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BACKGROUND: Observational analysis methods can be
refined by benchmarking against randomized trials. We
reviewed studies systematically comparing observational
analyses using propensity score methods against ran-
domized trials to explore whether intervention or outcome
characteristics predict agreement between designs.
METHODS:We searched PubMed (from January 1, 2000,
to April 30, 2017), the AHRQ Scientific Resource Center
Methods Library, reference lists, and bibliographies to
identify systematic reviews that compared estimates from
observational analyses using propensity scores against
randomized trials across three or more clinical topics;
reported extractable relative risk (RR) data; andwere pub-
lished in English. One reviewer extracted data from all
eligible systematic reviews; a second reviewer verified the
extracted data.
RESULTS: Six systematic reviews matching published
observational studies to randomized trials, published be-
tween 2012 and 2016, met our inclusion criteria. The
reviews reported on 127 comparisons overall, in cardiolo-
gy (29 comparisons), surgery (49), critical care medicine
and sepsis (46), nephrology (2), and oncology (1). Dis-
agreements were large (relative RR< 0.7 or > 1.43) in 68
(54%) and statistically significant in 12 (9%) of the com-
parisons. The degree of agreement varied among reviews
but was not strongly associated with intervention or out-
come characteristics.
DISCUSSION: Disagreements between observational
studies using propensity score methods and randomized
trials can occur for many reasons and the available data
cannot be used to discern the reasons behind specific
disagreements. Better benchmarking of observational
analyses using propensity scores (and other causal infer-
ence methods) is possible using observational studies
that explicitly attempt to emulate target trials.
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INTRODUCTION

Randomized trials can provide valid evidence on the compar-
ative effectiveness of interventions because randomization
ensures the comparability of treatment groups in expectation
and provides a “reasoned basis” for inference.1 In addition to
randomization, other aspects of randomized trials, such as
blinding of investigators to treatment assignment, uniform
follow-up protocols, and standardized procedures for outcome
ascertainment, further enhance the ability of randomized trials
to produce results that have a causal interpretation for the
sample of randomized patients or for the (hypothetical) popu-
lation from which the randomized patients can be viewed as a
simple random sample (a property sometimes referred to as
“internal validity”2). Unfortunately, because of high costs or
ethical constraints, randomized trials are infeasible for many
research questions and we have to rely on observational stud-
ies.3 Furthermore, observational studies can help us better
understand the effectiveness of interventions in routine clinical
practice. Confounding poses a major threat to the validity of
observational studies, but other problems, such as lack of
blinding, variation in follow-up procedures, and non-
standardized outcome ascertainment methods, can also inval-
idate observational study results.
Observational studies comparing interventions can be

viewed as attempts to emulate target randomized trials4: other
than the lack of randomization, observational studies can be
designed to allow analyses that are similar to those conducted
in pragmatic target trials. This view of observational studies
motivates the use of concurrent control groups, new (inci-
dent)-user designs, and modern statistical methods for con-
founding control. For example, an increasing number of ob-
servational analyses use propensity score methods, that is,
methods that rely on modeling the probability of treatment
conditional on covariates. Because propensity score methods
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shift attention from modeling the outcome to modeling the
treatment assignment (which is under investigator control in
experimental studies), they are well suited to observational
analyses emulating randomized trials.
When, for a given research question, evidence can be ob-

tained from both observational analyses and large, well-
conducted randomized trials, it may be possible to benchmark
observational analysis methods by comparing their results
against the randomized trial results.5–8 If we find reasonable
agreement in treatment effect estimates between sufficiently
similar randomized trials and observational analyses across
diverse clinical topics, we may be more willing to trust the
findings of observational analyses on topics where random-
ized trials are unavailable. Benchmarking across multiple clin-
ical topics can also reveal patterns that cannot be appreciated
by examining each topic in isolation.9–11

In this paper, we synthesize the findings of systematic
reviews comparing observational analyses using propensity
score methods against randomized trials and explore whether
intervention or outcome characteristics predict the degree of
agreement between designs. On the basis of our findings and
other relevant work, we propose steps towards more rigorous
benchmarking of observational analyses in medicine.

METHODS

Search for Systematic Reviews

We searched PubMed from January 1, 2000, to April 30, 2017,
using a combination of keywords and MESH terms to identify
systematic reviews between observational analyses using pro-
pensity score methods (for short, “observational analyses”)
and randomized trials from high-impact general medical
journals and journals known to publish methodological re-
search; we provide our search strategy in the Appendix in
the ESM.We also obtained a list of potentially relevant studies
from the Scientific Resource Center Methods Library (AHRQ
Effective Health Care Program; Portland VA Research Foun-
dation; Portland, OR), a curated collection of citations related
to methods of evidence synthesis and evidence-based medi-
cine. The contents of the database are updated regularly using
searches across multiple electronic databases and the gray
literature (e.g., conference proceedings, technical reports, or
dissertations). Finally, we identified potentially relevant stud-
ies by perusing the reference lists of eligible studies identified
by our searches, Cochrane systematic reviews,10,11 and our
personal bibliographies.

Selection of Relevant Systematic Reviews

Both authors (SPF and IJD) independently screened titles and
abstracts to identify relevant systematic reviews between ob-
servational analyses and randomized trials. SPF retrieved and
examined the full texts of potentially eligible papers; IJD
examined all excluded papers to verify that they did not meet

the selection criteria. We selected English-language publica-
tions that reported “paired” comparisons of randomized trials
versus observational studies using propensity score methods
to evaluate the impact of the same interventions and compar-
ators on similar binary or failure time outcomes. To be con-
sidered eligible, studies had to have focused on medical inter-
ventions and followed a systematic approach for identifying
and selecting studies for their analyses. We required that
studies had included at least three comparisons (i.e., at least
three different intervention-comparator pairs examined by
both observational studies and randomized trials) and focused
on methodological issues related to study design and analysis.
Finally, we excluded studies that did not report or allow the
calculation of treatment effect estimates for each clinical topic.

Data Extraction

One reviewer extracted data from all eligible studies and a
second reviewer verified them for accuracy. We collected the
following information from each eligible study: clinical area;
number of comparisons (i.e., combinations of interventions
and outcomes) examined; number of studies of each design
(randomized trials and observational studies); median number
of participants by study design across comparisons; methods
for identifying the studies contributing data; and methods for
handling topics with multiple studies per design. We catego-
rized different comparisons by whether the interventions ex-
amined were pharmacological or not; whether the outcomes
examined were adverse or intended effects of treatment; and
whether the outcome was death from any cause versus any
other event. For each comparison, we extracted treatment
effect estimates on the relative risk (RR) scale and their esti-
mated sampling variance (we use “RR” as shorthand for odds,
risk, or hazard ratios, as reported in the reviews). When data
were only reported in graphs, we extracted numerical infor-
mation with digitizing software (Engauge Digitizer; version
4.112).
When multiple observational or randomized studies were

available for the same topic, investigators used various ap-
proaches to obtain estimates for their comparisons. For exam-
ple, when multiple randomized trials were paired with a single
observational study, most studies performed ameta-analysis of
the randomized trial results and compared the resulting sum-
mary estimate against the estimate from the observational
study. To facilitate comparisons across reviews, whenever
available, we used estimates from random effects meta-
analyses.

Evidence Synthesis

We compared estimates from observational studies against
estimates from randomized trials using similar interventions
and outcomes in four ways: first, we examined whether the
relative RR, that is, the ratio of the RR from the randomized
trials over the RR from the observational studies for each
clinical topic, was lower than 0.70 or greater than 1.43 (the
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reciprocal value), indicating “extreme” disagreement in the
estimated magnitude of the effect;13–15 we report analyses
using different thresholds in the Appendix in the ESM. The
coining of treatment effects varied across clinical topics and
across reviews, and certain strategies for coining contrasts
between designs can lead to bias when combining ratios of
RRs across topics.16 For this reason, and because we do not
see a clear interpretation for the “pooled” relative RR, we did
not combine estimates across topics. Second, for each clinical
topic, we performed a test to compare estimates from both
study designs, for the null hypothesis that the relative RR is
significantly different from 1.17We defined two-sided p values
< 0.05 as statistically significant. Third, we assessed whether
estimates from different designs pointed to opposite directions
of effect (i.e., one design showed benefit and the other harm).
Fourth, we determined how often the randomized trial confi-
dence interval included the point estimate from the observa-
tional study and vice versa. Last, we determined the observed
and expected proportion of overlap of the 95% confidence
intervals of randomized trial and observational analysis esti-
mates (accounting for estimation uncertainty).16

We compared estimates from observational studies and
randomized trials across all topics, separately for each review
contributing data, and within specific subgroups defined by
intervention and outcome characteristics. We conducted all
analyses with Stata, version 14/IC (Stata Corp., College Sta-
tion, TX).

RESULTS

Included Systematic Reviews

Figure 1 presents a summary of howwe identified and selected
relevant studies. Of the 2758 citations retrieved by our
PubMed search, we deemed 190 potentially eligible. Searches
in the Scientific Resource Center Methods Library, personal
bibliographies, and perusal of reference lists yielded an addi-
tional 208 citations. In total, we examined 398 publications in
full text. Of these, six studies, published between 2012 and
2016, met our inclusion criteria.[14,15,18–21]

We summarize the characteristics of included reviews in
Table 1. In total, the reviews provided information on 127
comparisons in acute coronary syndrome care14 (17 compar-
isons), diverse conditions requiring surgical intervention18 (48
comparisons), critical care medicine and sepsis15,19,20 (46
comparisons), and diverse clinical topics21 (16 comparisons).
Five out of six reviews exclusively considered death as the
outcome of interest;14,15,19–21 one review included outcomes
other than death.18 One review only used randomized trials
published after the index observational studies had been con-
ducted21; no other reviews considered the relative timing of
publication of different designs as a selection criterion. The
median sample size of randomized trials across reviews ranged
from 118 to 985 participants; the median sample size of
observational studies ranged from 433 to 5194 participants.

All six reviews allowed for multiple studies per design and,
when necessary, used meta-analysis methods to obtain design-
specific pooled estimates, typically with random effects
models. The reviews considered a median of 1 observational
study (ranging from 1 to 14) and 2 randomized trials per topic
(ranging from 1 to 21).

Comparing Effect Estimates Between Designs

Across all 127 comparisons, estimated RRs ranged from 0.11
to 4.01 (median 0.79) in observational studies and from 0.13 to
3.07 (median 0.86) in randomized trials. In general, random-
ized trial estimates were less precise than observational study
estimates for the same topic, reflecting the generally larger
sample sizes in observational studies. The treatment effect was
statistically significantly different from the null value in 47
observational analyses (37%) and 14 randomized trials (11%).
Figure 2 presents scatterplots of treatment effect estimates
from the 127 topics, stratified by source review.
We summarize various measures of agreement across all

127 comparisons and stratified by source review in Table 2.
Themagnitude of the relative RR comparing randomized trials
against observational studies was extreme (relative RR < 0.7
or > 1.43) in 68 of 127 (54%) topics; the percentage of extreme
disagreements ranged from 35 to 69% across reviews. Dis-
agreements were statistically significant in 12 of the 127
comparisons (9%) using a two-sided test; the percentage of
statistically significant disagreements ranged from 4 to 25%
across reviews. In 47 of the 127 comparisons (37%), estimates
from observational studies and randomized trials pointed in
the opposite directions of effect; the percentage of disagree-
ments in direction from 18 to 50% across reviews. The ran-
domized trial or observational study estimate was very close to
1 (between 0.95 and 1.05) in 13 of the 47 disagreements in the
direction of effects; 1 of these disagreements was statistically
significant. The randomized trial point estimate fell outside the
confidence interval of the observational study in 43% of the
comparisons and the frequency of non-coverage ranged from
31 to 59% across reviews. The observational study point
estimate fell outside the confidence interval of the randomized
trials in 22% of the comparisons and the frequency ranged
from 13 to 50% across reviews. The 95% confidence intervals
for each study design overlapped in 97% of the comparisons
(123 of 127), which is close to the expected relative frequency
of 99%.

Impact of Intervention and Outcome
Characteristics on Agreement

Measures of agreement between designs stratified by interven-
tion or outcome characteristics are summarized in Table 2. No
clear pattern emerges: neither intervention type nor outcome
characteristics were strongly associated with the degree of
agreement between designs for any of the measures we con-
sidered (direction of effect, magnitude, or statistical signifi-
cance). Inspection of Table 2 suggests that, if anything, the

Forbes and Dahabreh: Benchmarking Studies Using Propensity Score Methods Against Trials JGIM1398



degree of agreement was more strongly associated with the
source review than the intervention or outcome characteristics.
The influence of the source review on the degree of agreement
reflects the inherent differences among clinical areas, as well
as the diversity of methodological approaches across reviews.

DISCUSSION

In our overview of 127 comparisons of observational analyses
using propensity score methods against randomized trials,
disagreements in effect estimates were not uncommon. Al-
though rarely statistically significant, disagreements were
sometimes large, did not appear predictable by treatment or
outcome characteristics, and varied in frequency across re-
views covering diverse clinical areas.

Benchmarking Observational Analysis
Methods

Benchmarking observational analysis methods against com-
pleted randomized trials makes intuitive sense because obser-
vational studies comparing treatments can be viewed as at-
tempts to emulate pragmatic target trials.4,22–27 This kind of
benchmarking has a long history in medicine5,6,11,28,29 and
other fields that rely on observational data to draw causal
inferences.30–37 However, previous reviews of benchmarking
attempts that used published data have not focused on modern
methods for confounding control (e.g., only 2 of 15 studies in
a recent Cochrane review used propensity score methods11).
We focused our analysis on studies using propensity score
methods because they are a natural choice when viewing

observational analyses as attempts to emulate target trials:
the propensity score is known in randomized trials but typi-
cally has to be modeled and estimated in observational studies.
Our approach to benchmarking, however, applies to other
causal inference methods provided they can be conceptualized
as components of a target trial emulation (e.g., some
difference-in-difference or instrumental variable analyses).
The seminal comparisons of observational econometric

analyses against large social experiments, first published in
the 1980s, are of particular relevance to our work.30,31 These
investigations showed that different observational analyses of
the same data produced different results between them and
compared with the social experiments. Recent analyses of the
same data with propensity scoremethods suggested that agree-
ment between designs can be improved by careful participant
selection and choice of covariates for confounding control,38

but even with these improvements, agreement remained sen-
sitive to modeling choices.39–41

Interpretation of Benchmarking Results

The interpretation of comparisons between observational
studies and randomized trials is challenging because dis-
agreements between designs can occur for many reasons,
even when studies are conducted in accordance with
rigorous research standards.4,42,43 First, disagreements
are expected when different designs examine different
interventions or outcomes, as when observational studies
use broader intervention definitions and less systematic
outcome ascertainment methods compared with random-
ized trials, or when studies ascertain outcomes at differ-
ent time points. Second, estimates of population-averaged

Fig. 1 Diagram of the process for identifying relevant studies.
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(marginal) effects will vary across designs when effect
modifiers are differentially distributed in the underlying
populations. This is a concern for the comparisons we
examined, because commonly used propensity score–
based methods and unadjusted between-group compari-
sons in randomized trials estimate marginal effects.
Third, different observational analyses estimate different
causal parameters, which can lead to disagreements with
randomized trials even in the absence of bias or differ-
ences in underlying populations. For example, outcome
regression with the propensity score as a covariate does
not in general estimate the same causal parameter as
unadjusted treatment-group comparisons in randomized
trials. Fourth, biases can affect both observational studies
and randomized trials and can produce large disagree-
ments. Baseline confounding by unmeasured variables in
observational studies is the leading explanation when
disagreements occur, because such confounding can nev-
er be ruled out in observational studies but is negligible
in large well-conducted randomized trials.44 But other
biases, such as selection bias (e.g., differential loss-to-
follow-up) and measurement error bias, affect both de-
signs and can induce large disagreements.45 Finally, dis-
agreements can arise by chance, particularly when studies
are small and outcomes are rare.
To some extent, all these mechanisms inducing disagree-

ments between observational analyses and randomized trials
affected the systematic reviews we examined. The observa-
tional analyses used data from diverse sources and were

compared against published randomized trial results; studies
were conducted independently in different study populations;
and many studies included in the reviews had small sample
sizes. Studies of different designs werematched on the basis of
limited information available in published reports and no
attempt was made to standardize causal contrasts or ap-
proaches for bias control. Under these conditions, close
matching of populations, interventions, and outcomes is near
impossible and randomized trials provide an imperfect refer-
ence standard.46 We conjecture that the results we reviewed
place a lower bound on the degree of agreement possible
between observational analyses and randomized trials: closer
matching of populations, richer data, and use of modern
methods for addressing biases in observational studies43 and
randomized trials should improve agreement. Of note, our
conjecture rests on the assumption that selective reporting of
observational analyses and randomized trials has been limited
or independent of the direction and magnitude of disagree-
ments. If, for example, publications of observational studies
with results in strong disagreement with randomized trials
have been suppressed, then the studies included in our review
do not fully reflect the true magnitude of disagreements be-
tween designs.

Towards Better Benchmarking

We found that disagreements between observational studies
using propensity score methods and randomized trials were
not infrequent and the available data could not be used to
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discern the reasons behind the disagreements. We propose that
better benchmarking can improve observational analyses, in-
cluding those that use propensity score methods, and help
identify under what conditions observational analyses can
produce valid results that can inform clinical decisions.
Recent work in education shows how benchmarking canwork

under ideal conditions: in a doubly randomized preference de-
sign, undergraduate students were randomly assigned to partici-
pate in a randomized trial or an observational study.47 Students
allocated to the randomized trial were further randomized to
training in mathematics versus vocabulary; those allocated to
the observational study were allowed to self-select into the same
programs. Analyses in the observational study, including analy-
ses using propensity score methods, produced effect estimates
similar to those in the randomized trials, when adjusting for a rich
set of covariates, but not when adjusting only for “predictors of
convenience.”47,48 An independent replication has largely con-
firmed these findings.49 This evidence from doubly randomized
preference designs illustrates that valid causal inference is possi-
ble in observational studies, provided all important confounding
variables are measured. These designs, however, pose substantial
logistical and ethical challenges in medicine and cannot be
conducted at scale. At the other extreme, the wide availability
of routinely collected data has made it possible to carry out
observational analyses with little input from human experts.29

The usefulness of automated large-scale evaluations of observa-
tional analysis methods, however, is limited because the complex
methodological decisions needed to conduct clinically relevant
observational analyses cannot be reduced to a small set of pre-
defined options.50

Better benchmarking is possible using observational analy-
ses that explicitly attempt to emulate target trials in diverse
areas where strong background knowledge on the direction
and magnitude of effects is available (e.g., from large multi-
center pragmatic trials).51 Such studies should be conducted
across diverse topics, using multiple data sources, by teams
combining clinical, epidemiological, and statistical expertise.
To eliminate predictable causes of disagreements, compari-
sons of observational studies using against randomized trials
should take advantage of data from cohort studies where a
subset of participants are randomized and others self-select
into treatment52,53 or pragmatic trials embedded in healthcare
systems and registries;54,55 focus on well-defined causal con-
trasts; and use methods to control biases that affect both
designs. Complete reporting of emulation attempts can be
encouraged by prospective registration.
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