with reduced

estimated glomerular filtration rate (eGFR) showed a rea-
sonable correlation between PAH and PC-MRI measures of
RBEF, noting that only eight patients were studied and PAH
may be less accurate if tubular secretion is impaired [48].
Finally, Van der Bel et al. reported changes in PC-MRI renal
artery blood flow and ERPF in response to angiotensin infu-
sion in 8 HVs and showed similar patterns of change but did
not directly compare the two measurement techniques [38].

Comparison against aortic inflow/outflow Three stud-
ies compared direct measures of renal artery flow by PC-
MRI against difference in PC-MRI measures of aortic flow
above and below the renal arteries [14, 22, 52]. In 18 HVs,
Bax et al. reported a reasonable correlation between the
two (r=0.72, p=0.002) [22]. De Haan showed a similar
correlation in a graphical figure without reporting values
[14], whilst Lundin reported no significant difference in
mean total RBF calculated from the sum of the renal artery
flows (RAs) versus flow calculated from the aortic differ-
ence (mean ratio RBF: aortic difference 1.06 +£0.04, range
0.79-1.20) [52].

Experimental studies Whilst this review was restricted to
studies in humans, two studies included experimental arms.
Schoenberg reported that the relative accuracy of mean flow
measured by PC-MRI was within 4.1 +2.9% of that meas-
ured by transit time ultrasound in the left renal artery of
seven dogs [24]. In an ex vivo phantom built with a human

@ Springer
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renal artery, Debatin found a range of mean differences
(42.1+£10%, — 10.4+17.3% and — 2.4 +2.5%) across three
PC-MRI methodologies [49]. Notably, the method that per-
formed best in this study was shown to have the greatest bias
in the study of Sommer comparing against PAH clearance
in vivo [50].

PC-MRI clinical application in renal disease
Chronic kidney disease

In patients with chronic kidney disease (CKD), structural
changes, including reduction in total nephron number,
interstitial fibrosis, and/or vascular rarefication [56] often
develop before measurable functional changes [57]. Struc-
tural changes may be associated with multiple systemic
diseases, for instance diabetes mellitus, hypertension, and
arteriosclerosis, and may in turn affect RBF, likely reduc-
ing it due to the increased resistance of renal microcircula-
tion. Moreover, while in healthy subjects the kidney is very
effective in regulating blood flow over a wide range of blood
pressures and in maintaining glomerular pressure and filtra-
tion rate, in patients with CKD this autoregulation may be
gradually lost, as renal function declines, resulting in RBF
decrease. In addition, CKD patients receive a wide range
of drugs, including diuretics and renin—angiotensin system
inhibitors, which may alter renal function and blood flow
and influence renal hemodynamics. There are only few stud-
ies using PC-MRI in CKD (Table 3), and the method is cur-
rently not used routinely to assess RBF in patients with CKD
in the clinic. A good reproducibility of respiratory-gated
PC-MRI was identified in CKD patients and HVs, when
examined 1-2 weeks apart, revealing coefficients of vari-
ation of 12.9% and 8.3%, respectively [15]. RBF measured
by PC-MRI was significantly decreased in CKD patients
compared to HVs [15, 48, 58], even in patients with mild-
to-moderate CKD, although the HVs were 8 years younger
[13]. Combining PC-MRI and arterial spin labeling (ASL),
Michaely et al. were able to separate healthy kidneys from
kidneys with vascular, parenchymal or combined disease
[59]. In patients with CKD, measured GFR was reduced to
a greater extent than RBF, resulting in a reduced filtration
fraction, which may reflect an adaptation to keep intra-renal
oxygenation within normal range [58]. Last, PC-MRI was
used to measure renal arterial blood flow and calculate renal
vascular resistance in a study comparing vasodilatory and
non-vasodilatory antihypertensive treatment in patients with
CKD. After 18-month follow-up, RABF increased signifi-
cantly in both groups, but the change did not differ between
groups [60].

@ Springer

Acute kidney injury

Changes in RBF and/or perfusion are considered critical to
the etiology of many forms of acute kidney injury (AKI).
However, PC-MRI has only rarely been applied in people
with AKI, which may in part reflect the perceived logistical
difficulties of scanning acutely unwell patients. Following an
initial report of feasibility [39], Prowle et al. have shown that
it is possible to successfully perform PC-MRI in intensive
care unit (ICU) patients with sepsis-associated AKI. In a
pilot study of 10 people, of whom 8 were mechanically ven-
tilated, 9 were on continuous hemofiltration and 5 required
vasopressors, RBF and cardiac output (CO) were measured
and compared with 11 HVs [37]. Results, which should be
regarded as exploratory, showed that median RBF in septic
AKI (482 mL/min) was lower than that in healthy controls
(1260 mL/min); that there was considerable variation in
RBF measures (range 335-1137 mL/min in AKI group);
and that RBF as a proportion of CO was also reduced (sug-
gesting a dependency of RBF on changes in CO).

Renovascular disease/renal artery stenosis

Renal artery stenosis (RAS) is a leading cause of second-
ary hypertension and can cause CKD. In unselected popu-
lations, several large trials have failed to show significant
benefit to intervention with angioplasty and/or stenting [61,
62]. Despite these findings, debate continues as to whether
subgroups of patients with RAS may benefit from interven-
tion, and if so how best to identify them. A small number
of studies have, therefore, applied PC-MRI to patients with
RAS to determine whether functional measurements of renal
artery flow/velocity provide additional clinical information.
Seven studies report on the use of PC-MRI in the context of
renovascular disease [16, 17, 27, 59, 63-65].

Several studies evaluated whether PC-MRI can improve
characterization or detection of anatomical severity of renal
artery lesions (Table 3). In RAS, Cine PC-MRI demonstrates
a damped systolic wave which is longer in duration [66].
Schoenberg et al. performed cardiac-gated Cine PC-MRI
in 23 patients with 48 areas of RAS and MR flow measures
were compared against severity of anatomical stenosis [24].
To separate those with >50% stenosis from those with no
stenosis, PC-MRI was reported to have 100% sensitivity and
93% specificity. In 11 patients, ultrasound flow measures of
the renal artery were also taken at time of surgical interven-
tion and correlated well with PC-MRI measures. Post-opera-
tive PC-MRI flow values improved, but no clinical outcomes
were reported. It has also been hypothesized that intravenous
angiotensin-converting enzyme inhibitor (ACEi) administra-
tion may improve diagnostic accuracy of waveform analysis,
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but this was not borne out in a study of 35 patients [16]. In
a pilot study, Bock et al. compared two PC-MRI techniques
(interleaved gradient echo-planar technique (IGEPI) Cine
PC-MRI and conventional Cine PC-MRI [67]. IGEPI Cine
PC-MRI detected 5/5 high-grade stenosis versus 3/5 (66%)
with conventional Cine PC-MRI. Later, Schoenberg et al.
demonstrated that a combined morphologic and functional
MR examination significantly reduced inter-observer vari-
ability across 7 readers evaluating 43 renal arteries [65, 68].
They reported that this approach offered reliable, reproduc-
ible grading of RAS when compared with X-ray digital sub-
traction angiography (DSA) AND 3D gadolinium MR.

Binkert et al. combined arterial flow volume and renal
volume in 130 kidneys from 65 patients in attempt to deter-
mine functional significance of RAS lesions [64]. Of 31
kidneys with RAS, 18 had significantly reduced volume
[3.08 +£0.75 (au)] and significantly reduced flow volumes
(91.56 vs 279.15 mL/min without RAS). Based on the Renal
Flow Index (RFI) (flow/renal volumes), there was only mini-
mal overlap between normal volume kidneys with RAS and
those without RAS suggesting that RFI could be used to
predict the likelihood of hemodynamically significant RAS.
The same group later went on to investigate whether this
information could be used to predict positive clinical out-
comes following percutaneous angioplasty [63]. In a group
of 23 patients, 34 areas of RAS were present and 11 people
had bilateral disease. Clinical success (defined as a fall in
diastolic BP by > 15% or a fall in creatinine of >20%) was
observed in 11 patients, 10 of whom had normal kidney
volume pre-intervention. The sensitivity of RFI to predict
response to therapy was reasonable (91%) but specificity
low, suggesting that direct translation of this method to clini-
cal practice would result in a significant rate of unnecessary
procedures. RFI < 1.5 mL/min/cm® had a 100% sensitiv-
ity predicting clinical benefit, but low specificity of 33%,
although combining with clinical variables improved speci-
ficity somewhat to 67%.

Autosomal dominant polycystic kidney disease

PC-MRI has been used to non-invasively measure RBF in
autosomal dominant polycystic kidney disease (ADPKD)
(Table 3) since 2003 when, in a large study of 127 patients
with early ADPKD, RBF was shown to have high accuracy
and intra- and inter-observer reproducibility, to strongly cor-
relate with both renal volumes and GFR, and to predict GFR
[34]. In a subsequent longitudinal study by the same group
including 131 patients with early ADPKD, RBF decreased
over 3-year follow-up, preceding GFR decline, was nega-
tively correlated with total kidney (TKV) and total cyst
volume slopes, and positively correlated with GFR slope,
predicting structural and functional disease progression and
showing promise as outcome measure in clinical trials on

ADPKD [25]. PC-MRI was used in a small clinical trial to
investigate, alongside GFR and TKYV, the short-term effects
of Tolvaptan in patients with ADPKD; the study found no
significant change in RBF after 1 week of Tolvaptan treat-
ment, with PC-MRI mirroring PAH clearance flow measure-
ments [69]. More recently, Spithoven and colleagues pro-
vided additional evidence of accuracy and validity of RBF
measurement by PC-MRI as compared with RBF measured
by continuous hippuran infusion, in a cohort of 91 ADPKD
patients with a wide range of eGFR values. In this study,
RBF values were associated with ADPKD severity, and
technical problems preventing RBF measurement occurred
predominantly in patients with lower eGFR (<70 mL/min),
suggesting that RBF measurement may be less feasible in
patients with ADPKD at an advanced stage [41]. Last, PC-
MRI was performed in a small cohort of young patients
with early-stage ADPKD and normal controls, as part of
a comprehensive multi-parametric renal MRI protocol.
Besides its preliminary results, showing no statistically sig-
nificant difference in RBF between young ADPKD patients
and normal controls [36], the study represents a valuable
attempt to combine PC-MRI with other quantitative renal
MR techniques towards a comprehensive characterization
of the ADPKD kidney tissue and function.

Discussion

The current published literature supports PC-MRI as a fea-
sible and valid non-invasive technique to reliably measure
renal blood flow, alongside a number of derivative hemo-
dynamic parameters, in both HVs and patients with renal
disease. There are a few key recommendations (summarized
in Table 1) to be followed to accurately measure RBF by PC-
MRI, possibly reducing the wide variability in the measure-
ments reported so far (Table 2). As a potential confounder,
patient hydration should be controlled whenever possible.
The acquisition slice should be placed perpendicularly to the
vessel direction, and prior to any bifurcation; to this purpose,
a good survey scan (e.g. angiography) is extremely help-
ful. To minimize acquisition time and flow-induced artifacts
without compromising signal-to-noise ratio, relaxation and
echo times should be minimum, velocity encoding should be
higher than the peak velocity (around 100 cm/s), flip angle
should be low [in [10°-30°] range); spatial resolution should
be sufficient to enable reliable identification of the vessels.
Motion compensation should be performed by breath-hold
or respiratory gating, and either prospective or retrospective
cardiac gating should be used, especially for arterial flow
measurements. Once acquired, PC-MRI should undergo a
careful visual inspection, and images with any artifact
should be discarded. To quantify renal blood velocity and
volume, circular or elliptic ROIs should be defined, covering
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the lumen but not the vessel wall. Importantly, these ROIs
should be adjusted to account for movement of the vessels
during the cardiac cycle, many software packages perform
such automatic tracking but this should be visually checked.
PC-MRI acquisition and post-processing procedures are
quite straightforward with standard software, so there is no
need for a high-level of technical expertise.

PC-MRI has been technically validated in a number of
studies both in vitro, using flow phantoms, and in vivo, gen-
erally showing good correlation with gold-standard methods
of RBF measurement. Moreover, a large number of studies
have investigated the reproducibility, and intra- and inter-
observer CV of RBF measures obtained by PC-MRI, show-
ing an overall good reproducibility. PC-MRI has been bio-
logically validated against alternative techniques in humans,
especially against PAH clearance, showing an overall good
agreement between PC-MRI and PAH measurements. In
addition, PC-MRI has been experimentally validated against
direct measures of vessel flow [24, 49], although this is out
of the scope of this clinical review. Despite PC-MRI not
being routinely used in clinics, there are a number of clinical
studies showing its potential to support diagnosis and moni-
toring of renal diseases, in particular CKD, renovascular
disease, and ADPKD, particularly in the earlier stages. In
HVs, the variability in RBF values, both in individual stud-
ies and across studies, is rather large, making the definition
of normative ranges not possible yet. Future large multi-
centric studies are needed to provide reliable and definitive
reference ranges.

PC-MRI is likely to benefit from combination with other
promising renal MRI techniques (such as BOLD [70], DWI
[71], T1 and T2 mapping [72], and ASL [73]) providing
complementary information on renal microstructure and
function and enabling a complete assessment of the nor-
mal and diseased kidney, potentially improving renal dis-
ease diagnosis and monitoring. Multi-parametric renal MRI
has been recently pioneered in patients with CKD [13] and
ADPKD [36]. Future multicenter studies are needed to dem-
onstrate the clinical potential of PC-MRI as part of a multi-
parametric renal MRI protocol. International collaborative
efforts such as the COST action PARENCHIMA (https://
www.renalmri.org) may help in answering this need.
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