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Diabetic macular edema (DME) is a major cause of visual loss in the patients with diabetic retinopathy. DME detection in Optical
Coherence Tomography (OCT) image contributes to the early diagnosis of diabetic retinopathy and blindness prevention.
Currently, DME detection in the OCT image mainly relies on the handwork by the experienced clinician. It is a laborious, time-
consuming, and challenging work to organize a comprehensive DME screening for diabetic patients. In this study, we proposed a
novel algorithm for the detection and segmentation of DME region in OCT image based on the K-means clustering algorithm and
improved Selective Binary and Gaussian Filtering regularized level set (SBGFRLS) algorithm named as SBGFRLS-OCT algorithm.
SBGFRLS-OCT algorithm was compared with the current level set algorithms, including C-V (Chan-Vese), GAC (geodesic active
contour), and SBGFRLS, to estimate the performance of DME detection. SBGFRLS-OCT algorithm was also compared with the
clinician to estimate the precision, sensitivity, and specificity of DME segmentation. Compared with C-V, GAC, and SBGFRLS
algorithm, the SBGFRLS-OCT algorithm enhanced the accuracy and reduces the processing time of DME detection. Compared
with manual DME segmentation, the SBGFRLS-OCT algorithm achieved a comparable precision (97.7%), sensitivity (91.8%), and
specificity (99.2%). Collectively, this study presents a novel algorithm for DME detection in the OCT image, which can be used for
mass diabetic retinopathy screening.

1. Introduction

Diabetic retinopathy (DR) is one of the most common
complications of diabetes mellitus [1]. The prevalence of
DR in diabetic patients is expected to be over 20% globally
[2]. Diabetic patients can develop diabetic macular edema
(DME) with the progression of DR [3]. DME is caused by
the accumulation of fluid in the macula due to the disrupted
blood-retinal barrier [4]. It is usually recognized as the pri-
mary cause of vision loss in DR [5]. DME can be cured if they
were detected at the early stage. However, due to the igno-
rance and unawareness especially in rural areas, many people
are suffering from DME, which eventually leads to irrevers-
ible blindness [6].

Optical coherence tomography (OCT) is a noninvasive
imaging modality, which provides the morphological tissue
information, including the retina [2, 7]. Retinal OCT image
provides information about retinal internal structures and
early symptoms of retinal disease [8]. Moreover, OCT can
be used for detecting the DME region [9–12]. However, it is
a time-consuming and subjective task to detect DME region
due to the inhomogeneous appearance, considerable shape
variability, as well as the intensity similarity between DME
region and healthy region [13]. Moreover, the patients with
diabetes require regular and repetitive retinal screening for
early detection and timely treatment of DR [14, 15]. Notably,
the number of people with diabetes has risen sharply in
recent years [16]. The task for comprehensive screening to
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detect DME in diabetic patients is very challenging [6, 17].
Thus, it is required to design a simple method to detect
DME in the OCT image, which can assist ophthalmologists
for DME recognition and enhance the efficiency of diagnosis
and decision making [18, 19].

Compared with the rapid development of OCT technol-
ogy, the method for OCT image analysis has begun during
the last decade. Several algorithms, such as Geodesic active
contour (GAC) and Chan-Vese (C-V), have been used for
medical image analysis. GAC algorithm usually leads to a
high level of noise. The object is usually characterized by
weak edges [20]. C-V model is time-consuming because the
average intensities inside and outside the contour should be
computed at each iteration [21]. These algorithms are only
appropriate for the limited number of images with the deter-
minate abnormalities [22]. In this study, we proposed a novel
algorithm for the delineation of the DME region in the OCT
image. The algorithm is based on the K-means clustering
algorithm and the improved SBGFRLS level set algorithm.
This algorithm will assist ophthalmologists for DME seg-
mentation and enhance the efficiency of DR diagnosis.

2. Material and Methods

2.1. Dataset. This study was conducted in compliance with
the tenets of the Declaration of Helsinki and approved by
the ethics committee of the author’s institute. Inclusion cri-
teria were as follows: presence of macular edema in at least
one eye and clear optical media allowing OCT imaging in
high quality. If a patient’s compliance permitted, both eyes
were eligible for inclusion.

The OCT dataset contains 100 OCT images (10 normal
images and 90 DR images). The normal OCT images were
from 10 healthy volunteers. The OCT images with DME
regions were from 80 DR patients (30 females and 50 males)
who undergone spectral domain OCT scanning (Heidelberg
Engineering, Heidelberg, Germany). Each patient was scanned
at the same devices by the same operator to avoid the potential
systematic bias. All SD-OCT images were read and assessed
by trained graders and identified as normal or DME based
on the evaluation of retinal thickening, hard exudates, intrar-
etinal cystoid space formation, and subretinal fluid. The fol-
lowing OCT images were ruled out for further analysis: (1)
low contrast of OCT images makes the interface between
the background region and retinal region is quite weak and
invisible; (2) OCT images with high speckle noise hinders
DME signal in retinal region.

2.2. Methodology of Diabetic Macular Edema Detection. The
methodology consists of two steps. At step 1, the K-means
clustering algorithm is used to divide the input OCT image
into the ROI (retina region) and background region. At step
2, the improved SBGFRLS algorithm is used to segment the
DME region in the OCT image. The flowchart of the meth-
odology is shown in Figure 1.

Step 1.Original OCT images are divided into the ROI (retinal
region) and background region.

K-means clustering algorithm is a common image seg-
mentation algorithm based on the clustering technique
[23]. The core of the algorithm is to determine K clustering
centers C1, C2,⋯, CK , so as to minimize the mean squared
distance from each data pint to its nearest center. In this
study, K = 2 was used to divide OCT image into the ROI
region and background region.

Step 2. Improved SBGFRLS algorithm is used for DME seg-
mentation in OCT image.

The level set methods are usually used for medical
image segmentation, including the Selective Binary and
Gaussian Filtering Regularized Level Set (SBGFRLS) [24],
Chan-Vese (C-V) [25], and Geodesic Active Contour
(GAC) algorithm [26]. In this study, we modified the
SBGFRLS algorithm to propose a novel algorithm for
DME segmentation in OCT image, named as SBGFRLS-
OCT. SBGFRLS algorithm is used to segment OCT image
by calculating the signed pressure force function (spf ) and
reinitialization [27]. The evolution function of SBGFRLS
algorithm is

∂ϕ
∂t

= spf I xð Þð Þ ∇ϕj jα, ð1Þ
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Figure 1: Flow chart of the proposed methodology for DME
segmentation.
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where α is the force parameter of the balloon and controls
the evolution rate of the level set. The function of spf is
defined as:

spf Ið Þ = I − c1 + Cð Þ/2ð Þ
max I − c1 + Cð Þ/2ð Þj jð Þ , ð2Þ

where c1 and c2represent the mean gray value of inside
and outside the curve, respectively, which is computed
by Eq. (3).

c1 ϕð Þ =
Ð
Ω
I x, yð Þ ⋅H ϕð Þdxdy
Ð
Ω
H ϕð Þdxdy ,

c2 ϕð Þ =
Ð
Ω
I x, yð Þ ⋅ 1 −H ϕð Þð Þdxdy
Ð
Ω
1 −H ϕð Þð Þdxdy :
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>>>><

>>>>:

ð3Þ

We modified the spf function of the conventional
SBGFRLS algorithm in the proposed SBGFRLS-OCT algo-
rithm. The SBGFRLS-OCT algorithm is efficient to obtain
the segmentation result of the internal closed region such
as the DME region, whereas the conventional SBGFRLS
algorithm cannot achieve. Here, we provided a detailed
description of SBGFRLS-OCT algorithm as shown below:

(1) Calculate the outside curve of the retinal region (C)
by K-means clustering algorithm

(2) Taking C as an input parameter, calculated the inside
curve (c1) by the modified spf function, as shown in
Eq. (4)

spf Ið Þ = I − c1 + Cð Þ/2ð Þ
max I − c1 + Cð Þ/2ð Þj jð Þ : ð4Þ

(3) If the level set function converges, it ends; otherwise,
it returns (2).

3. Results

3.1. Performance of SBGFRLS-OCT Algorithm on ROI and
DME Segmentation. We used the SBGFRLS-OCT algorithm
for DME segmentation in the OCT image. Figure 2 shows a
representative segmentation result of the OCT image. At
first, the original input OCT image (Figure 2(a)) was seg-
mented to obtain the ROI region and background region
based on the K-means clustering algorithm (Figure 2(b)).
Then, the ROI region was segmented to a complete segmen-
tation result of ROI and DME region based on the SBGFRLS-
OCT algorithm (Figure 2(c)).

We then compared the segmentation performance of the
SBGFRLS-OCT algorithm against three conventional level
set algorithms, including C-V, GAC, and SBGFRLS. As
shown in Figure 3 the C-V algorithm could not obtain the
initial boundary of ROI. GAC algorithm could not obtain

(a) (b) (c)

Figure 2: Original OCT image was segmented to obtain the ROI region and DME region. (a) Original OCT image; (b) K-means clustering is
used for ROI segmentation; (c) SBGFRLS-OCT algorithm is used for DME segmentation. Red lines were used to label the retinal regions
(ROI), and green lines were used to label DME regions.

ROI

DME

C-V GAC SBGFRLS SBGFRLS-OCT

Figure 3: Comparison of segmentation performance of the SBGFRLS-OCT algorithm against C-V, GAC, and SBGFRLS algorithms. DME
segmentation in the OCT image was conducted using C-V, GAC, SBGFRLS, and SBGFRLS-OCT algorithms to obtain ROI and DME
region. The four images showed the segmentation results. Red lines were used to mark the retinal region (ROI). Green lines were used to
mark the DME regions.
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the clear segmentation result of the ROI and DME region.
The traditional SBGFRLS algorithm was highly dependent
on the initial boundary of ROI, which was determined by
the outside curve. However, the outside curve was variable.
By contrast, the SBGFRLS-OCT algorithm could obtain a
perfect segmentation result as shown by the clear ROI region
and DME region. Collectively, these results suggest that the
SBGFRLS-OCT algorithm is suitable for DME segmentation
in the OCT image.

3.2. Comparison of DME Segmentation Efficiency between
SBGFRLS-OCT Algorithm and Other Level Set Algorithms.
We calculated the processing time and the number of itera-
tion times to compare DME segmentation efficiency between
SBGFRLS-OCT and other level set algorithms. As shown in
Table 1, compared with the SBGFRLS algorithm, the process-
ing time of the SBGFRLS-OCT algorithm reduced by 30%,
while the number of iteration time reduced by 35%. Com-
pared with C-V or GAC algorithm, the SBGFRLS-OCT algo-
rithm greatly reduced the processing time for DME
segmentation. The processing time in the SBGFRLS-OCT
algorithm was about 90 times or 275 times less than the time
in C-V or GAC algorithm. The SBGFRLS-OCT algorithm
greatly reduced the number of iteration times. The number
of iteration times in the SBGFRLS-OCT algorithm was about
73 times or 300 times less than the number in C-V or GAC
algorithm.

3.3. Comparison of DME Segmentation Performance between
SBGFRLS-OCT Algorithm and Manual Method. 90 OCT
images with DME region were carefully judged by three ret-
inal experts with more than 10-year clinical experience. Their
consistent results of DME segmentation were taken as the
gold standard. We then compared the performance of DME
segmentation between the SBGFRLS-OCT algorithm and
manual method by 5 additional clinicians by calculating the
indicators, including Dice’s similarity coefficient, precision,
sensitivity, and specificity [16]. It is generally accepted that

the Dice’s similarity coefficient greater than 0.70 indicates
excellent agreement. The Dice’s similarity coefficient could
reach 0.97 in the SBGFRLS-OCT algorithm, suggesting that
the SBGFRLS-OCT algorithm can achieve similar segmenta-
tion performance as a manual method. Table 2 showed that
the precision, sensitivity, and specificity for DME segmenta-
tion were 97.7%, 91.8%, and 99.2% in the SBGFRLS-OCT
algorithm, suggesting that the SBGFRLS-OCT algorithm
has a comparable performance as manual segmentation for
DME segmentation. By contrast, the processing time of the
SBGFRLS-OCT algorithm was about 66 times less than the
time of manual segmentation. Figure 4 shows the segmenta-
tion results of the DME region between the SBGFRLS-OCT
algorithm and manual segmentation.

4. Discussion

Diabetic macular edema (DME) is a major cause of blindness
in the patients with diabetic retinopathy [28]. Optical coher-
ence tomography (OCT) has gained increasing attention as a
diagnosis tool for DME detection [29]. However, compre-
hensive OCT screening for DME in diabetic patients is a
labor-intensive, tedious, and challenging task [30]. Thus, it
is urgent to develop a rapid and simple algorithm for DME
segmentation in OCT images.

The level set algorithms have been used for medical
image segmentation [31]. However, clinical specialists are
often overwhelmed by the intensive computational require-
ments and complex regulation of controlling parameters
[32]. K-means clustering algorithm is simple and has a rela-
tively low computational complexity. It can obtain the
approximate boundaries of potential components of interest
[33, 34]. The improved SBGFRLS algorithm enhances the
efficiency and precision for DME segmentation. Compared
with the current level set algorithms, such as C-V, GAC,
and SBGFRLS, the proposed SBGFRLS-OCT algorithm is
more efficient in DME segmentation as shown by decreased

Table 1: Mean processing time and iteration times for DME segmentation by C-V, GAC, SBGFRLS, and SBGFRLS-OCT.

C-V GAC SBGFRLS SBGFRLS-OCT

Processing time (s) 2068:25 ± 198:59∗ 6362:72 ± 809:77∗ 33:24 ± 4:13∗ 23:32 ± 3:86
Iteration times (time) 13248 ± 989:77∗ 53563 ± 1482:53∗ 280:58 ± 23:38∗ 180:32 ± 14:28
All data were shown as mean ± SD. n = 90. The significant difference was calculated by one-way ANOVA. ∗P < 0:05 versus SBGFRLS-OCT.

Table 2: Comparison of segmentation performance between SBGFRLS-OCT algorithm and five different clinicians.

Precision Sensitivity Specificity Processing time (s)

Clinician 1 95% 88% 96% 1580

Clinician 2 92% 85% 93% 1200

Clinician 3 98% 94% 99% 2000

Clinician 4 94% 90% 93% 1680

Clinician 5 90% 95% 91% 1880

Average value for clinician 94% ± 3% 90% ± 4% 94% ± 3% 1668 ± 309
SBGFRLS-OCT 97.7% 91.8% 99.2% 25

4 BioMed Research International



mean processing time (s) and iteration times (time). Dice’s
similarity coefficient is a dimensionless ratio where 1 cor-
responds to a perfect match between the images being
compared. Dice’s similarity coefficient > 0:70 indicates
excellent agreement [16]. The Dice’s similarity coefficient
can reach 0.97 in the SBGFRLS-OCT algorithm. The pre-
cision, sensitivity, and specificity of DME segmentation in
the SBGFRLS-OCT algorithm can reach about 97.7%,

91.8%, and 99.2%. Compared with manual segmentation,
the SBGFRLS-OCT algorithm can significantly reduce the
processing time of DME segmentation, suggesting that
the SBGFRLS-OCT algorithm is comparable to retinal spe-
cialists in DME segmentation.

Given the wide variations in pathology and the potential
fatigue of human experts, researchers and doctors have
begun to use computer-assisted interpretation of OCT image

Original image SBGFRLS-OCT Mannal segmentation

(a) (f) (k)

(b) (g) (l)

(c) (h) (m)

(d) (i) (n)

(e) (j) (o)

Figure 4: Comparison of DME segmentation performance between the SBGFRLS-OCT algorithm and manual method. (a–e) Original OCT
images with DME pathology. (f–j) DME segmentation result by SBGFRLS-OCT algorithm. (k–o) Manual segmentation result by five different
clinicians. Red lines were used to label the retinal region (ROI). Green lines were used to label DME regions.

5BioMed Research International



[2, 4]. Deep learning has become a methodology of choice for
analyzing OCT images. It helps to identify, classify, and
quantify pathological features in OCT images. However,
deep learning is highly dependent on the following factors:
(a) advances in high-tech central processing units (CPUs)
and graphics processing units (GPUs), (b) the availability of
a huge amount of data (i.e., big data), and (c) developments
in learning algorithms [35, 36]. However, in the hospitals of
rural areas, they do not have high configuration computers
and sophisticated computer specialists. A simple and easily
implemented method is required for OCT image analysis.
Compared with deep learning, the SBGFRLS-OCT algorithm
is simple and does not require multiple training images and
complexed computational devices. Moreover, the SBGFRLS-
OCT algorithm obtains similar results of OCT image
analysis as the physicians.

In the clinical work, the quality of OCT images was
influenced by multiple factors, such as OCT devices, OCT
operators, and disease conditions [37]. For example,
cataract-induced lens opacity significantly affected the qual-
ity of the OCT image [38]. The interpretation result of the
OCT image may also be influenced by the quality of OCT
images. The SBGFRLS-OCT algorithm would face great chal-
lenges when it was used for DME segmentation of the follow-
ing type of OCT images: (1) low contrast of OCT images
makes the interface between the background region and ret-
inal region is quite weak and invisible; (2) OCT images with
high speckle noise hinders DME signal in retinal region. In
the future, we would modify the SBGFRLS-OCT algorithm
by integrating the de-noise algorithm and image intensifica-
tion algorithm and make it applicable to the interpretation
of OCT images with different quality.

5. Conclusions

Overall, in this study, a novel algorithm was proposed for
DME segmentation based on the K-means clustering algo-
rithm and improved SBGFRLS algorithm. Compared with
the other level set algorithms, the SBGFRLS-OCT algo-
rithm has higher precision, higher sensitivity, and better
specificity for DME segmentation. Compared with manual
DME segmentation, the SBGFRLS-OCT algorithm achieves
a comparable precision, sensitivity, and specificity but a sig-
nificantly reduced processing time. Collectively, this study
presents a novel algorithm for DME segmentation in the
OCT image, which can be used for mass diabetic retinopathy
screening.
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