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ARTICLE INFO ABSTRACT

Keywords: Gray matter disruptions have been found consistently in Attention-deficit/Hyperactivity Disorder (ADHD). The
ADHD organization of these alterations into brain structural networks remains largely unexplored. We investigated 508
Independent component analysis participants (281 males) with ADHD (N = 210), their unaffected siblings (N = 108), individuals with sub-

Cerebellum threshold ADHD (N = 49), and unrelated healthy controls (N = 141) with an age range from 7 to 18 years old
E:tltlzntion from 336 families in the Dutch NeuroIMAGE project. Source based morphometry was used to examine structural

brain network alterations and their association with symptoms and cognitive performance. Two networks
showed significant reductions in individuals with ADHD compared to unrelated healthy controls after False
Discovery Rate correction. Component A, mainly located in bilateral Crus I, showed a ADHD/typically devel-
oping difference with subthreshold cases being intermediate between ADHD and typically developing controls.
The unaffected siblings were similar to controls. After correcting for IQ and medication status, component A
showed a negative correlation with inattention symptoms across the entire sample. Component B included a
maximum cluster in the bilateral insula, where unaffected siblings, similar to individuals with ADHD, showed
significantly reduced loadings compared to controls; but no relationship with individual symptoms or cognitive
measures was found for component B. This multivariate approach suggests that areas reflecting genetic liability
within ADHD are partly separate from those areas modulating symptom severity.

1. Introduction

Attention-deficit/Hyperactivity Disorder (ADHD) is a heritable
neurodevelopmental disorder characterized by inattention and/or hy-
peractivity and impulsivity (Polanczyk and Rohde, 2007). Heritability
of the disorder is estimated to be around 75%, with siblings of ADHD
cases having a four times higher risk of developing ADHD than the
general population (Biederman et al., 1990; Wolfers et al., 2016). Fa-
mily and genetic factors influence both ADHD risk and brain structures
(Demontis et al., 2017; Faraone et al., 2005; Klein et al., 2017; Peper
et al., 2007). Unaffected siblings of ADHD cases show altered brain

phenotypes, often at intermediate levels between ADHD and controls
(Bralten et al., 2016), suggesting endophenotype qualities of such traits
(Durston et al., 2006; Gottesman and Gould, 2003; Greven et al., 2015;
Hart et al., 2014; van Rooij et al., 2015). However, the exact brain
mechanisms behind such familial effects and their potential association
with the symptoms and cognitive deficits relevant to ADHD are still
unclear.

Structural brain alterations associated with ADHD have been re-
ported consistently across cortical and subcortical regions (Ellison-
Wright et al., 2008; Halperin and Schulz, 2006; Hoogman et al., 2017).
Previous studies have demonstrated significant brain developmental
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delay and 3-5% smaller whole brain volume in individuals with ADHD
compared to healthy controls (Castellanos et al., 1996; Castellanos
et al., 2002; Greven et al., 2015). Meta-analysis studies have revealed
ADHD-related brain abnormalities consistently in the caudate and basal
ganglia, including the globus pallidus and putamen (Frodl and
Skokauskas, 2012; Rogers and De Brito, 2016; Valera et al., 2007).
Structural alterations of fronto-striatal-parietal pathways (Dickstein
et al., 2006), cerebellum (Valera et al., 2007), anterior cingulate cortex
(Narr et al., 2009; Norman et al., 2016), and several other brain regions
have also been reported in relation to ADHD. Voxel-based morpho-
metry (VBM) analyses of unaffected siblings of ADHD cases have
identified alterations in the prefrontal cortex, medial and orbitofrontal
cortex, fronto-occipital regions, and cingulate regions compared to
healthy controls (Bralten et al., 2016; Durston et al., 2004; Pironti et al.,
2014).

The brain regions listed above are involved in different disorders
and cognitive deficits (Norman et al., 2016). It is well-known that brain
regions do not act in isolation to support brain functions and different
approaches have been used to define brain networks as possible “units”
underlying function (Jadidian et al., 2015). A recent 2018 study em-
ployed source-based morphometry (SBM) (Xu et al., 2009), a data—
driven decomposition approach, to extract brain network as potential
markers in adult ADHD (Duan et al., 2018). Inspired by Duan and
colleagues, we investigated multivariate structural brain network al-
terations in children with ADHD, compared to their unrelated controls,
and subsequently we examined those case v. controls alterations in
their unaffected siblings and participants with subthreshold ADHD. We
also examined the associations between the observed altered structural
brain networks and major symptom domains and cognitive functions
(namely, working memory and inhibition) while controlling for family
structure. Thus, with family structure taken into account, we aimed to
distinguish multivariate brain networks markers potentially associated
with ADHD.

2. Material and methods
2.1. Participants

This study included 508 participants from 336 families from the
NeuroIMAGE project (von Rhein et al.,, 2015). In this longitudinal
study, families with an individual with ADHD were recruited, along
with healthy control families. All participants provided written consent;
detailed recruitment procedures, ethical approval, inclusion and ex-
clusion criteria, as well as assessment information can be found in the
previous description paper (von Rhein et al., 2015). Participants with
ADHD were diagnosed according to the Diagnostic and Statistical
Manual of Mental Disorders, 4th Edition (DSM-IV) (American
Psychiatric Association, 1994). All participants had an IQ greater or
equal than 70 as assessed by the Wechsler Adult Intelligence Scale
(WAIS), and the absence of autism, epilepsy, learning difficulties, brain
disorders, and genetic disorders mimicking symptoms of ADHD were
confirmed (von Rhein et al., 2015).

Inattention and hyperactivity/impulsivity were assessed based on
the Dutch translation of the Schedule for Affective Disorders
Schizophrenia—present and lifetime version (K-SADS) and Conners’
Teacher Rating Scale — 1997 Revised Version: Long Form, DSM-IV
Symptoms Scale (CTRSR:L). The symptom scores from K-SADS and
CTRSR:L were combined together, and the range of symptom scores
was between 0 and 9 for each domain with a higher score indicating
more severe symptoms. Participants were grouped into one of four
categories: Those with ADHD, unaffected siblings, individuals with
subthreshold ADHD, and non-ADHD controls (excluding siblings of
ADHD cases), to follow groupings used in previous studies (von Rhein
et al., 2015). Unaffected siblings included in this study did not meet
diagnostic criteria for ADHD.

Subthreshold individuals had scores between 2 and 5 in either
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domain while non-ADHD controls had scores <2 in either domain (von
Rhein et al., 2015).

2.2. Neurocognitive assessments

Cognitive assessments available in the NeuroIMAGE sample in-
cluded in the current study were evaluations of working memory and
inhibition, two of the common cognitive deficits seen in ADHD
(Alderson et al., 2013; Tarver et al., 2014). In the WAIS Digit Span test,
maximum forward and backward scores were included (Wechsler et al.,
2000). The average accuracy scores from Visuo-spatial Working
Memory test were also included (Nutley et al., 2010). In a stop task, the
stop signal reaction time, the deviation of reaction time from the mean,
and total numbers of commission and omission error were evaluated to
measure inhibition (Logan et al., 1984).

2.3. Image acquisition and processing

T1-weighted images were acquired from two sites with comparable
1.5 T scanners (Sonata and Avanto; Siemens) with the following set-
tings: a voxel sizeof 1 X 1 x 1 mm?, TI = 1000 ms, TR = 2730 ms,
TE = 2.95 ms, field of view = 256 mm, and 176 sagittal slices. Two
independent raters applied a 4-point quality assurance scale to all the
scans (1 = good; 2 = useable; 3 = poor; 4 = very poor), and only
those images rated as “good” were included in the following analyses
(von Rhein et al., 2015).

All images were segmented using Statistical Parametric Mapping 12
(SPM12, http://www.fil.ion.ucl.ac.uk/spm/software/spm12/), with
age-specific templates generated by Template-O-Matic toolbox using
the matched pairs approach (Wilke et al., 2008). Gray matter (GM)
volumetric data were normalized to the Montreal Neurological Institute
(MNI) template, modulated, and smoothed with a 6 X 6 X 6 mm°>
Gaussian kernel. We performed a correlation analysis between the
images and the original MNI template and all images showed greater
than 0.8 correlation (mean r = 0.98). In addition, we applied a gray
matter mask to the images which excluded voxels that had less the 20%
gray matter. To remove possible confounding effects of gender and site,
we performed a voxel-wise linear regression model with all images.
Only residuals after the voxel-wise linear regression were reconstructed
into brain images and entered into the decomposition analysis.

2.4. Image decomposition and analysis

We utilized the SBM module of the GIFT Toolbox to perform in-
dependent component analysis (ICA) and component estimation using
the minimum description length algorithm (Rissanen, 1978). From the
infomax ICA algorithm with ICASSO within the GIFT toolbox, twenty
distinct components were produced (Bell and Sejnowski, 1995; Xu
et al., 2009). ICASSO (Himberg et al., 2004) with 10 ICA runs ensured
the stability of components. The loading coefficients for each compo-
nent and participant from these ICA results were the dependent vari-
ables in the following analyses, which reflect individual gray matter
volume of each component. We included medication use as a binary
variable (only in ADHD participants) and tested the quadratic effect of
age (age™2) for all the 20 components. Further analyses included only
the components showing significant medication or age™2 effects. Co-
morbid diagnoses of depression or anxiety were not included because
only one participant was identified as having anxiety and eight parti-
cipants were identified as having depression.

We applied a linear mixed model using family as a random effect
with other variables as fixed effects (grouping, age, age™2, and medi-
cation when applicable), to detect components that differed between
persons with ADHD and healthy controls. We applied the linear model
using MATLAB function of fitlmematrix (MATLAB and Statistics
Toolbox Release 2013a, The MathWorks, Inc., Natick, Massachusetts,
United States.). We only included GM components showing significant
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Table 1
Demographics of the sample.
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ADHD (210) Unaffected siblings (108) Subthreshold Subjects (49) Controls (141)

Age (years) 14.61 = 241 1459 + 216 15.13 * 1.97 14.58 + 2.14

Gender (F/M) 81/129 68/40 16/33 62/79

Estimated I1Q 98.63 = 16.49 99.33 *= 14.15 98.79 * 12.42 105.13 * 13.91
(0.5%) (0%) (0%) (1.4%)

Inattention 7.33 = 1.71 044 = 1.11 4.34 = 0.95 033 + 1.11
(0%) (0%) (0%) (0%)

Hyperactivity/Impulsiveness 599 = 1.71 0.34 = 0.79 2.73 = 1.96 0.17 = 0.63
(0%) (0%) (0%) (0%)

Maximum digit span forward 7.94 = 1.79 8.62 = 1.70 8.80 + 1.79 8.70 + 1.68
(0.5%) (0%) (0%) (1.4%)

Maximum digit span backward 510 + 1.74 6.06 *+ 1.67 6.06 = 2.10 6.05 *+ 1.94
(0.5%) (0%) (0%) (1.4%)

Stop task 9.45 + 121 5.64 + 8.02 5.47 + 4.33 4.47 * 6.76

errors (40%) (36%) (39%) (31%)

Stop task SSRT 277.79 = 76.01 256.05 8.02 282.42 + 58.29 263.14 = 6.76
(40.5%) (36%) (39%) (31%)

Stop task ICV 0.22 *+ 0.05 0.19 + 0.04 0.20 = 0.05 0.18 + 0.04
(40%) (36%) (39%) (31%)

SWM average accuracy 0.67 = 0.15 0.68 = 0.15 0.74 = 0.11 0.74 = 0.041
(42%) (44%) (31%) (23%)

Scan site 1 123 52 22 46

Scan site 2 87 56 27 95

Note: Values displayed in the table are showed as mean + standard deviation. Site 1 scanner was AVANTO, and site 2 was SONATA. The percentages in parentheses
show the missingness of data in each diagnostic group. Stop task error included N commission and omission errors together. Stop task SSRT: stop task stop signal
reaction time. Stop task ICV: interindividual coefficient of variation which is the reaction time variance/mean reaction time. SWM average accuracy: the average

accuracy of visuo-spatial working memory task.

ADHD/typically developing differences after a false discovery rate
(FDR) correction of ¢ < 0.05 in further association analyses for all
participants. In addition, we calculated a moving average of loading
coefficients from the significant components. The moving averages
were based on the three-years-age bins, moving one year up every step.
Those age bins with less than six participants were not included.

Finally, we conducted association analyses between component
loadings and cognitive performance along with symptom scores with
family random effects. Considering the potential confound of IQ, the
final fixed effects in this model included IQ alongside with component
loadings, age, gender, and medication.

3. Results

In decomposing the gray matter data of 508 children and adoles-
cents including 210 ADHD patients, 108 unaffected siblings, 49 in-
dividuals with subthreshold ADHD, and 141 unrelated healthy controls
(detailed demographic information is presented in Table 1), 20 brain
components were generated and their ICASSO stability indices were all
large (> 0.97). See supplemental Fig. 1 for representations of all
components.

Two components showed significant ADHD/typically developing
difference passing FDR correction (the significant threshold set at
2.50e-03 calculated by 0.05/20, the total number of components),
consistently showing lower loading coefficients in cases than controls.
Component A (Cohen’s d = —0.32, p = 1.38e-05) was mainly located
in the bilateral Crus I while controlling for age ( = —0.15,p = 7.85e-
13) and medication (f = 0.41, p = 7.00e-04) in the model. Component
B (Cohen’sd = —0.31, p = 1.13e-03) was found largely in the bilateral
insula while controlling for age (3 = 0.40, p = 0.046), age™2 (f = -
0.020, p = 5.10e-03), and medication (f = 0.24, p = 0.041) in the
model. See Fig. 1 and Table 2 for detailed representations of these two
components. The moving average of loading coefficients of component
A and B are showed in Fig. 2.

Component A showed significant differences only in the comparison
between individuals with ADHD and typically developing controls;
subthreshold cases and unaffected siblings were not significantly dif-
ferent from typically developing controls (see Fig. 3a). In component B,

individuals with ADHD and unaffected siblings (Cohen’s d = —0.35,
p = 2.02e-03) both showed significantly reduced loadings relative to
typically developing controls, while subthreshold cases were not sig-
nificantly different from any other group (see Fig. 3b).

In terms of symptom and cognitive measures, component A showed
a negative correlation with inattention symptoms across the entire
group ( = —0.43, p = 1.33e-03, variance explained = 1.4%; see
Fig. 4) after correcting for IQ and medication. However, most other
association analyses were not significant between spatial patterns and
symptom or cognitive tests (the significant threshold of 6.25e-03 cal-
culated by 0.05/8, the number of the tests). See supplemental Table 1
for all association analysis results.

4. Discussion

In this study, we used an SBM analysis to identify gray matter
network differences in individuals with ADHD, unaffected siblings,
subthreshold ADHD participants, and unrelated healthy controls. Using
a hypothesis free approach (no pre-selection of regions of interest), we
identified two components, in the cerebellum and insula, that showed
significant gray matter reductions in participants with ADHD compared
to controls. We also found this reduction continued through the whole
adolescence, similar to previous findings using the same age range in a
larger cohort that included the current study’s participants (Hoogman
et al., 2017). In addition, unaffected siblings exhibited gray matter
loadings similar to controls in the cerebellar component (component A),
but showed a negative relationship to inattention levels independent of
clinical status. The insula component (component B), in contrast,
showed a reduction in unaffected siblings similar to that in cases, but no
significant relationship was observed with symptom severity or cogni-
tive performance. In addition, there were no components significantly
related to any of the cognitive measures. Overall, this approach sug-
gests that brain areas reflecting genetic liability within ADHD may be
partly separate from areas modulating symptom severity, as has been
suggested previously (van Ewijk et al., 2014; Wu et al., 2017).

In component A, the bilateral Crus I (extending to cerebellum pos-
terior lobe and left lingual gyrus) contributed most strongly, and the left
Crus II and left fusiform also contributed, though less strongly, to this
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component. The composition of this component is consistent with the
diverse functions of the cerebellum. Of particular relevance to ADHD,
functions of the cerebellum include motor control, working memory,
and attention (Duan et al., 2018; Ivanov et al., 2014; Moore et al.,
2017). Multiple studies now suggest that the cerebellum, and altera-
tions in its structure and function, play an important role in ADHD
throughout childhood, adolescence, and adulthood (Duan et al., 2018;
Noordermeer et al., 2016; Valera et al., 2007). Our analyses support the
current literature, with a focus on Crus I and Crus II, which are con-
sidered part of an executive control network (Stoodley, 2012). Execu-
tive function deficits are known to be a key problem in ADHD (Mahone
and Denckla, 2017; Mueller et al., 2017) and have been related to in-
attention symptoms (Chhabildas et al., 2001; Neely et al., 2016; Nigg
et al., 2005; Willcutt et al., 2005).

The role of the cerebellum is backed by previous analyses in an
overlapping data set of the NeuroIMAGE project. A linked ICA analysis
of both children and adult brain images, taking into account fractional
anisotropy, mean diffusivity, diffusion mode, VBM, cortical thickness
estimate and area expansion estimate, reported reduced Crus I, Crus II,
cerebellar tonsil and culmen volume in its VBM component in ADHD
compared to non-ADHD participants (Francx et al., 2016). Multivariate
analysis in adults with ADHD also showed a brain component involving
cerebellar tonsil and culmen, and their volume negatively correlated
with inattention scores (the less volume, the worse the inattention
symptoms), while a voxel-wise analysis showed cerebellum gray matter
volume positively correlated with working memory in the same study
(Duan et al., 2018). Our findings in component A overlap with these
previous findings of the cerebellum showing reductions in ADHD
compared to non-ADHD, though the cognitive relationship in our ana-
lysis was inattention symptoms rather than working memory perfor-
mance.

Component B also showed gray matter reduction compared to the

Table 2
Brain regions, peak coordinates and volumes of components A and B.

X -ETScorc
k
' i/‘{ Component B
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Fig. 1. The two components showed
significant  case/control difference.
Component A mainly included the bi-
lateral Crus I, left lingual gyrus, left
Crus II, and the left fusiform (Z
score > 2, cluster volume > 1.5 cc®).
Component B mainly included the bi-
lateral insula, caudate, thalamus and
the middle occipital gyrus (Z score >

2, cluster volume > 1.5 cc®). The
color-bar stated the Z-score in brain
components, and it indicated to what
extents the voxels contributed to the
whole brain component (red for posi-
tive and blue for negative). (For inter-
pretation of the references to color in
this figure legend, the reader is referred
to the web version of this article.)

controls, and it mainly included the insula, extending to inferior frontal
gyrus, and included bilateral caudate, bilateral thalamus, right inferior
temporal gyrus and bilateral middle occipital gyrus. Functional neu-
roimaging studies have emphasized the key role of the insula during
salience processing and inhibitory control, with ADHD patients
showing abnormal activation/deactivation (Cubillo et al., 2012; Rubia
et al., 2011) or hyperactivation in the insula during distracting stimuli
(Vetter et al., 2018). In contrast, the reduction of gray matter volume of
the insula has been previously reported in ADHD, (Lopez-Larson et al.,
2012) as well as in common ADHD comorbidities of inhibitory control,
including obsessive-compulsive disorder (Norman et al., 2016) and
oppositional defiant disorder (Noordermeer et al., 2017). In this context
of similar disorders, the insula has often been implicated in larger in-
hibitory control networks including ventrolateral prefrontal cortex,
supplementary motor area, dorsal anterior cingulate cortex, and the
striatum, thalamus, and parietal regions (Aron, 2011; Hugdahl et al.,
2015). However, in this structural analysis, we did not find a re-
lationship with inattention or other cognitive or symptom measures for
this network.

Involvement of subcortical structures in component B is consistent
with findings from large-scale studies of ADHD. The largest subcortical
study to date, from the ENIGMA ADHD group, showed that most sub-
cortical regions, including nucleus accumbens, amygdala, caudate nu-
cleus, hippocampus, and putamen were smaller in ADHD cases than
controls (Hoogman et al., 2017). However, none of the previous uni-
variate meta-analysis of VBM results have reported the significance of
the bilateral insula, despite its important role in inhibitory control. Our
SBM findings for component B provide a more insightful profile of how
different brain regions may stably work together to form a recognizable
network than if we had investigated their volume alterations in-
dividually. Finally, component B might be capturing part of the genetic
loading involved in brain development shared by ADHD patients and

Brain regions

Volumes (cc®) Peak coordinates (Z and coordinates)

Component A

Cluster 1 Crus I (extended to cerebellum posterior lobe and L lingual gyrus)
Cluster 2 L Crus II

Cluster 3 L fusiform gyrus

Component B
Cluster 1/2
Cluster 3/4
Cluster 5

L/R insula (extended to inferior frontal gyrus)
L/R middle occipital gyrus

L/R caudate

L/R thalamus

R inferior temporal gyrus

2.1 11.2 (-9, —95, —14)

0.9 —4.7 (-9, —90, —32)

0.3 -6.8(—29, —75, —3)

0.7/0.7 3.3 (-50, 12, —3)/3.7 (48, 12, 3)

0.8/1.0 —4.2 (—33, —74, 15)/—4.2 (30, —66, 25)
0.3/0.4 —-2.9(-21,23,7)/-2.7 (19, 22, 7)
0.3/0.3 —3.1(-16, 25, 3)/-2.8 (9, —19, 3)

0.5 —4.2 (51, —50, —6)

Note: For both components, Z score was set > 2, and cluster volumes were set > 1.5 cc® to retain their most significant results. The directions of peak Z scores
indicate whether the brain region contributed positively or negatively to the component as red for positive and blue for negative in brain maps.
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Component B - Insula Component

—F— ADHD
27 —F— Control

Fitted component loading coefficient
o
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Fig. 2. Moving averages of component A loading coefficients; corrected for age, medication and family structures are showed on the left. Those of component B
loadings coefficients; corrected for age, age"2, medication, and family structures are showed on the right. Age bins with less than five subjects in either group are

removed from the figures.

their unaffected siblings, independent of symptom severity and cogni-
tive performance. Although these two components were found through
ICA; connectivity between the cerebellum and the insula has been
documented in both resting state and functional studies, showing sup-
port for potential biological connections between our findings (Balsters
et al., 2014; Buckner et al., 2011).

Strengths of this study include multivariate analyses on participants
from both ADHD and control families with family structures taken into
account in the linear mixed model. In addition, the relationship of brain
components among categories (ADHD, unaffected siblings, subthres-
hold participants, and controls) and symptom dimensions were also
examined. The previous multivariate analysis in the NeuroIMAGE
project using linked ICA was concordant with our work by showing
reduced cortical thickness in the insula, occipital lobes, and anterior
cingulate compared to the non-ADHD participants (Francx et al., 2016).
The VBM analysis from the NeuroIMAGE project had shown, in addition
to the previously reported prefrontal, inferior frontal, and occipital
regions (Durston et al., 2004), that ADHD patients had cortical deficits
in the precentral gyrus, medial and orbitofrontal cortex, and cingulate
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gyrus; while their unaffected siblings showed the same differences ex-
cluding the precentral gyrus (Bralten et al., 2016). However, multi-
variate analyses identify complementary brain deficits to these cortical
alterations. The cerebellum, insula and other regions also played a role,
and these alterations have been previously shown to group together
(Duan et al., 2018; Francx et al., 2016).

These results help distinguish symptom dimensions from genetic
liability. The cerebellum component extracted by SBM was more closely
connected to inattention symptoms across the four groups, and it was
not strongly affected by the common genetic factors shared in family
structures. The insula component captured the alterations shared by
ADHD and their siblings, but no component was related to the symptom
dimensions. This contrast might suggest different mechanisms were
contributing to the complicated ADHD clinical profile, which was also
discovered in previous studies (van Ewijk et al., 2014; Wu et al., 2017).

A limitation was that age, gender, and scanning site were not well-
balanced in each group as a result of original data collection limitations.
These covariates were added to the general linear models to counteract
these imbalances. In addition, we did a voxel-wise correction for gender
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Fig. 3. Asterisks indicate significant group differences passing FDR correction threshold of 2.50e-03 (0.05/20 decided by the total number of the brain components).
The whiskers extend to the most extreme data points, and the outliers are plotted individually using the '+' symbol.
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Fig. 4. Component A showed a negative correlation with inattention symptoms
across the entire group (p = 1.33e-03, B = -0.43, variance explained = 1.4%)
after correcting for IQ and medication. In the figure, loadings of component A
vs. adjusted inattention (corrected for age, gender, IQ, medication, and random
effect) from the linear mixed model were plotted.

and site, and examined whether age or age™2 showed a significant in-
fluence on the brain images for each component (in their respective
models). In addition, another limitation of this study was that the
sample had a broad age span (7-18 years), which may have brought in
potential brain development bias. To counteract this limitation, we
used children brain templates for segmentation to avoid bias that could
be induced by priori adult segmentation templates as suggested by
previous pediatric neuroimaging studies (Murgasova et al., 2007;
Sanchez et al., 2012; Wilke et al., 2003). From there, we normalized the
brain images into the common MNI space as a more comparable and
conservative choice (Wilke et al., 2017). However, there had been ar-
guments regarding the normalization of children brains into adult space
(Wilke et al., 2002). It has been suggested that the adult space could be
suitable for children samples with a six year age range (Mazziotta et al.,
2001); but bias could be involved with a larger age range (Muzik et al.,
2000; Yoon et al., 2009) because of a potential loss of age related brain
structure variance. However, our main results were not affected when
the determinants of scaling matrix was added to the models.

5. Conclusion

In conclusion, our data suggest that the cerebellum and insula
components might shed light on different but related mechanisms of
ADHD, indicating that the clinical phenotype, cognitive performance,
and mechanisms shared in family structure can be supported by dif-
ferent brain networks. Gray matter abnormalities were found to either
underlie inattention symptoms or be affected by shared relationships
between ADHD patients and their unaffected siblings. This suggests that
brain areas reflecting genetic liability within ADHD may be partly se-
parate from areas modulating symptom severity.
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