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Neuronal Excitability

Shunting Inhibition Improves Synchronization in
Heterogeneous Inhibitory Interneuronal Networks
with Type 1 Excitability Whereas Hyperpolarizing
Inhibition Is Better for Type 2 Excitability
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Abstract

All-to-all homogeneous networks of inhibitory neurons synchronize completely under the right conditions; how-
ever, many modeling studies have shown that biological levels of heterogeneity disrupt synchrony. Our funda-
mental scientific question is “how can neurons maintain partial synchrony in the presence of heterogeneity
and noise?” A particular subset of strongly interconnected interneurons, the PV+ fast-spiking (FS) basket neu-
rons, are strongly implicated in y oscillations and in phase locking of nested vy oscillations to theta. Their ex-
citability type apparently varies between brain regions: in CA1 and the dentate gyrus they have type 1
excitability, meaning that they can fire arbitrarily slowly, whereas in the striatum and cortex they have type 2
excitability, meaning that there is a frequency thresh old below which they cannot sustain repetitive firing. We
constrained the models to study the effect of excitability type (more precisely bifurcation type) in isolation from
all other factors. We use sparsely connected, heterogeneous, noisy networks with synaptic delays to show
that synchronization properties, namely the resistance to suppression and the strength of theta phase to vy
amplitude coupling, are strongly dependent on the pairing of excitability type with the type of inhibition.
Shunting inhibition performs better for type 1 and hyperpolarizing inhibition for type 2. y Oscillations and their
nesting within theta oscillations are thought to subserve cognitive functions like memory encoding and recall;
therefore, it is important to understand the contribution of intrinsic properties to these rhythms.
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(s

The collective, synchronized activity of neurons produces brain rhythms. These rhythms are thought to sub-
serve cognitive functions such as attention and memory encoding and retrieval. We focus on fast-spiking
(FS) basket cells, a subset of inhibitory interneurons. These neurons play an important role in brain rhythms.
In some brain regions these neurons can fire arbitrarily slowly (type 1 dynamics) whereas in others they can-
not fire below a minimum cutoff frequency (type 2 dynamics). We show that excitability type determines
whether shunting or hyperpolarizing inhibition more effectively synchronizes the fast-oscillatory activity of
networks of these neurons in the presence of heterogeneity and noise, and more effectively drives modula-
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Introduction

v Oscillations in cortex can arise from an interplay be-
tween excitatory pyramidal cells and inhibitory interneurons
(Tiesinga and Sejnowski, 2009; Dumont and Gutkin, 2019)
called pyramidal interneuronal network y (PING). However,
ING (with only inhibitory interneurons participating in the
rhythm) can exist independently of PING. For example, dur-
ing a selective visual attention task, phase locking of spikes
in putative fast-spiking (FS) interneurons in primate area V4
to y band oscillations in the local field potential (LFP) was
strong both during the pre-stimulus period and during visual
stimulation. In contrast, y phase locking of putative pyrami-
dal cells was strong only during visual stimulation that re-
quires attention (Vinck et al., 2013). Similarly, in rodent areas
S1 and V1, y phase locking of putative FS cells is pervasive,
whereas the putative E-cells are only recruited into y during
periods of locomotion and arousal (Vinck et al., 2015a,b;
Perrenoud et al., 2016). Moreover, noncortical regions like
the striatum, globus pallidus and substantia nigra pars retic-
ulata are networks of inhibitory neurons with no pyramidal
cells. Striatal FS interneurons have been implicated in y
rhythms (Berke, 2009; Sciamanna and Wilson, 2011). Here,
we focus on ING with interneurons in the mean-driven, oscil-
latory regime, rather than the classical state of balanced ex-
citation and inhibition. The stochastic population oscillator
model posits that oscillations arise from the interactions be-
tween individual neurons in the balanced regime, such that
the time between threshold crossings is exponentially dis-
tributed like the output of a Poisson process. However, that
fluctuation-driven model is not compatible with the high-fre-
quency firing rates exhibited by FS interneurons during vy in
vivo (Bragin et al., 1995; Penttonen et al., 1998; Csicsvari et
al., 1999), as noted in a previous review (Bartos et al., 2007).

PV+ FS basket interneurons are implicated in vy
rhythms (Cobb et al., 1995; Bartos et al., 2007; Sohal et
al., 2009; Gulyas et al., 2010; Varga et al., 2012), which in
the hippocampus are thought to organize information for
memory encoding and retrieval (Colgin et al., 2009; Bieri
et al, 2014; Lasztéczi and Klausberger, 2014). vy
Frequency (30-80 Hz) oscillations are thought to serve as
substrates for working memory, conceptual categoriza-
tion, and attention (Engel and Singer, 2001), and are al-
tered in psychiatric disorders, for example, schizophrenia,
dementia, and autism (Uhlhaas and Singer, 2006). PV+
FS basket cells play an important role in theta-nested y
(Wulff et al., 2009). Moreover, nesting of vy within theta
has been proposed a substrate for episodic memory
(Lega et al., 2016) and disruption of theta-nested y has
been proposed to explain deficits in spatial memory in
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temporal lobe epilepsy (Lopez-Pigozzi et al., 2016;
Shuman et al., 2017).

Fast oscillations based on reciprocal inhibition have
been repeatedly characterized as not being robust to het-
erogeneities in the network (Wang and Buzsaki, 1996;
White et al., 1998; Bartos et al., 2007; Mann and Paulsen,
2007). Inhibitory neural networks generally lose synchrony
as heterogeneity is increased in one of two ways, phase
dispersion or suppression, depending on the ratio of the
time constant for decay of inhibition to the population fre-
quency (Chow et al., 1998; White et al., 1998). Here, we
suggest that in networks with fast GABA, synapses,
which tend to favor the suppression regime over phase
dispersion, cycle skipping is a way for a network to ro-
bustly preserve synchrony of individual spikes with the
population by suppressing spikes that would have oc-
curred too late to be in synchrony with the population. FS
interneurons neurons were initially characterized as con-
sistently having type 1 excitability in hippocampal area
CA1 (Zhang and McBain, 1995; Wang and Buzsaki, 1996;
Ferguson et al., 2013) and the dentate gyrus (Hu et al.,
2010). Neurons with Hodgkin’s type 1 excitability are able
to spike arbitrarily slowly, whereas those with type 2 excit-
ability have an abrupt onset of repetitive firing that cannot
be maintained below a threshold frequency (Canavier et
al. 2006; Hodgkin, 1948; Izhikevich, 2007). More recently,
FS neurons have been shown to consistently exhibit type
2 excitability in the medial entorhinal cortex (Tikidji-
Hamburyan et al., 2015), striatum (Sciamanna and Wilson,
2011) and neocortex (Tateno et al., 2004). We systemati-
cally examine how the pairing of each excitability type
with either hyperpolarizing or shunting inhibition affects
cycle skipping synchronization in the presence of hetero-
geneity and noise, as well as synaptic delays. Simple 2D
model neurons of each type were calibrated to have a
very similar frequency current (F/I) curve, input resistance,
time constant and action potential shape to isolate the
consequences of excitability type alone on the robustness
of synchronization in inhibitory interneuronal networks.

Materials and Methods

Single neuron models

The activation of the voltage-dependent sodium current
was assumed to be fast and set to its steady-state value
with respect to the membrane potential [, (v)]. The inac-
tivation variable for the voltage-dependent Na™ current (h)
was yoked to the variable (n) for the activation of the de-
layed rectifier K™ current, under the assumption that the
slow time scale for these variables was similar.

av
CE =1—gu(EL — V) — gnam3.(v)(@+bn) (Ena — V)

—gkn*(Ex —v) )
an _n.(v)—n
at  7,(v)

(1)

where: a = 0.906483183915 and b = —1.10692947808
are the offset and slope for the h —n linear regression;
C =1uF/cm? is a membrane capacitance; / is applied
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Table 1. Parameters for type 1 and type 2 models

Type gL(mS/cm?) E,(mV) no Vi2(mV) 6(mV) T0(ms) s;(ms) vo(mV) n(mV)
1 0.3 -54.3 0.35 -40.0 4.0 0.46 3.5 -60.5 35.9

2 0.1 -39.0 0.28 -44.5 9.0 0.5 5.0 -60.0 30.0

current in /uA/cmZ; gna = 120, gk = 36, and g, are con-
ductances in mS/cm? for sodium, potassium, and leak cur-
rents with corresponding reversal potentials En, = 50mV,
Ex = —77mV,and E;..m.,(v) and n.,(v) are steady state ac-
tivations for sodium and potassium channels; and 7,(v) is
the time constant for potassium channel activation in ms:

1

m.(v) =

{+ox <_ v+40>
P\" 95
1—ng
Ny (V) = no+ ( — V1/2) . )
1+exp| ———=
(7]
IRYRY:

V) = 7o 45,68 (_ %)

Model parameters g, E, no, V1,2, 0, 7o, Sr, Vo, and 7
are different for type 1 and type 2 regimes and are given in
Table 1 in order to achieve the bifurcations described in
Fig. 1. These parameters were adjusted for the two excit-
ability types to keep the input resistance (= 2kQcm?),
time constant (= 2ms), F/I curve (Fig. 2A), and spike
shape (Fig. 2B and Table 2) as similar as possible. The
shape of the steady state activation curve for the delayed
rectifier is non-physiological because it does not go to
zero (as in Franci et al., 2013). This phenomenological
compromise was necessary to keep the input resistance
of quiescent model neurons comparable and does not af-
fect the dynamics of interest near the bifurcations.

Detailed theoretical dynamical description of
bifurcations

The voltage nullcline for excitable neurons is N-shaped
with three branches, but to emphasize the bifurcation
point where repetitive spiking is born, only the stable left
and unstable middle branch and their associated fixed
points are shown in Figure 1. For type 1 at rest (Fig. 1A7),
in addition to the stable fixed point that determines the
resting potential, there is an unstable fixed (open circle)
point on the middle branch, as well as another one on the
unstable branch that is not shown. As the applied current
is increased to / ~ 1.38uA/cm? the stable and unstable
fixed points shown collide (Fig. 1A2) and form a saddle
node (circle half filled). The neuron is left with no stable
resting potential, but a closed curve representing repeti-
tive spiking (a limit cycle; data not shown) coalesces
around the rightmost unstable fixed point on the unstable
branch (also data not shown) and intersects with the sad-
dle node. The technical term for the onset of spiking is a
saddle-node-on-an-invariant-limit-cycle (SNIC) bifurca-
tion (Izhikevich, 2007; Ermentrout and Terman, 2010). The
intersection of the limit cycle with the saddle node gives
rise to a trajectory with infinite period. As the applied
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current is increased any further, the trajectory must pass
through a gap between the two nullclines; the rate of pas-
sage though this bottleneck is arbitrarily slow with increas-
ing proximity to the bifurcation, hence the arbitrarily slow
frequencies obtainable by type 1 neurons shown in Figure
2A, black dots. The intuitive explanation for slow trajecto-
ries is that the rate of change for both v and n is zero on the
nuliclines, and since the gap is very close to both nulliclines,
the rate of change for both variables is very slow.

In contrast, for type 2 excitability, the Hopf bifurcation
occurs when the lone stable fixed point corresponding to
the rest potential loses stability (Fig. 1B7). When the ap-
plied depolarizing current reaches /~ 2.11uA/cm?, the
fixed point (Fig. 1B2, open circle) moves past the trough of
the nulicline onto the unstable branch of the voltage null-
cline. The Hopf bifurcation is subcritical (Guckenheimer
and Holmes, 1997; Izhikevich, 2007; Ermentrout and
Terman, 2010) because in the range of input currents be-
tween / € [1.74, 2.11]JuA/cm ? the model exhibits bist-
ability between stable limit cycle corresponding to
repetitive spiking and a stable fixed point (Fig. 2A, over-
lap in the red cross at 0 frequency and at a nonzero fre-
quency). These attractors are separated by unstable
limit cycle (data not shown). The stable and unstable
limit cycles collide and annihilate each other in a saddle
node of periodics at | ~ 1.74uA/cm?. Excitability type is
defined as the response of a quiescent neuron as the
applied current is increased (Hodgkin, 1948); the sud-
den onset of spiking as the applied current is increased
occurs at ~30Hz (x’s in Fig. 2A) when the quiescent
state loses stability as shown in Figure 1B.

Network

For all simulations we used 300 neurons of the same ex-
citability type, connected by bi-exponential inhibitory syn-
apses. In the network, the input current for each neuron is
given by the following equations:

Ii = IO,i+In,i+(bi - ai)(vi - Esyn)+gmod(t) (Vi - Esyn)

da; a
E*Kzf gl - ©
ab; T bi

where v; and /; are membrane potential and input current
of ™ neuron; Iy, is an applied current; Ini=0oN(0,1)is a
noise current with an independent random process with
zero mean and unit variance for each neuron N(0,1).
These processes were sampled every 0.1 ms, and the cur-
rent was linearly interpolated between these times to pro-
duce consistent results regardless of the time step.

Fast, ionotropic inhibition in the central nervous system
in generally mediated by GABAx receptors, with chloride
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Figure 1. Phase plane analysis of model bifurcation structure.
Red curves indicate the leftmost two branches of the cubic V-
nullicline on which the rate of change of membrane potential is
zero. The gray curve is the n-nullcline on which the rate of
change of the slow variable is zero. Filled and open cycles are
stable and unstable fixed points. The half-filled circle is the sad-
dle node. Under the assumption of fast/slow dynamics, fixed
points on the left branch are stable and those on the other
branch shown are unstable. A, Type 1. A1, Quiescent neuron
with no bias current has a stable resting potential (filled circle)
on the left branch at —68 mV. Only one of the two fixed points
on the unstable branch appear in this view, chosen to empha-
size the bifurcation. A2, The n-nulicline is tangent to the V-null-
cline as a stable and unstable fixed point collide to form a
saddle node with | =1.38uA/cm?. The bifurcation is only a
SNIC if a limit cycle is born simultaneously and emanates from
the saddle node. B, Type 2. B1, Quiescent neuron with no bias
current has a stable resting potential (filled circle) on the left
branch at —68 mV. There is only a single fixed point. B2, The
Hopf bifurcation occurs as the fixed point loses stability as it
moves onto the unstable branch at | = 2.11uA/cm?.

ions as the charge carrier. The reversal potential of these
channels depends on the intracellular concentration of
chloride. In quiescent neurons, if the synaptic reversal po-
tential is negative to the resting potential such that a
prominent hyperpolarizing synaptic potential can be ob-
served, then the inhibition is hyperpolarizing. On the other
hand, if the reversal potential is negative to the spike
threshold but is close to the resting potential such that the
main effect is a change in conductance and a prominent
hyperpolarizing synaptic potential is not observed, the in-
hibition is shunting. For oscillatory neurons, the mem-
brane potential during the interspike interval (ISI)
substitutes for the resting potential (Mann and Paulsen,
2007). Shunting inhibition is sometimes defined as an
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increase in synaptic conductance in the absence of an
obvious change in membrane potential (Paulus and
Rothwell, 2016). In our model neurons, a synaptic reversal
potential of —75mV produces hyperpolarization whereas
—65mV does not, so synaptic reversal potential Es,,was
setto —75mV for hyperpolarizing and =65 mV for shunting
inhibition. The synaptic rise and fall time constants were
71 = 1Tmsand 7, = 3ms, respectively. The conductance
(97) and conduction delay (5 ;) between the /' and /" neu-
rons are given in units of mS/cm? and ms, respectively;
& ()is Dirac’s & function; and « is a normalization constant
to keep peak of b; — a; equal to gj.

For both steady-state and sinusoidally modulated net-
work oscillations, /o ; were drawn from uniform distribution
with the range [2, 3.8]uA/cm 2 providing a distribution of
intrinsic frequencies with a 20-Hz range (Fig. 2A, vertical
and horizontal bars). In steady-state oscillations regime
inhibitory modulatory conductance gmogwas set to zero.
In a contrast, for modulated network oscillations gpoq Was

o 9 mod

sinusoidally modulated: gmoeq(t) = {1 — 0052—771‘]

2 P
where P is the period, and g,,,4s the amplitude of
modulation.

Connections in the network were sparse and random
with probability p = 0.133 of connection between any
given the i and j% neurons. For all simulations presented
here, conduction delays were uniformly randomly distrib-
uted between 0.7 and 3.5 ms.

Numerical simulations and bifurcation analysis

The bifurcation analysis was performed in XPPAUTO
(Ermentrout, 2002). The network models were imple-
mented as Python 2.7 script for the simulation package
NEURON (Hines and Carnevale, 1997). The code/software
described in the paper is freely available online at https://
senselab.med.yale.edu/ModelDB/showmodel.cshtmI?
model=259366#tabs-1]. The integration time step was
constant at 0.01 ms. Synaptic activation initially was set
to zero for all simulations. In order to better explore the
potential dynamics states of the networks, the instantane-
ous value of the membrane potential of each neuron was
initialized randomly from a normally distribution with
mean -50 mV and SD of 20 mV. The slow n variable was
initialized at the steady-state value for the membrane po-
tential. The data presented on vector strength, participa-
tion, coefficient of variation (CV) of participation and total
suppression for networks biased in the oscillatory regime
were averaged over ten trials at each parameter setting
for runs of duration 2.5 s with the initial 500 ms ignored to
minimize the effects of transients. Each trial had its own
random connectivity pattern, random initialization of the
state variables, random distribution of bias currents, ran-
dom delay distribution, and random noise sources. For
the sinusoidal drive simulations, the phase amplitude cou-
pling was averaged over 20 periods of sinusoidal drive,
again averaged over 10 trials as described above, but no
transients were deleted. The phase of each spike within a
cycle used was calculated using the length of that particu-
lar cycle. Cycle lengths are variable and were computed
using the peaks in the population rate as described in
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Tikidji-Hamburyan et al. (2015). The phase was used to
construct the vectors for the vector strength calculation.

In some figures we applied an additional source of vari-
ability. We applied a multiplicative scale factor (F;) to the
rates of change of both variables. Since the Gaussian
noise term simulates Brownian motion in the membrane
potential, in which distance is proportional to the square
root of time, the noise term is then divided by the square
root of the scale factor. Taken together, these manipula-
tions simply scale the intrinsic frequency since all intrinsic
(but not synaptic) processes are sped up or slowed down
equally.

Measure of phase amplitude coupling

Since we apply the theta drive, there is no uncertainty
with respect to the phase of the theta oscillation, in con-
trast to the uncertainty in experimental data such as LFPs
or the EEG. This simplified our analysis. Moreover, since
we apply the exact same amplitude of theta modulation to
different networks, we were interested not only in the
tightness of the coupling of the theta drive and the evoked
nested vy oscillation, but also in the magnitude of the y
oscillations. Therefore to quantify the coupling between
theta phase and y amplitude, we choose the mean vector
length (MVL; Canolty et al., 2006; Hilsemann et al., 2019),
but without normalization of the amplitude. The vectors
consisted of the known theta phase with the magnitude
given by the amplitude of the y envelope determined
using the Hilbert transform of the simulated LFP. The si-
mulated LFP was the synaptic inhibitory current summed
over the network. The sum of these vectors produces a
vector strength that is not bounded between 0 and 1, but
which does accurately reflect the amplitude of the nested
v oscillations evoked by a constant sinusoidal stimulus at
theta frequency, and the preferred theta phase. The nor-
malized vector strength shows only how strongly the y
envelope is locked to the preferred theta phase. The un-
normalized version takes into account the actual ampli-
tude of the y envelope.

Results

Phenomenological model of type 1 and type 2
excitability

Electrophysiologists frequently characterize neurons
using the steady state current/voltage (IV) curve and the
F/I curve. These measures are useful to quantify the excit-
ability of a cell. However, the phase-plane portrait tech-
nique (Edelstein-Keshet, 2005; Strogatz, 2015) gives a
more precise description of the basis for excitability type,
which we link here to the underlying bifurcation structure
(see Discussion, Generality and limitations). In a 2D sys-
tem, the rate of change of each variable defines a vector
at each point in the plane, called a vector field; a knowl-
edge of the vector field allows the prediction of the trajec-
tory in the plane. We used a 2D reduction (Rinzel, 1985) of
the Hodgkin-Huxley model (Hodgkin and Huxley, 1952),
because this 2D system with one fast variable (membrane
potential, v) and one slow variable (n) is amenable to
phase plane analysis under fast/slow assumptions
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(Bertram and Rubin, 2017). Fast/slow assumptions
means that there is time scale separation and the fast
variable, membrane potential, changes much more rap-
idly than the slow variable, with clear implications for
movement in the phase plane.

A steady state IV curve that intersects the zero current
axis in a single point is often associated with type 2 excit-
ability, whereas one with multiple intersections is often as-
sociated with type 1; the same is true for the intersections
of the nuliclines in the phase-plane portrait (Rinzel and
Ermentrout, 1998). However, as stated in Discussion,
Generality and limitations, there are exceptions. Figure 1
shows a phase-plane analysis of type 1 (Fig. 1A) and type
2 (Fig. 1B) excitability. In the phase plane, fixed points
occur at the intersection of the n-nulicline (gray curve),
which is simply the steady state activation curve for the n
activation variable, and the voltage nullcline at rest (red
curve), which is the set of values of n and v for which the
net ionic current plus any applied current is zero. For this
fast/slow system the leftmost branch is stable, and the
middle branch is unstable due to the regenerative, auto-
catalytic sodium current. At rest (with no applied current),
the fixed point (filled circle) on the left branch is stable and
determines the resting potential at —68 mV for both the
type 1 (Fig. 1A7) and type 2 (Fig. 1B7) cases. An important
difference is that for type 2, there is a single fixed point at
all values of applied current, whereas for type 1 the num-
ber of fixed points depends on the level of the applied
current.

Steady state synchrony in oscillatory networks

We constructed networks of 300 sparsely and randomly
connected neurons with heterogeneity in frequency by
distributing the bias current uniformly along a region of
the F/I curve that spanned a 20-Hz range (Fig. 2A, black
bars). The conduction delays between neurons were also
uniformly distributed between 0.7 and 3.5ms. In a homo-
geneous network with strong but fast inhibitory synapses,
delays on the short end of this range favor a solution with
two subclusters in antiphase, whereas delays at the lon-
ger end of the range favor global synchrony of a single
cluster (Tikidji-Hamburyan et al., 2019). Using a mixture of
delays results in solutions that are not obviously one or
two clusters, but are transitional between these two
extremes.

Steady state synchrony in oscillatory networks,
hyperpolarizing inhibition

Figure 3A,B, top left, shows representative traces from
network simulations with hyperpolarizing inhibition show-
ing how individual neurons of both types in noisy, sparsely
connected and heterogeneous networks skip random
cycles. However, neurons in both populations remain
synchronized with the population oscillation when they do
fire, which is evident from raster plots Figure 3A,B, bot-
tom-left. The cycle skipping is evident in the histograms
of ISIs (Fig. 3A,B, bottom right) across all neurons. There
are peaks at the network period and at integer multiples
of the cycle period, corresponding to how many cycles
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Figure 2. Model calibration. The parameters of the model for both types (parameters given in Table 1, attributes in Table 2) were ad-
justed to make the comparison as fair as possible. A, Frequency/current (F/I) curves for type 1 (black dots) and type 2 (red crosses)
overlap for the range of bias currents (horizontal bar) used in our heterogeneous networks. The vertical bar shows the range of fre-
quencies exhibited at the heterogeneous bias current levels. The F/I curves were measured using current steps of sufficient duration
to allow any transients to die out and establish a steady frequency. Arbitrarily slow frequencies can be obtained for type 1 (data not
shown) near the bifurcation, but type 2 has a minimum cutoff frequency below which it cannot fire. Current steps were additive (the
membrane potential was not returned to rest between steps). After stepping up, the current was stepped down to reveal the bistable
region. The bistable range for type 2 is evident from the current values at which a zero-frequency quiescent solution coexists with a
repetitively firing solution. This region was determined using XPPAUTO. B, The spike shapes and the ISI are very similar for type 1

(black curve) and type 2 (red dashed curve); | = 2.85uA/cm?.

were skipped during that interval. Neurons in the raster
plots are sorted by bias current with the fastest firing cells
at the top. This example shows that the slower firing neu-
rons at the bottom of the raster plots have a much greater
likelihood of being completely or partially suppressed for
type 1 networks compared with type 2 networks. The his-
togram of the average number of network cycles each in-
dividual neuron participated (Fig. 3A,B, top right) in is
much flatter for type 1 than type 2, because the type 2 his-
togram is skewed to higher participation rates.

This tendency for greater suppression of type 1 neurons
with hyperpolarizing inhibition was preserved across a
large range of the 2D parameter space of synaptic con-
ductance strength and SD of the additive Gaussian cur-
rent noise, as shown by the heatmaps in Figure 3C,D. The
diamond in the heatmap indicates the parameters used to
generate the raster in Figure 3A,B. The leftmost heatmap
gives the vector strength measure of population syn-
chrony. For both type 1 (Fig. 3C7) and type 2 (Fig. 3D17), a
minimum amount of conductance is required for syn-
chrony (blue strip at the left is unsynchronized). Both net-
works perform fairly well for synchrony of spikes with the
population rhythm over this range, although type 2 per-
forms a little better at high noise levels and stronger

Table 2: Characteristics of membrane passive properties

conductance. The vector strength measure of synchrony
is quite high, and exceeds 0.8 almost everywhere. The av-
erage spikes per cycle (excluding neurons that are com-
pletely suppressed) decreases with increasing noise, but
again similar for the two types of networks (Fig. 3C2,D2).
The major difference is evident in the heatmaps (Fig. 3C3,
D3) for the CV for participation across the population. As
expected from the participation histograms shown in Fig.
3A,B, top right of each, the CV is greater for type 1, re-
flecting the greater abundance of partially suppressed
neurons. The CV is in the range 0.5-0.8 for type 1 com-
pared to 0.3-0.6 for type 2. This discrepancy would be
even greater had we included the factions of completely
suppressed neurons illustrated in the rightmost histo-
grams (Fig. 3C4,D4), which clearly show a far greater frac-
tion of completely suppressed neurons for type 1.
Stronger noise desynchronizes and stronger inhibition
promotes suppression, so outside the regime of interest
neither type performs well, and the difference between
type 1 and 2 fades.

Table 3: Characteristics of network steady-state oscilla-
tions with the parameters used in simulations with theta
modulation: conductance g; = 0.1 mS/cm2, noise SD

6 = 3uA/cm?

and spike shape for type 1 and type 2 models Hyp;r?;?g?lt?g;lng i?ﬁg‘lzgg
Type 1 Type 2 Type Type

Resting potential (mV) —67.78 —67.91 Type 1 Type 2 1 2

Positive input resistance ((/cm?) 1741 2032 R 0.8 0.88 0.75 0.67

Negative input resistance (Q/cm?) 1761 2027 Mean 0.2 0.27 0.22 0.17

Spike threshold (mV) —44.34 —44.81 participation

Spike width on half height (ms) 0.39 0.40 CV of 0.81 0.64 0.64 0.65

Spike height (mV) 88.00 88.39 participation

After hyperpolarization (mV) 31.01 30.54 Total suppression 0.15 0.03 0.04 0.04
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Figure 3. Steady state synchronization of heterogeneous inhibitory interneuronal networks with hyperpolarizing inhibition. A,
Networks of type 1 neurons with synaptic conductance 0.05 mS/cm? and noise SD 1.5 pA/cm?, indicated by black diamonds in C,
D. Bottom left, Raster plot for 300 neurons, ordered by the level of applied depolarizing bias current, with the most depolarized neu-
rons at the top. Top left, Representative membrane potential trace for an individual neuron that clearly exhibits a subthreshold oscil-
lation due to network activity and cycle skipping. Bottom right, Histogram of ISIs across the population. Top right, Histogram of
average participation for all neurons in the network. B, Networks of type 2 neurons with the same parameters as in A. The four pan-
els are the same as in A. C, 2D parameter sweep in conductance strength and noise SD for type 1 networks. Heatmaps from left to
right, vector strength R of synchronization of individual spikes with the network oscillation (C1); average participation for neurons
that are not totally suppressed calculated as the mean pgrnet Of the frequency of spiking neurons normalized by the population fre-
quency (C2); the CV of the participation CVgygnet (C3); and the fraction of completely suppressed neurons (C4). D, 2D parameter

sweep for type 2 networks. Heatmaps are the same as in C.

The 2D phase plane representation of network activity
shown in Figure 4 illustrates the mechanism underlying
greater suppression of type 1 compared with type 2 neu-
rons in networks with hyperpolarizing inhibition. The n-
nullcline for the slow variable (gray curve) was constant in

May/June 2020, 7(3) ENEURO.0464-19.2020

time and across the population. On the other hand, the
membrane potential V-nulicline in the absence of inhibi-
tion was different for every neuron because of the hetero-
geneity in applied bias current. This required averaging
the V-nulicline across the population. Moreover, the level
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of inhibition is a third state variable per neuron, and the
average level of inhibition in the network varies in time.
Therefore, the 2D phase plane representation of the V-
nullcline (black curve) actually constitutes a movie (Movie
1 for type 1 and Movie 2 for type 2). The movies provide
the clearest picture of the dynamics, but snapshots of the
time-varying portrait are given for minimal, half-amplitude,
and maximal inhibition in Figure 4A7-A3,B1-B3 for types
1 and 2, respectively. Each dot represents the current po-
sition of a neuron in this phase space, with the neurons
with the highest depolarizing bias current shown in red
and those with the least in blue.

For type 1, at minimum (but nonzero) inhibition, most
neurons are in a near threshold regime (Fig. 4A7,817). The
average nullcline portrait is close to the SNIC bifurcation
at which the two indicated fixed points collide and destroy
each other. For type 1 networks: a slow channel (arrow)
between the two nuliclines arises as the system ap-
proaches the SNIC bifurcation (Fig. 1A2). By definition,
the rate of change of a variable is zero on its nullcline,
therefore close to the nullcline, the rate of change is quite
slow. In the channel, the rate of change of both variables
is quite slow, and the level of bias current imposes order
on the trajectories, with the fastest cells positioned near-
est the firing threshold. As neurons escape from the chan-
nel and fire action potentials, inhibition accumulates as
the IPSPs from the spiking neurons (shown moving down
the left branch of the V-nullcline) summate in Figure 4A2.
The accumulating inhibition moves the average V-null-
cline down and to the left, closing the channel and creat-
ing a stable fixed point that enables a resting potential (as
well as an unstable one; as in Fig. 1A7) at the intersection
with the n-nullcline. The unstable branch of the V-nulicline
(arrow indicating firing threshold points to this branch)
forms a boundary that separates neurons into two groups.
Neurons whose trajectory has already moved to the right
of this branch will fire an action potential, but those that
fall on the left side of this boundary when the channel
closes will skip this network cycle. In general, the neurons
that skip are the slower neurons; they will move leftward
toward the stable fixed point. The two groups are clearly
shown in Figure 4A3 at the point of maximal inhibition
after all spiking neurons have fired on a given cycle. The
group labeled fired is recovering from the after-hyperpola-
rizing potential (AHP) along the stable V-nullcline branch.
The group labeled skipped is trapped on their fixed point
and did not participate in the previous cycle. The intersec-
tion of the average nuliclines is the average fixed point;
the actual fixed point for the slower neurons lies to the left
of the average and for the faster neurons it lies to the
right. The important point is that the neurons tend to line
up from left to right with the faster neurons on the right. As
the maximal inhibition decays, the phase portrait reverts
to Figure 4A7; the faster on the right neurons have a clear
advantage because they are more likely to escape the
slow channel before it closes than the slower neurons.
The slower neurons are much more likely to be sup-
pressed as is evident in the raster plot in Figure 3, com-
pare A, B, and the over greater suppression for type 1
compared with type 2 that is evident in the two rightmost
heatmaps in Figure 3C.

May/June 2020, 7(3) ENEURO.0464-19.2020
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The phase portrait for minimal inhibition for type 2 in
Figure 4B1 shows that most neurons are in a near thresh-
old regime as in Figure 4A7 for type 1. The average null-
cline portrait is close to a bifurcation as in Figure 4A7,
because the average fixed point requires only a small
amount of additional excitation to move to the unstable
branch of the V-nulicline as shown in Figure 1B. However,
the vector flow near a subcritical Hopf bifurcation is com-
pletely different compared with the flow near a SNIC:
there is no slow channel. Instead, as shown in Figure 2A,
near a subcritical Hopf bifurcation, a bistable region exists
in which quiescence at a stable fixed point (arrow) co-ex-
ists with repetitive spiking at the same value of net applied
current. Whether the neuron is silent or active depends on
recent history, meaning the current location of the trajec-
tory. Specifically, the red closed curve in Figure 4B7 is an
unstable limit cycle that divides the neurons into two
groups. Those inside the red curve will spiral into the sta-
ble fixed point at its center, whereas those outside will
curve around it to fire an action potential. Thus, the mech-
anism for cycle skipping has a component that results
from the intrinsic dynamics of the circular flow around a
Hopf bifurcation; the circular flow in the phase plane re-
sults from oscillatory dynamics in the time domain due to
the emergence of complex eigenvalues in the linearized
solution evaluated at the fixed point. In contrast to the
SNIC bifurcation in Figure 4A, there is no bias toward fast-
er cells, all neurons are almost equally likely to fall outside
of the quiescent zone and fire an action potential. Figure
4B2 shows that as neurons move to the right and fire ac-
tions potentials, inhibition accumulates as in Figure 4A2
and again moves the V-nullcline downward, shifting the
fixed point down and to the left. The unstable limit cycle
opens up into a quasi-threshold (data not shown) that
then merges with the unstable branch of the V-nulicline,
labeled firing threshold. As Figure 4A3,B3 clearly shows
two groups of neurons at the point of maximal inhibition,
after all spiking neurons have fired on a given cycle.
However, the group labeled skipped is still approaching
their fixed points, and the distribution of these fixed points
will be slanted rather than flat due to the sharper angle of
the n-nulicline at the intersection. The sharper slope al-
lows the n-nulicline to avoid the other branches of the V-
nullcline enabling a Hopf bifurcation to underlie type 2 ex-
citability, whereas multiple intersections are required for
the SNIC with type 1 excitability.

Figure 4 C1,C2 summarizes the movement of the stable
fixed point due to changes in the level of inhibition. For
type 1 in Figure 4C1, the requirement that the n-nulicline
be tangent to the V-nulicline at the SNIC bifurcation im-
poses a relatively flat slope on the n-nullcline near the in-
tersection, which causes hyperpolarizing inhibition to
move the fixed points horizontally, but not vertically
(green arrows). The horizontal direction is the fast direc-
tion of the dynamics, therefore the trajectories remain on
or near the n-nulicline with constant order. The firing
threshold splits the population into spiking neurons on
the right and suppressed skipping neurons on the left.
The fixed points of the neurons are ordered with those of
the neurons with slower firing frequencies (lower bias

eNeuro.org
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Figure 4. Phase plane analysis of heterogeneous inhibitory interneuronal networks with hyperpolarizing inhibition. Large gray dashed ar-
rows show the local direction of motion in the vector field. Other thin black arrows simply point out a specific feature. These phase plane
portraits are similar to those in Figure 1 with two exceptions. First, the V-nulicline (black curves) shown is an average across the heteroge-
neous population. Thus, the fixed points shown are also an average, and actually differ for each neuron. Second, the time-varying levels of
inhibition between the neurons causes the position of the average V-nulicline to fluctuate in time. The slow n-nullcline (gray) is constant for
each type. Each dot represents the current position of one neuron in the network, with the fastest neurons in red and the slowest in blue
(there is also a contribution to the dynamics by the number of active inhibitory inputs to each neuron, which cannot be inferred from the
color code). Movement in the horizontal direction is fast compared with that in the vertical direction because the slow variable is plotted
along the y-axis. A, Type 1. A1, Minimal inhibition creates a slow channel between the nuliclines (vertical arrow). A2, Inhibition midpoint.
As neurons escape to the right (horizontal arrow shows direction of motion) and fire an action potential, inhibition accumulates and moves
the average V-nulicline down. The right branch of the V-nulicline is the firing threshold (vertical arrow). A3, Maximal inhibition. The popula-
tion is segregated into two groups. One group that fired on the most recent network cycle slowly moves down (thick arrow at top shows
direction of motion) along the stable left branch of the average V-nulicline. The other group (diagonal arrow) skipped this cycle and tends
to line up along the flat portion of the n-nulicline. B, Type 2. B1, Minimal inhibition. In contrast to the absence of a fixed point in A1, there
is a stable fixed point (technically fixed points, vertical arrow) at the intersection of the average V-nulicline and the n-nulicline. This fixed
point is surrounded by an unstable limit cycle (red curve) that forms the boundary between spiking and quiescent trajectories. B2,
Inhibition midpoint. As in A2, inhibition accumulates as neurons escape to the right and fire action potentials. The right branch of the V-
nullcline is now the firing threshold (vertical arrow). B3, Inhibition maximum. As in A3, two groups are evident corresponding to those that
fired and those that skipped. C, Summary. C1, This panel shows that the movement of the fixed point as inhibition waxes and wanes is
(leftward) in the fast, horizontal direction for type 1. C2, In contrast, the downward and leftward movement of the fixed point for type 2 has
a component in the slow direction, which helps equalize the opportunity of slow neurons to fire as compared with fast neurons.

current) on the left indicating more hyperpolarized fixed  access to the fast-curved vector fields that push them to

points and those corresponding to faster firing frequen-
cies on the right, and the movement of the fixed points as
inhibition waxes and wanes does not substantially alter
their distribution. Therefore, neurons with the slower in-
trinsic firing frequencies have a strong tendency to be
suppressed with hyperpolarizing inhibition. In contrast,
Figure 4C shows the steeper slope of the n-nulicline
causes hyperpolarizing inhibition to move all the fixed
points downward as well as leftward (green arrow). The
trajectories in Figure 4B3 for the skipping neurons do not
follow the fixed point as Figure 4A3, because downward
movement is in the slow direction. This downward and
leftward trend moves most trajectories out of the unstable
limit cycle when it forms in Figure 4B7 around the right-
most fixed point in Figure 4C2. This allows all neurons

May/June 2020, 7(3) ENEURO.0464-19.2020

an action potential trajectory, the composition of the neu-
rons that spike on any given cycle is more evenly distrib-
uted throughout the population. This phenomenon has a
contribution form anodal break excitation (Fitzhugh,
1976), also called postinhibitory rebound (Perkel and
Mulloney, 1974), and explains why suppression is less
prominent in the raster plot in Figure 3, compare B, A, and
the rightmost heatmaps of Figure 3, compare D, C.

Steady state synchrony in oscillatory networks,
shunting inhibition

The results in the previous section were for hyperpola-
rizing inhibition. For both type 1 and type 2, the bifurcation
that gives rise to spiking occurs at about —65mV.
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Hyperpolarizing inhibition with a reversal potential of
—75mV hyperpolarizes the membrane at most points dur-
ing the ISI except during the trough of the AHP. Shunting
inhibition with a reversal potential of —65mV does not
produce big changes in the membrane potential. Figure 5
shows the same simulations as Figure 3 except for versus
hyperpolarizing inhibition. Cycle skipping to preserve
population synchrony is still prominent in both types, as
evidenced by the single neuron traces in the top left of 5A
and B and by the peaks at integer multiples of the network
frequency in the ISI histograms at lower right. The leftmost
heatmaps (Fig. 5C7,D7) confirm population synchrony is
robust for both types, with generally lower participation
(Fig. 5C2,D2) than for hyperpolarizing inhibition at the
same parameter values. In general, neurons that are not
completely suppressed fire on average every other cycle.
However, type 2 networks clearly lose their superior re-
sistance to suppression, as evidenced by the rasters in
Figure 5A vs 5B. Moreover, the histogram of participation
for individual neurons is much flatter in the top right of
Figure 5B for type 2 with shunting inhibition compared
with top right of Figure 3B for type 2 with hyperpolarizing
inhibition, and in fact is slightly flatter than the histogram
for type 1 with shunting inhibition in the top right of Figure
5A. The two rightmost heatmaps once again show that
these results are general, with CVs of participation that
are slightly larger for type 2 (Fig. 5D3 vs C3), as well as
more suppressed neurons at lower noise values for type 2
(Fig. 5D4 vs C4).

Figure 6 shows a phase plane analysis of the dynamics
in a manner exactly analogous to Figure 4. Movies 3, 4
correspond to the phase portraits of type 1 and type 2 for
shunting inhibition, respectively. For type 1, in Figure 6A,
the V-nulicline does not move as much with a shunting in-
hibitory synaptic reversal potential of —65mV as com-
pared with a hyperpolarizing one of —75mV. Therefore,
the fixed point moves very little (Fig. 6C7), keeping neu-
rons that skipped near the firing threshold. The distribu-
tion of the dots representing neural trajectory are more
compressed along the n-nullcline in Figure 6A3, which re-
duces the advantage of the fastest neurons with the right-
most fixed points in escaping for the channel, hence the
decrease in suppression. The V-nuliclines and the corre-
sponding fixed also move less with inhibition in Figure 68
for type 2. In contrast to Figure 4B2, the quasi-threshold
described above (Fig. 682, red curve) is now visible as the
“ghost” of the unstable limit cycle at the inhibition mid-
point. Moreover, the inset in Figure 6C2 reveals that the
synaptic reversal potential of —65mV is very close to the
stable fixed point inside the red curve for the unstable
limit cycle. A fraction of the population gets trapped inside
the unstable limit cycle and skip a cycle. The slowest neu-
rons tend to remain trapped. This explains the greater
tendency for suppression in type 2 neurons for versus hy-
perpolarizing inhibition.

Phase amplitude coupling

In the hippocampus, y power is maximal when nested
in theta oscillations (Bragin et al., 1995). In order to deter-
mine the relative abilities of networks of neurons with type
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Movie 1. Dynamics of the type 1 population with hyperpolarizing
inhibition. Left plots from top to bottom, Population raster plot:
color code indicates amplitude of excitatory drive. Population
voltage traces: population slow variable traces; averaged synap-
tic conductance of the population. Right, Phase plane analysis.
Position of each neuron in the state space is marked by a
color cycle. Color code is the same as in top left plot. Blue
solid line indicates average instantaneous voltage nulicline.
Dashed blue line indicates voltage nullcline in the absence of
inhibition. Red dashed line shows slow variable nulicline.
[View online]

versus type 2 excitability to produce theta-nested vy, we
drove these networks with perfectly sinusoidal inhibitory
waveforms at a fixed frequency in the theta range, in the
presence of the constant heterogeneous depolarizing
bias currents distributed as described in Materials and
Methods. The depolarization mimics tonic activation of
metabotropic glutamatergic/cholinergic receptors. PV+
basket cells in freely moving rats fire at ~7 Hz during low
oscillatory periods, but that rate triples to 21 Hz during
theta oscillations (Lapray et al., 2012), presumably due to
greater tonic excitation. The sinusoidal drive mimics pha-
sic inhibition from the septum.

Phase amplitude coupling, hyperpolarizing inhibition
Figure 7 gives examples of sinusoidal modulation at

theta frequency of nested vy oscillation. The time course

of the modulation for both types of networks is the same

Movie 2. Dynamics of the type 2 population with hyperpola-
rizing inhibition. Plots and lines are the same as for Movie 1.
An additional black dash-dot curve indicates unstable limit
cycle which breaks and turns in quasi-threshold. [View
online]
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Figure 5. Steady state synchronization of heterogeneous inhibitory interneuronal networks with shunting inhibition. A, Networks of
type 1 neurons with synaptic conductance 1.5 mS/cm? and noise SD 1.5 uA/cm?, indicated by black diamonds in C, D. Bottom left,
Raster plot for 300 neurons, ordered by the level of applied depolarizing bias current, with the most depolarized neurons at the top.
Top left, Representative membrane potential trace for an individual neuron that clearly exhibits a subthreshold oscillation due to net-
work activity and cycle skipping. Bottom right, Histogram of ISIs across the population. Top right, Histogram of average participa-
tion for all neurons in the network. B, Networks of type 2 neurons with the same parameters as in A. The four panels are the same
as in A. C, 2D parameter sweep in conductance strength and noise SD for type 1 networks. Heatmaps from left to right give (C1)
the vector strength R of synchronization of individual spikes with the network oscillation; (C2) the average participation for neurons
that are not totally suppressed calculated as the mean pg,rnet Of the frequency of spiking neurons normalized by the population fre-
quency; (C3) the CV of the participation CVgrnet; and (C4) the fraction of completely suppressed neurons. D, 2D parameter sweep
for type 2 networks. Heatmaps are the same as in C.

and is given at the top of the figure. In Figure 7A71,A2,B1,
B2, each panel has a representative single neuron trace at
the top, a raster plot in the middle, and a simulated LFP
using the total inhibitory synaptic current summed across

May/June 2020, 7(3) ENEURO.0464-19.2020

the network at the bottom. Both the raster lots and the si-
mulated LFP show more neurons are recruited into the vy
rhythm in type 2 (Fig. 7B) networks compared with type 1
(Fig. 7A), both for a slower deeper modulation on the left,
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Figure 6. Phase plane analysis of heterogeneous inhibitory interneuronal networks with shunting inhibition. These phase plane por-
traits are similar to those in Figure 4 except the inhibition is now shunting instead of hyperpolarizing. Large gray dashed arrows
again show the local direction of motion in the vector field. Other thin black arrows simply point out a specific feature. The average
V-nullcline (black curves) and the slow n-nulicline (gray) are shown for each type. Each again dot represents the current position of
one neuron in the network, with the fastest neurons in red and the slowest in blue. A, Type 1. A1, Minimal inhibition again creates a
slow channel between the nuliclines (vertical arrow). A2, Inhibition midpoint. The right branch of the V-nulicline is the firing threshold
(vertical arrow). As neurons escape to the right (horizontal arrow shows direction of motion) and fire an action potential, inhibition
again accumulates and moves the average V-nullcline down. A3, Maximal inhibition. The population is again segregated into two
groups. However, the group that skipped this cycle (diagonal arrow) does not line up as clearly as in Figure 4A along the flat portion
of the n-nulicline. B, Type 2. B1, Minimal inhibition. In contrast to the absence of a fixed point in A1, there is a stable fixed point at
the intersection of the average V-nullcline and the n-nulicline. This fixed point is again surrounded by an unstable limit cycle (red
curve) that forms the boundary between spiking and quiescent trajectories. B2, Inhibition midpoint. As in A2, inhibition accumulates
as neurons escape to the right and fire action potentials. However, in this case, the ghost of the unstable limit cycle unfurls into a
quasi-threshold (red curve) and separates spiking and skipping trajectories (vertical arrow labeling the red curve as the firing thresh-
old). B3, Inhibition maximum. As in A3, two groups are evident corresponding to those that spiked and those that skipped (diagonal
arrow). C, Summary. C1, This panel shows that there is less leftward movement of the fixed point as inhibition waxes and wanes in
the fast, horizontal direction for type 1 compared with in Figure 4C7. C2, The fixed point for type 2 tends to trap trajectories inside
the unstable limit cycle (red curve, see blowup in inset), which enforces skipping.

Movie 3. Dynamics of the type 1 population with shunting in-  Movie 4. Dynamics of the type 2 population with shunting in-
hibition. Plots and lines are the same as for Movie 1. [View  hibition. Plots and lines are the same as for Movie 1. [View
online] online]
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Figure 7. Theta phase y amplitude modulation of heterogeneous inhibitory interneuronal networks with hyperpolarizing inhibition.
Two examples of sinusoidal modulation of these networks, with a 5-Hz sinusoidal modulation in inhibitory conductance shown at
top left and a shallower 10-Hz sinusoidal modulation shown at top right (conductance g; = 0.1mS/cm?, noise SD o = 3uA/cm?).
A, Type 1 networks. A1, Five-Hertz modulation. A2, Ten-Hertz modulation. Top, Representative sparsely firing single neuron type 1
traces with subthreshold oscillations due to network activity. Middle, Raster plots for 300 neurons with faster neurons (based on |
app) shown at the top. Bottom, Simulated LFP consisting of summated inhibitory currents throughout the network. B, Type 2 net-
works. B1, Five-Hertz modulation. B2, Ten-Hertz modulation. Top, Representative sparsely firing single neuron type 2 traces with
subthreshold oscillations due to network activity. Middle, Raster plots for 300 neurons with faster neurons (based on | app) shown
at the top. Bottom, Simulated LFP consisting of summated inhibitory currents throughout the network. C, Heatmaps for 2D param-
eter space of modulation depth (given in terms of the peak of the sinusoidal conductance waveform) and frequency. Asterisks
show parameter values from A, B. C1, Vector strengths for type 1 networks. C2, Vector strengths for type 2 networks. C3,
Difference of vector strengths for type 2 and type 1 networks. Hot colors indicate a difference greater than zero. The difference is
well above zero in the lower left-hand corner plot meaning that the vector strength for type 2 networks is higher.
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5 Hz modulation in inhibitory conductance
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Figure 8. Speed of recruitment of theta-nested y in homogeneous inhibitory networks with versus shunting inhibition. A,
Homogeneous inhibitory network with hyperpolarizing inhibition showing that type 2 neurons are recruited more quickly into theta-
nested y (leftmost vertical gray bar) and persist longer (rightmost gray bar). A1, Type 1. A2, Type 2. B, Homogeneous inhibitory net-
work with hyperpolarizing inhibition showing that type 1 neurons are recruited more quickly into theta-nested y (leftmost vertical
gray bar) and persist longer (rightmost gray bar). B1, Type 1. B2, Type 2.

and a shallower faster modulation on the right. The noise
and conductance parameters were selected in a regime in
which all four types of networks synchronized well. The at-
tributes of the network oscillations for the selected param-
eter regime are given in Table 3. In additional sets of
simulations (data not shown), we confirmed that the results
shown below are qualitatively similar for wide range of syn-
aptic conductance and noise levels and are not specific for
the chosen values. Figure 7C shows the results in the 2D
parameter space of modulation depth and modulation fre-
quency, with the color in Figure 7C17,C2 indicating the un-
normalized vector strength as described in Materials and
Methods. If the vectors were normalized to reflect only how
tightly locked the LFP envelope was to the theta drive, the
two types perform equally. Removing the normalization re-
veals the greater recruitment of the population into the
nested y in type 2 networks. The heatmaps in Figure 7C1,
C2 show that low frequencies and shallow modulations are
most effective, especially for type 2. The heatmap in Figure
7D shows that type 2 always outperforms type 1 because
the red color is always greater than zero.

Almost no theta modulation is evident in the membrane
potential traces of individual neurons Figure 7A,B. As the
network recovers from inhibitory modulation, the firing
rate in the population increases, therefore network inhibi-
tion fills in when the external inhibitory drive wanes. This
feedback mechanism is also responsible for keeping neu-
rons near the bifurcation at minimal inhibition in steady-
state oscillations (Figs. 4A1,B1, 6A1,B1).

May/June 2020, 7(3) ENEURO.0464-19.2020

In order to explain the superior performance of type 2
for hyperpolarizing inhibition, we can refer back to the
phase plane in Figure 4A. In order to synchronize, type 1
networks rely on the accumulation of inhibition as be-
cause a minimum number of neurons must escape
through the slow channel to create the stable fixed point
that causes some neurons to skip. In contrast, the intrinsic
dynamics of a Hopf bifurcation shown in Figure 4B create
the stable fixed point that causes some neurons to skip.
Moreover, there is no slow channel to delay spiking for
type 2 neurons, thus spiking can be recruited more
quickly. We hypothesize that the improved recruitment of
neurons into the vy oscillation in type 2 networks was be-
cause type 1 networks need more time to establish syn-
chrony. We tested this idea in a network in which all
neurons had the same applied bias current and therefore
the same intrinsic frequency (Fig. 8A). The speed of syn-
chronization is clearer for the homogeneous frequency
case because participation is more uniform. A head-to-
head comparison over two cycles of sinusoidal reveals
that indeed synchronization begins earlier in the type 2
homogeneous network compared with the type 1 homo-
geneous network (see leftmost vertical gray bar), which
accounts in part for the larger vector strength for theta
phase y amplitude coupling for type 2 with hyperpolariz-
ing inhibition. The second gray bar shows that the syn-
chrony persists longer for type 2 as well.

The superiority of type 2 for hyperpolarizing inhibition
derives from the ability to more quickly recruit the activity
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of sufficient neurons to establish synchrony at y frequen-
cies. The presumption is that the interneurons are in an
excited, oscillatory state during theta activity, and are
rhythmically inhibited by the septum. For modulation that
is too shallow, y activity is ongoing and theta power is
weak (Fig. 7 C1,C2, bottom blue strips). For modulation
that is sufficiently deep to establish theta power, the mod-
ulation must be sufficiently slow or shallow that there are
still long enough windows of time above the spiking
threshold to recruit enough active neurons to establish y
synchrony (Fig. 7C1,C2, red areas in bottom left half).

Phase amplitude coupling, shunting inhibition

The faster recruitment of type 2 oscillators did not per-
sist for homogeneous networks with shunting inhibition
(Fig. 8B). Instead, type 1 oscillators are recruited more
quickly into nested theta y because shunting inhibition
clamps neurons closer to the spiking threshold (Fig. 6C7
vs Fig. 4C1). Type 2 networks clearly lose their superiority,
likely because of the tendency of type 2 oscillators with
shunting inhibition to remain trapped at the fixed point in-
side the unstable limit cycle (Fig. 6B17,C2).

Figure 9A,B shows examples of type 1 and 2 networks
with shunting inhibition. Just as switching from hyperpo-
larizing to shunting inhibition nullified the advantage of
type 2 network in robustness to suppression during
steady state synchrony shown in Figures 3, 5, changing
the inhibition from hyperpolarizing to shunting nullifies the
advantage of type 2 for phase amplitude coupling as pre-
dicted by Figure 8. In fact, Figure 9D shows that type 1
networks have better phase amplitude coupling for deep
modulations (blue indicates a type 2-type 1 difference is
less than zero). A minimum amplitude of conductance
modulation strength is required to observe superior type 1
PAC; at low modulation amplitudes with small vector
strength values (Fig. 9C1,C2, blue at the bottom) type 2
performs slightly better. The tendency of the unstable
limit cycle in Figure 6B71 to trap trajectories clearly re-
duces the speed of synchronization of type 2, and is likely
responsible for its poorer performance with shunting
inhibition.

Robustness of both mechanisms to different types of
heterogeneity and gap junctional connectivity

In Figures 3, 5, the applied current was varied to simu-
late heterogeneity in excitatory drive, as is typical (Wang
and Buzsaki, 1996; White et al., 1998). However, in addi-
tion to having different levels of excitatory input, different
interneurons have different F/l curves. For type 1, the
slope of the F/I curve is variable, and for type 2 neurons
the cutoff frequency is also variable. We incorporated this
additional dimension of variability into our simulations
using a scale factor for the model dynamics as described
in Materials and Methods. In order to determine the effect
of heterogeneity in this parameter, we scaled the dynam-
ics of both variables for each neuron to achieve uniformly
distributed cutoff frequencies in the range from 10 to
60 Hz for type 2 neurons, and used the same range of
scale factors for type 1 neurons. We then redid the
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heatmaps for each type with hyperpolarizing (Fig. 10A,
top two rows) and with shunting inhibition (Fig. 10A, next
two rows). Although both types show a reduction in syn-
chronization, the qualitative results that type 2 networks
are more resistant to suppression for hyperpolarizing but
not shunting inhibition still hold. Figure 10B shows that
the PAC tendencies for type versus type 2 are also pre-
served under the additional heterogeneity used in Figure
10A.

We ran additional simulations (data not shown) to deter-
mine the effect of electrical combined with chemical syn-
apses since electrical coupling between interneurons has
been observed in some brain areas (Fukuda and Kosaka,
2000; Gibson et al., 2005). For sufficiently strong gap
junctional conductance and sufficiently high connection
probability, all interneurons fire together in one-to-one
spike synchrony, which is likely nonphysiological. For in-
termediate values of conductance and connectivity, the
results transition between the suppression of subsets in-
terneurons on certain cycles (as shown in Figs. 3, 5,7, 9,
10), and complete synchrony with very strong gap junc-
tional connectivity. The contributions of chemical and
electrical synapses to interneuronal synchrony are vari-
able between subregions, so the additional synchrony ex-
pected from gap junctions should also vary without
qualitatively affecting our conclusions.

Discussion

Summary of results

We present two major results. The first is that networks
of heterogeneous neural oscillators with type 2 excitability
are more resistant to suppression of the slower oscillators
than those with type 1 excitability when they are coupled
with hyperpolarizing inhibition but not with shunting inhi-
bition. The second result is that theta phase to y ampli-
tude coupling is more strongly recruited in the type 2
networks, again for hyperpolarizing but not shunting inhi-
bition. Moreover, we provide mechanistic explanations for
these phenomena, which frame conditions for the gener-
ality of these results.

The tendency of slower type 1 neurons to be more sup-
pressed than type 2 neurons for hyperpolarizing inhibition
relies on two principles. The first is the creation by inhibi-
tion of a slow channel near the SNIC bifurcation for type
1. The channel serves to line the fixed points of the heter-
ogeneous oscillators up along the slow nulicline and
along the direction of motion of the fast subsystem. This
arrangement clearly favors the faster neurons since their
fixed points are to the right and closer to escaping from
the slow channel that the slower neurons. This tendency
is greatly reduced for versus hyperpolarizing inhibition.

The second principle is the circular motion about the
subcritical Hopf bifurcation for type 2 neurons and the exis-
tence of a boundary in the phase plane between spiking
and skipping neurons allows for broader participation in
steady state network oscillation for hyperpolarizing, but not
shunting, inhibition. The critical assumption is that the sta-
ble fixed point just before the Hopf bifurcation lies near the
shunt reversal potential, but well above the hyperpolarizing
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Figure 9. Theta phase y amplitude modulation of heterogeneous inhibitory interneuronal networks with shunting inhibition. One ex-
ample of sinusoidal modulation of these networks, with a 5-Hz sinusoidal modulation in inhibitory conductance shown at the top for
the same synaptic conductance and noise SD as in Figure 7. A, Type 1 networks modulation. Top, Representative sparsely firing
single neuron type 1 traces with subthreshold oscillations due to network activity. Middle, Raster plots for 300 neurons with faster
neurons (based on | app) shown at the top. Bottom, Simulated LFP consisting of summated inhibitory currents throughout the net-
work. B, Type 2 networks. Top, Representative sparsely firing single neuron type 2 traces with subthreshold oscillations due to net-
work activity. Middle, Raster plots for 300 neurons with faster neurons (based on | app) shown at the top. Bottom, Simulated LFP
consisting of summated inhibitory currents throughout the network. C, Heatmaps for 2D parameter space of modulation depth
(given in terms of the peak of the sinusoidal conductance waveform) and frequency. Asterisk shows the parameter values from A,
B. C1, Vector strengths for type 1 networks. C2, Vector strengths for type 2 networks. C3, Difference of vector strengths for type
versus type 1 networks. Cool colors indicate a difference less than zero. The difference is below zero in this plot, meaning that the
vector strength for type 2 networks is higher, except at the bottom where the vector strength is relatively small.

reversal potential. This assumption seems reasonable surround the stable fixed point just before the Hopf bifurca-
based on the definitions of hyperpolarizing and shunting in-  tion, traps them within that limit cycle, favoring suppression.
hibition combined with the location of the Hopf bifurcation These principles apply to the transient synchronization
at the point that positive feedback from the sodium chan-  in theta-nested y as follows. Note that the steady state
nel destabilizes the rest potential. Thus, hyperpolarizing in-  synchronization and participation are similar between
hibition pushes all neurons leftward (in the fast direction) type 1 and type 2. However, type 2 neurons are more
and the circular motion brings them downward and into the  quickly recruited into nested theta vy for hyperpolarizing
fast vector fields that give neurons a much more equal inhibition because their intrinsic dynamics do not require
chance to fire than type 1. However, shunting inhibition,  accumulation of synaptic inhibition to split the popula-
rather than freeing trajectories from the unstable limit cycle  tions into spiking and skipping groups. Faster recruitment
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Figure 10. Replication of results with additional heterogeneity in intrinsic dynamics. In addition to a uniform distribution of applied
currents lp; = [2, 3.7] wA/ecm 2, heterogeneity in F; = 1.04=0.4 normally distributed was introduced in the population. F; gives a
range of cutoff frequencies from 10 to 65Hz for type 2. A, Steady state synchronization 2D parameter sweep in conductance
strength and noise SD. Heatmaps from left to right, Vector strength R of synchronization of individual spikes with the network oscil-
lation, average participation for neurons that are not totally suppressed calculated as the mean g rnet Of the frequency of spiking
neurons normalized by the population frequency, the CV of the participation CVg,rnet, @and the fraction of completely suppressed
neurons. The top two rows show that the major result from Figure 3 for networks with hyperpolarizing inhibition without the addition-
al heterogeneity is preserved: there is more variability in the CV of participation and more neurons completely suppressed for type
versus type 2. Type 2 networks are still able to achieve stronger R>0.9 synchronization almost everywhere, whereas type 1 net-
works can reach R ~ 0.85 in a small subregion and show moderate synchronization R € [0.6, 0.8] in the rest of parameter space.
Heterogeneity in the neuron dynamics reduces average participation in network oscillation compared with Figure 3, dramatically in-
creases variability in participation for type 1 networks (CV from 0.8 to 1.0 almost everywhere), and increases total suppression for
both types. The next two rows show that the major result from Figure 5 for networks with hyperpolarizing inhibition without the addi-
tional heterogeneity is preserved: more neurons completely suppressed for type versus type 1. B, Theta phase y\ amplitude cou-
pling. Heatmaps for 2D parameter space of modulation depth and frequency. Cool colors indicate a ratio less than one in the
heatmaps for the ratio. The ratio is always above one for hyperpolarizing inhibition meaning that the vector strength for type 2 net-
works is higher, as in Figure 7. The ratio is below one for shunting inhibition as in Figure 9, meaning that the vector strength for type
2 networks is higher, except at the bottom where the vector strength is small.
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also allows synchronization, which requires a minimum
number of active neurons, to persist longer. The phase
plane portrait also accounts for the slower recruitment of
type 2 neurons with shunting inhibition into nested theta
v and the shorter persistence that accompanies late re-
cruitment. The mechanism is again the tendency of shunt-
ing inhibition to clamp the type 2 trajectories inside the
unstable limit cycle, which slows recruitment into theta-
nested vy.

Generality and limitations

An important way in which we checked the generality of
the results was to introduce a second type of heterogene-
ity. We varied the slope of the F/I curve for type 1 neurons
and both the cutoff frequency and slope for the type 2
neurons by rescaling the temporal dynamics. The cutoff
frequency for FS PV+ basket cells (Martinez et al., 2017)
had an estimated SD of 40%. Thus, the 10- to 60-Hz
range in cutoff frequencies explored should map onto bio-
logically plausible distributions of cutoff frequencies.
Qualitatively, our major results were preserved under
these manipulations (Fig. 10).

There are limitations to generalizing the results of this
study. As stated in the Introduction, we focused on net-
works with fast GABA, synapses, which tend to favor the
suppression regime over phase dispersion. The results on
suppression of subsets interneurons on certain cycles (as
shown in Figs. 3, 5, 7, 9, 10) ignore the effects of gap junc-
tions. As stated in the results, modest levels of gap junc-
tions do not qualitatively change the results, but very
strong coupling would result in much less suppression. We
examined a specific parametric range of additive noise and
inhibitory conductance strength in which networks of type
1 and type 2 interneurons perform differently. Stronger
noise desynchronizes and stronger inhibition promotes
suppression, so outside the parameter regime that we ex-
amined, neither type of network synchronizes very well,
and there is little difference between their performance.
Moreover, we examined networks with a specific distribu-
tion of synaptic delays. As described in Materials and
Methods, the minimum delay was set to avoid the forma-
tion of antiphase clusters, which could complicate the
analysis.

Another limitation on the generalization of these results
is that there are two ways to achieve Hodgkin’s type 2 ex-
citability. One is the classical Hopf bifurcation described
here, and the other involves a saddle node that is not on
an invariant limit cycle (Izhikevich, 2007; Gerstner et al.,
2014). In the latter case, the limit cycle does not originate
at the saddle node, but instead coexists with the stable
fixed point, resulting in a bistable region and type 2 excit-
ability. The reported cases of type 2 excitability in FS in-
terneurons all appear to involve a Hopf bifurcation
(Sciamanna and Wilson, 2011; Tikidji-Hamburyan et al.,
2015), and there are no documented instances of a SN off
limit cycle in interneuronal populations. Thus, we have re-
stricted our study of type 2 excitability to those resulting
from a Hopf bifurcation. If the region of bistability for a
saddle node off limit cycle bifurcation is small, it is not
likely to substantially change the dynamics; a full
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characterization of this alternate route to type 2 excitabil-
ity is beyond the scope of the current study.

We also ran simulations (data not shown) of mixed net-
works of type 1 and type 2 interneurons, which tended to
behave more like type 1 networks. However, within re-
gions, the excitability type of FS interneurons seems to be
consistent. For example, all FS cells in the striatum
(Sciamanna and Wilson, 2011) and MEC (Martinez et al.,
2017) appear to be type 2, whereas those in CA1 (Wang
and Buzsaki, 1996; Ferguson et al., 2013) and dentate
gyrus (Vida et al., 2006) seem to be uniformly type 1.
Therefore, we compared networks of uniform excitability
type within the network. Moreover, we were careful to
vary only parameters that did not change the excitability
type of the model neurons, because we were interested in
isolating the effect of excitability type alone affected syn-
chronization properties.

Previous comparisons of type 1 versus type 2
excitability

Previously, Rinzel and Ermentrout (1998) contrasted the
phase portraits and bifurcation structure for type versus
type 2 excitability using the Morris-Lecar (Morris and
Lecar, 1981) model in the two regimes. Izhikevich (2007)
also showed in the phase plane that various minimal con-
ductance-based models could exhibit saddle node and
Hopf bifurcations. Neither study explored the implications
of the bifurcation type for synchronization.

In the weak coupling regime, Ermentrout and colleagues
(Marella and Ermentrout, 2008; Abouzeid and Ermentrout,
2009) found that type 2 neurons receiving noisy common
input synchronize better than type 1. Rich et al. (2017)
found that excitatory/inhibitory (E/l) networks with type 2
interneurons were more robust to changes in network con-
nectivity compared with type 1. Synchronization in small
networks with type versus type 2 excitability has been con-
trasted in earlier studies (Achuthan and Canavier, 2009;
Wang et al., 2012; Sadeghi and Valizadeh, 2014). None of
the type 1 versus type 2 model comparisons cited above
were calibrated to match spike shape, shape of the F/I
curve, time constant and input resistance across excitabil-
ity types as were the models in our study. Thus, we extend
these previous comparisons so that any difference in net-
work activity is due to the bifurcation type.

Borgers and Walker (2013) compared the synchroniza-
tion tendencies of either type 1 (Wang and Buzsaki, 1996)
or type 2 (Erisir et al., 1999) interneurons embedded in E/I
networks with type 1 excitatory neurons. The inhibitory
synapses were hyperpolarizing. The modeled E-cells were
in the mean-driven regime (with heterogeneous drive) and
participated in every y cycle. In the PING regime, the mean
drive for the | cells is also heterogeneous, but below the
threshold for repetitive spiking, so they fire when they re-
ceive a synchronous volley from the E-cells. Without gap
junctions, as the drive to the I-cells was increased to ex-
ceed threshold for repetitive firing, the type 1 I-cells de-
synchronized via phase dispersion of all interneurons,
whereas the type 2 neurons desynchronized via suppres-
sion of the slower interneurons and phase dispersion
among the faster ones. This seems to contradict our results
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that type 2 neurons are more resistant to suppression in
networks with hyperpolarizing inhibition. However, there is
no contradiction with our results. The results presented in
our study apply when the population is in a parameter re-
gime in which neurons synchronize their firing with the
population, whereas their parameter settings biased their
interneurons in an asynchronous regime above the thresh-
old for repetitive firing. The desynchronized I-cells sup-
pressed the E cells. For both types, adding sufficiently
strong gap junctions enforces ING synchrony among inter-
neurons (as we also found, see Results, Robustness of
both mechanisms to different types of heterogeneity and
gap junctional connectivity), but nonetheless leads to sup-
pression of the E-cells via a distinct deterministic mecha-
nism. In this mechanism, the phase delays produced by
the synchronized firing of the I-cells exceed the oscillatory
period of the mean-driven E cells, resulting in complete
suppression of the E cells. It has since been shown that
ING can be observed without suppression of the E-cells
both experimentally (Vinck et al, 2013, 2015a,b;
Perrenoud et al., 2016) and in models (Tikidji-Hamburyan
etal., 2019, their Fig. 7A).

Previous studies on suppression

Early work (Wang and Buzsaki, 1996; Chow et al., 1998;
White et al., 1998) on robustness of inhibitory interneuro-
nal synchrony focused of type 1 excitability only. These
studies did not include conduction delays, and concluded
that hyperpolarizing inhibition and non-physiological low
levels of heterogeneity in excitatory drive were required
for synchrony; adding delays to the system changes
these results. Subsequent studies (Vida et al., 2006) used
the same type 1 Wang and Buzsaki model added a ring
topography but with conduction delays ranging from 0.7
to 10.5 ms; they found that networks with shunting inhibi-
tion were more robust to heterogeneity than with hyper-
polarizing inhibition. Their raster plots clearly show more
suppression for type 1 for hyperpolarizing compared with
shunting inhibition, in agreement with our findings. They
repeated their simulation with the type 2 model of Erisir et
al. (1999), and obtained similar synchronization results, as
in our study. However, they did not show raster plots or
report on suppression in the type 2 networks. Another
study also used a distribution of delays (from 0.7 to 3.5) to
prevent the formation of two cluster solutions (Tikidji-
Hamburyan et al., 2019) and stabilize global synchrony by
moving the operating point away from the destabilizing
discontinuity in the phase resetting curve at 0 and 1.

Chiloride reversal potential may be variable

GABAA receptors are chloride channels. The reversal
potential can vary across neurons with different internal
chloride concentration due to differential chloride ion han-
dling. The reversal potential for chloride in FS basket cells
in vitro is about —52 mV (Vida et al., 2006) in the dentate
gyrus, which implies shunting inhibition in those cells.
Previous studies in CA1 and CA3 concluded that inhibi-
tion between basket cells was hyperpolarizing (Buhl et al.,
1995; Cobb et al., 1997). However, the Cl- concentration
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can be modulated (Garand et al., 2019), and there can be
intracellular gradients in chloride concentration (Blaesse
et al., 2009). Therefore, there is sufficient uncertainty re-
garding the precise reversal potential of chloride at synap-
ses between interneurons to warrant a systematic study
of both types of inhibition. Moreover, there may be vari-
ability between brain regions; it is conceivable that the re-
versal potential for mutual inhibition and the excitability
type of the interneurons could be co-regulated to optimize
synchronization properties.

Support for cycle skipping in the mean-driven
oscillatory regime to enforce synchrony

Pairs of FS interneurons with reciprocal inhibitory (but
not electrical) coupling can synchronize in vitro with milli-
second precision (Hu et al., 2011, their Fig. 4; Gibson et al.,
2005, their Fig. 13) when they are both depolarized into an
oscillatory regime by current injection. On cycles in which
synchrony is not tight, one neuron suppresses the other,
resulting in cycle skipping. Cycle skipping characterized by
bi- or multi-modal ISI histograms in FS interneurons was
observed in pharmacologically induced vy in a slice prepa-
ration (Hajos et al., 2004, their Fig. 4B,C) and in computa-
tional PING (Economo and White, 2012) and ING models
with both type 1 (Buzsaki et al., 2004), and type 2 neurons
(Tikidji-Hamburyan et al., 2015). Moreover, there are in-
stances of inhibitory neurons in the oscillatory regime in
vivo. For example, a subset of FS interneurons were re-
cently identified in mouse barrel cortex in vivo whose firing
was clocklike at y frequency (Shin and Moore, 2019). Of
even greater relevance, in mouse striatum, the subset of
FS neurons that were strongly locked to transient 50-Hz y
oscillations in vivo exhibited clear bimodal peaks in their ISI
histogram (at 20 and 40 ms; Berke, 2009). CA3 FS cells
fired at 21 Hz during 45-Hz vy, thus they fired roughly on
every other cycle (Tukker et al., 2013), but no histograms
were provided.

Cycle skipping provides a mechanism by which
coupled oscillator models can produce tightly synchron-
ized firing with sparse firing in individual neurons. This
mechanism is distinct from a clustering mechanism that
was advanced to introduce robustness of population syn-
chrony. In that mechanism, interneurons did not partici-
pate on every vy cycle because synchronized subclusters
fired in sequence (Tiesinga and José, 2000). Another
study (Tikidji-Hamburyan et al., 2015) found that cycle
skipping was more prominent in type versus type 1 net-
works with hyperpolarizing inhibition, but a fair compari-
son across the parameter space with matched models
was not performed. Cycle skipping allows robustness to
heterogeneity in excitatory drive and connectivity for both
type 1 and type 2 networks, overcoming a perceived
weakness of coupled oscillator models of network +.
Since vy frequency is variable and often modulated by
theta, physiological ISI histograms from FS interneurons
during episodes of y are expected to be less sharply
peaked than the examples in Figures 3A,B, 5A,B for
steady, sustained vy oscillations. However, if FS interneur-
ons are in the mean-driven oscillatory regime during vy ep-
isodes in vivo, a clear neural signature of vy resulting from
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cycle skipping interactions between interneurons in the
mean driven regime would be potentially unimodal ISI his-
tograms in the fastest interneurons and bi or even multi-
modal histograms in other interneurons.

Therapeutic directions for PAC and cognition

The hippocampal theta rhythm has been shown to be
necessary for spatial learning by rats in a water maze
(McNaughton et al., 2006). Phase amplitude coupling be-
tween theta and v likely plays an important role in cogni-
tion (Fell and Axmacher, 2011), and we have shown here
that type 2 excitability in interneurons strengthens phase
amplitude coupling between theta and y rhythms for hy-
perpolarizing but weakens it for shunting inhibition. This
suggests the possibility that interneurons could modulate
their excitability type according to whether inhibition is hy-
perpolarizing or shunting, or vice versa. Moreover, this
suggests a therapeutic strategy to manipulate excitability
type, and thereby theta-nested y phase amplitude cou-
pling, by targeting currents active in FS interneurons in
the subthreshold regime to tip the balance toward out-
ward currents.

The balance of inward and outward currents in the volt-
age range traversed between action potentials during the
ISI determines whether a neuron exhibits type 1 or type 2
excitability, and is easily modifiable by altering this bal-
ance (Golomb et al., 2007; Prescott et al., 2008). For type
2, outward currents predominate at steady state in this re-
gion of subthreshold membrane potential, but are acti-
vated more slowly than the inward currents. Therefore,
the dwell time in this region of membrane must be brief so
that the outward current does not equilibrate and stop the
depolarization caused by the inward currents between
spikes. There is a maximum ISI for which repetitive spik-
ing can be supported, hence a minimum frequency below
which the neuron cannot sustain repetitive firing. In con-
trast, inward currents predominate at steady state in the
subthreshold range on membrane potentials spanned by
the ISI, therefore arbitrarily low firing rates can be sus-
tained. Decreasing inward or increasing outward currents
that have a steady state component during the ISI favors
type 2 excitability, and the opposite manipulations favor
type 1. These manipulations, depending on whether inhi-
bition is hyperpolarizing or shunting, could increase theta/
v PAC. Increased theta/y phase amplitude coupling may
in turn improve some aspects of cognition.
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