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Phosphatidylcholine and phosphatidylethanolamine are two major phospholipid classes in eukaryotes. Each biosynthesis
pathway starts with the phosphorylation of choline (Cho) or ethanolamine (Etn) catalyzed by either choline or ethanolamine
kinase (CEK). Arabidopsis contains four CEK isoforms, but their isozyme-specific roles in metabolism and development are
poorly described. Here, we showed that these four CEKs have distinct substrate specificities in vitro. While CEK1 and CEK2
showed substrate preference for Cho over Etn, CEK3 and CEK4 had clear substrate specificity for Cho and Etn, respectively. In
vivo, CEK1, CEK2, and CEK3 exhibited kinase activity for Cho but not Etn, although the latter two isoforms showed rather
minor contributions to total Cho kinase activity in both shoots and roots. The knockout mutants of CEK2 and CEK3 both affected
root growth, and these isoforms had nonoverlapping cell-type-specific expression patterns in the root meristematic zone. In-
depth phenotype analysis, as well as chemical and genetic complementation, revealed that CEK3, a Cho-specific kinase, is
involved in cell elongation during root development. Phylogenetic analysis of CEK orthologs in Brassicaceae species showed
evolutionary divergence between Etn kinases and Cho kinases. Collectively, our results demonstrate the distinct roles of the four
CEK isoforms in Cho/Etn metabolism and plant development.

Phospholipids are the conserved lipid component of
cellular membranes from bacteria to plants and animals.
Phosphatidylcholine (PC) and phosphatidylethanolamine
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(PE) are the most abundant phospholipid classes in
eukaryotes. An initial reaction step for the synthesis of
PC and PE is phosphorylation of choline (Cho) or eth-
anolamine (Etn), both of which are catalyzed by choline/
ethanolamine kinase (CEK) activity. The products, phos-
phocholine (PCho) or phosphoethanolamine (PEtn), are
subsequently converted to cytidine diphosphocholine
(CDP-Cho) or cytidine diphosphoethanolamine (CDP-
Etn; Cornell and Ridgway, 2015) and then incorporated
into the diacylglycerol backbone to produce PC and PE,
respectively (McMaster, 2018). Thus, CEK activity plays
an important role in the biosynthesis of PC and PE.

Although CEK homologs have been identified and
characterized in many organisms (Wu and Vance, 2010;
Glunde et al., 2011; Arlauckas et al., 2016), their sub-
strate specificity and tissue-specific roles have been of
primary interest for decades (Ishidate et al., 1985a;
Aoyama et al., 2004). In the 1950s, the first purified CEK
from Brewer’s yeast (Saccharomyces cerevisiae) demon-
strated a dual substrate specificity that phosphorylates
both Cho and Etn (Wittenberg and Kornberg, 1953). In
addition, the purified CEKSs from rat (Rattus sp.) kidney,
liver, lung, and intestinal cytosols all showed dual sub-
strate specificities (Ishidate et al., 1985a, 1985b; Porter
and Kent, 1990).
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On the other hand, separate Cho and Etn kinase
activities have been demonstrated in plants (Tanaka
et al., 1966; Macher and Mudd, 1976; Wharfe and
Harwood, 1979a, 1979b; Monks et al., 1996), mam-
mals (Brophy et al., 1977; Upreti, 1978; Pavlidis et al.,
1994; Uchida, 1997; Lykidis et al., 2001; Peisach et al.,
2003), and also in yeast (Hosaka et al.,, 1989;
Yamashita and Hosaka, 1997; Kim et al., 1998; Kim
et al., 1999). For example, in rat and mouse (Mus
musculus) liver and kidney, the activities of Cho ki-
nase and Etn kinase are attributed to separate proteins
(Brophy et al., 1977; Upreti, 1981). Also, the activities
and ratio of these two isozymes showed variations at
different stages of postnatal development (Upreti,
1978, 1981), which indicate a distinct requirement of
Cho and Etn activities during the course of develop-
ment. Also, two CEK isozymes in mice, CKa and CK,
showed higher tissue distribution in testes and in
heart and liver, respectively (Aoyama et al., 2004). Of
note, expression of CK@ failed to complement the
mutant phenotype of heterozygous CKa-knockout
mice, which suggests that these isoforms may func-
tion differently in a tissue-specific manner (Wu et al,,
2008; Wu and Vance, 2010).

In seed plants, Cho kinase activity is reported in the
roots of barley (Hordeum vulgare) and wheat (Triticum
aestivum) and the leaves of barley, wheat, tobacco
(Nicotiana tabacum), spinach (Spinacia oleracea), and
squash (Cucurbita pepo; Tanaka et al., 1966). We pre-
viously identified four CEKs in Arabidopsis (Arabi-
dopsis thaliana; Lin et al., 2015). Disruption of CEK4
resulted in an embryo-lethal phenotype, and CEK4
overexpression increased both PC and PE contents
(Lin et al.,, 2015), which indicated that CEK4 may
function as an Etn kinase in vivo. Although no obvious
mutant phenotype was found in knocking out any of
the other three CEKs under normal conditions (Lin
et al.,, 2015), we showed that CEK1 functions as a
Cho kinase in vivo and is required for endoplasmic
reticulum (ER) stress tolerance by modulating the ratio
of Cho to PCho (Lin et al., 2019). However, the roles of
CEK2 and CEK3 remain elusive apart from the fact
that the transcription of CEK3 is induced by salt stress
(Tasseva et al., 2004). How the four CEKs differentially
function in vitro and in vivo in Arabidopsis remains an
open question.

Here, we investigated substrate specificities of the
four CEKSs in vitro and in vivo. In vitro, CEK1 and
CEK2 showed substrate preference to Cho over Etn,
whereas CEK3 and CEK4 had clear substrate speci-
ficities to Cho and Etn, respectively. In vivo, CEK1,
CEK2, and CEKS3 all showed kinase activity for Cho
but not for Etn, albeit the latter two isoforms showed
rather minor contributions in both shoots and roots.
The knockout mutants of CEK2 and CEK3, cek2-1 and
cek3-1, both affected root growth under normal con-
ditions, and in-depth phenotype observation of cek3-
1 revealed that Cho kinase activity of CEK3 may be
involved in cell elongation during root development.
Collectively, our results demonstrate distinct roles of
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four CEK isoforms in Cho/Etn metabolism and plant
development.

RESULTS

Transcript Levels of Four CEKs in Different Tissues

A previous in silico analysis indicated distinct tissue-
specific patterns of transcript levels for four CEKs
(Lin et al., 2015). To validate this, we investigated the
transcript levels of four Arabidopsis CEKs in various tis-
sues by reverse-transcription quantitative PCR (RT-
gPCR) analysis using the complementary DNA (cDNA)
template prepared from six different tissues (Fig. 1). The
overall transcript levels of CEK1 and CEK2 were higher
than the other two isoforms, particularly CEK3, which
showed the lowest transcript levels among the four CEK
homologs in all tissues examined. Compared with CEK1,
CEK?2, and CEK4, which showed higher transcript levels
in reproductive tissues, the detected transcripts of CEK3
were mainly observed in the inflorescence tissues (stem,
node, and cauline leaf). CEK3 transcript was barely de-
tectable in root and flower, whereas the other three iso-
forms showed substantial transcript levels. In particular,
CEK1, CEK2, and CEK4 showed the highest transcript
levels in flower. These profiles largely support the result
of the previous in silico analysis of CEKs (Lin et al., 2015).
Thus, these four CEKs have distinct tissue-specific pat-
terns of transcript level, particularly CEK3.

Four CEKs Showed Distinct Substrate Specificity in Vitro

To examine the enzyme activity and substrate spec-
ificity of the four Arabidopsis CEKs, we performed
in vitro enzyme activity assay with recombinant CEK
proteins fused with maltose-binding protein (MBP) and
expressed in Escherichia coli. To compare Cho kinase
and Etn kinase activities, we used [y-3?P]ATP and non-
radiolabeled Cho or Etn as substrates to detect the [3°P]
PCho or [3?P]PEtn produced after the reaction. The re-
sult showed that incubation of Cho with CEK1, CEK2,
and CEKS3, but not CEK4, produced detectable amounts
of [32P]PCho. On the other hand, incubation of Etn with
CEK1, CEK2, and CEK4, but not CEK3, produced de-
tectable amounts of [3?P]PEtn (Fig. 2A). The quantifi-
cation of enzyme activity indicated that CEK1, CEK2,
and CEK3 have similar specific activities for Cho phos-
phorylation, while CEK3 showed much lower specific
activity than CEK1, CEK2, and CEK4 in phosphorylating
Etn (Fig. 2B). Based on the specific activity, CEK1 and
CEK2 showed about 4-fold higher kinase activity for Cho
than for Etn, whereas CEK3 showed ~25-fold higher ac-
tivity for Cho than for Etn. For CEK4, only Etn kinase
activity was detected. Thus, this in vitro enzyme assay
suggests that four CEKs encode functional activities with
different substrate specificities: CEK1 and CEK2 prefer
Cho to Etn, whereas CEK3 and CEK4 function specifically
as Cho kinase and Etn kinase, respectively.
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Figure 1. Tissue transcript level of four
CEKs by RT-qPCR. Transcript levels of
CEK1, CEK2, CEK3, and CEK4 in root,
leaf, stem, inflorescence node, cauline
leaf, and flower. Data are averaged
from three biological replicates, each
with three technical replicates with sps
as error bars.
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Pulse-Chase Metabolic Flux Analysis Dissected the
Differential Contributions of CEK1, CEK2, and CEK3 to
Cho and Etn Kinase Activity in Vivo

Next, we examined the role of CEKs in Cho or Etn
kinase activity in vivo using a knockout mutant of each
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isoform except CEK4, whose knockout mutant causes
an embryo-lethal phenotype (Lin et al., 2015). We re-
cently showed that CEK1 functions as a Cho kinase
in vivo (Lin et al., 2019). However, the cek1-1 mutant
retained a considerable amount of PCho that could be
produced by CEK2 and CEK3 harboring Cho kinase
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Figure 2. In vitro enzyme activity and substrate specificity of four CEKs. A, Representative images of thin-layer chromatography
plates indicating [>2P]-labeled PCho or PEtn produced after incubating purified recombinant MBP-CEK1, MBP-CEK2, MBP-CEK3,
and MBP-CEK4 with Cho or Etn in the presence of [y-32P]ATPand Mg?*. The reaction with MBP but not CEK (lanes labeled MBP)
or without adding protein (—) were used as negative controls. B, Specific activity of CEK isozymes in Cho or Etn kinase activity
assay. Data are means = sp from three replicates. Data obtained from at least three biologically independent experiments were
analyzed by one-way ANOVA. Statistically different groups among conditions were further evaluated for significance with the
Tukey’s honestly significant difference (HSD) mean separation test and displayed with lowercase letters indicating means that
differ significantly. A level of P < 0.05 was considered significant. n.d., Not detected.
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activity in vitro (Fig. 2). To dissect a differential con-
tribution by CEK2 and CEK3 to Cho kinase activity
in vivo, we performed radioactive pulse-chase meta-
bolic flux analysis with either [**C]Cho or ['*C]Etn
using 14-d-old cek2-1, cek3-1, cekl-1, and wild-type
seedlings (Lin et al., 2019). Following 10 min-labeling
with [*C]Cho or [*C]Etn, radiolabeled metabolites in
the shoots (Fig. 3A) and roots (Fig. 3B) were analyzed
separately at 0, 5, 30, 60, and 180 min. The results of
[1“C]Cho quantification showed that Cho kinase activ-
ity was lower in cek1-1 both in shoots and roots com-
pared with the wild type (Fig. 3), which is consistent
with the previous report showing the activity in
the whole seedling (Lin et al., 2019). At 30 min after

Choline/Ethanolamine Kinase Family in Arabidopsis

chasing, the [*C]Cho level was ~11% higher, while the
[*C]PCho level was ~17% lower in the shoots of cekl-
1 than in those of the wild type (Fig. 3A). In cek2-1, Cho
kinase activity decreased in roots (by ~7%) but not in
shoots, which was distinct from the result in cek3-1,
where both shoots and roots showed a slight decrease
in Cho kinase activity (~16% and 6%, respectively).
Although all three CEKSs are committed to Cho kinase
activity in vivo, none of these cek mutants affected the Etn
kinase activity in either shoots or roots (Supplemental
Figs. S1 and S2). Although a redundant effect on Etn ki-
nase activity among the three CEKSs is possible based on
the in vitro data (Fig. 2), CEK4 may be the major Etn ki-
nase in vivo. Thus, our results include a few important
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Figure 3. In vivo radioactive pulse-
chase analysis for the metabolism of
Cho in the shoots (A) and roots (B) of
cek1-1, cek2-1, and cek3-1 mutants.
Fourteen-day-old wild-type (WT; gray
lines), cekl-1 (yellow lines), cek2-
1 (blue lines), and cek3-1 (orange
lines) seedlings were labeled with ['4C]
Cho for 10 min and the amounts of ['4C]
Cho, [*C]PCho, and ['“C]PC were
measured at 0, 5, 30, 60, and 180 min
after chasing. Ratios of ['*C]Cho, [*C]
PCho, and ['*C]PC are shown as per-
centages of radioactive intensities quan-
tified. Note that wild-type plots are in
triplicate in each graph for clarity in
displaying profiles in each cek mutant.
Data are means = sp from three bio-
logical replicates. Asterisks indicate
statistical significance determined by
Student’s ttest: *P < 0.05; **P < 0.01
and ***P < 0.001.
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observations about the CEKs: (1) CEK1 is the major Cho
kinase isoform; (2) CEK1 contributes more in roots than in
shoots with respect to Cho kinase activity; and (3) none of
the three CEKSs individually affects Etn kinase activity and
the synthesis of phospholipids PC and PE.

CEK2 and CEK3 Exhibited Disparate Tissue-Specific
Expression Patterns

Previous reports showed that CEK1 and CEK4 have
different tissue-specific expression patterns (Lin et al.,
2015, 2019), possibly related to their distinct substrate
specificities (Fig. 2). Since CEK2 and CEK3 function as
the Cho kinases in vitro (Fig. 2) and in vivo (Fig. 3), we
examined whether the expression patterns overlap with
that of CEK1, which is preferentially expressed in
vegetative tissues, particularly in root (Lin et al., 2019).
To perform histochemical GUS staining assay for both
CEK2 and CEK3, we transformed wild-type plants with
a plasmid vector containing the whole genomic se-
quence of CEK2 or CEK3 with a GUS reporter in the

Figure 4. Tissue-specific expression
of CEK2-GUS by histochemical GUS
staining of transgenic plants harboring
ProCEK2:CEK2-GUS (line 11). A to C,
Time course of the GUS staining profile
of germinating seeds at 1 (A), 2 (B), and
3 (C) d after planting. Seeds were
stratified in sterile water for 1 d and
then placed on MS-agar plates. D to |,
Young seedlings at 4 (D), 5 (E), 6 (F), 7
(G), 10 (H), and 14 (I) DAG. ] to N,
Images of various plant tissues, in-
cluding rosette leaf (J), cauline leaf (K),
inflorescence (L), flowers at different
developmental stages (M), and devel-
oping siliques (N). Scale bars = 200
um (A and B), T mm (C, L, and N), and . N
2 mm (D-K and M). / &g

(o
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C-terminal end of their protein-coding sequences (Pro-
CEK2:CEK2-GUS and ProCEK3:CEK3-GUS). In the
transgenic plants harboring these transgenic reporters,
GUS staining was first observed in the entire embryos
of CEK2 (Fig. 4, A and B) and CEK3 (Fig. 5, A and B),
then in the hypocotyls, shoot apical meristems, and
vasculature (Figs. 4, C-1, and 5, C-I, for CEK2 and
CEKS3, respectively). Furthermore, CEK2 and CEK3
expressions were confined in the vasculatures of rosette
and cauline leaves (Figs. 4, ] and K, and 5, ] and K). In
reproductive tissues, high GUS expression was ob-
served in the inflorescence stem and basal part of de-
veloping siliques in both CEK?2 (Fig. 4, L and N) and
CEK3 (Fig. 5, L and N). Since the inflorescence showed
relatively higher expression levels, we then examined
their flowers closely at different developmental stages.
In CEK2, strong GUS staining patterns were ob-
served in all stages of flower development, particularly
in young stigma, sepals and petals, and filaments
(Fig. 4M). In CEKS3, the strongest expression was no-
ticeable only in developing buds, specifically in young
anthers, and moderate expression was only evident in

k»a.:ku‘h‘-mm ‘

w ) \‘
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the filament of mature flowers (Fig. 5M). These stain-
ing patterns were confirmed in other transgenic plant
lines harboring CEK2-GUS (Supplemental Fig. S3) and
CEK3-GUS (Supplemental Fig. S4). Taken together, our
results show that CEK2 and CEK3 have distinct tissue
specificities, particularly during flower development.

CEK2 and CEK3 Were Localized at the ER But Showed
Distinct Cell-Type Expression Patterns in the Root
Meristematic Zone

A consistent effect of CEK2 and CEK3 on Cho phos-
phorylation in roots (Fig. 3B) prompted us to investigate
the expression patterns of these CEKs in root cells.
Transgenic Arabidopsis plants were produced that ex-
press a triple repeat of a Venus fluorescent reporter
construct (VEN) C-terminally fused to the protein coding
sequence of CEK2 and CEK3 (ProCEK2:CEK2-VEN and
ProCEK3:CEK3-VEN). Observation of their expression
patterns under the confocal microscope showed that

Plant Physiol. Vol. 183, 2020
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Figure 5. Tissue-specific expression of
F CEK3-GUS by histochemical GUS
) staining of transgenic plants harboring
ProCEK3:CEK3-GUS (line 4). A to C,
Time course of the GUS staining profile
of germinating seeds at 1 (A), 2 (B), and
3 (©) d after planting. Seeds were
stratified in sterile water for 1 d and
then placed on MS-agar plates. D to |,
Young seedlings at 4 (D), 5 (E), 6 (F), 7
(G), 10 (H), and 14 (1) DAG. J to N,
Images of various plant tissues, in-
cluding rosette leaf ()), cauline leaf (K),
inflorescence (L), flowers at different
developmental stages (M), and devel-
oping siliques (N). Scale bars = 200
um (A and B), 1 mm (C, L, and N), and
| 2 mm (D-K and M).

expression of both CEK2-VEN and CEK3-VEN was
specific to the root meristematic zone (Fig. 6). However,
we noted distinct cell type-specific expression patterns:
CEK2-VEN was expressed in the columella, lateral root
cap, and epidermis (Fig. 6A), while CEK3-VEN was
observed exclusively in the initial few cells of cortex and
endodermis (Fig. 6B). We magnified the Venus signal
and overlapped it with staining of FM4-64 (as the plasma
membrane marker) and ER Tracker. Both CEK2 and
CEKS colocalized with the ER Tracker but not with FM4-
64. These results suggest that CEK2 and CEK3 are both
localized mainly in the ER but still exhibit distinct non-
overlapping cell-type-specific expression patterns in the
root meristematic zone.

CEK2 and CEK3 Mutants Displayed Abnormal
Root Growth

Since root cell-type-specific expression patterns of
CEK2-VEN and CEK3-VEN suggested a specific role of

157


http://www.plantphysiol.org/cgi/content/full/pp.19.01399/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.01399/DC1

Lin et al.

Figure 6. Cell type-specific expression
pattern and subcellular localization in
the seedling roots of transgenic plants
harboring ProCEK2:CEK2-VEN (line 14;
A) or ProCEK3:CEK3-VEN (line 24; B).
Magnified images of VEN fluores-
cence were merged with FM4-64 and
ER Tracker staining to observe the
subcellular localization. Scale bars =
50 um for the overview and 10 um for
the magnified images. DIC, Differen-
tial interference contrast.

CEK2-VEN

CEK3-VEN

these CEKs in root development, we observed the
growth phenotype of seedling roots in transfer DNA-
tagged knockout mutants cek1-1, cek2-1, and cek3-1 (Lin
et al., 2015, 2019). Whereas cek1-1 did not show any
significant difference in root length compared with the
wild type, both cek2-1 and cek3-1 displayed significantly
shorter root length in seedlings both 7 d-after-germi-
nation (DAG) and 14 DAG (Fig. 7, A and B). We ob-
served the root tips of cek2-1 and cek3-1 by propidium
iodide (PI) staining to check whether the short root
phenotype is associated with a defective cellular ar-
chitecture in the root apices of the mutants. In 7 DAG
seedlings, we found some irregular shape and extra
division in the columella cells of the root tips (Fig. 7C,
white arrows) and an abnormal root cell architecture in
cek3-1 but not in cek2-1 or the wild type. As observed in
the magnified image of the root tip in cek3-1, the root tip
contained odd-shaped columella cells possibly due to
abnormal cell division (Fig. 7C, white arrows). We did
not observe any morphological phenotype in any or-
gans of cek1-1, cek2-1, and cek3-1 other than seedling
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roots. These observations denote the important role of
CEKS3 in the proper development of the columella cells
for normal root growth. Thus, we further characterized
cek3-1 for defective root growth.

The cek3-1 Mutant Affected the Elongation of Root Cells

To address what cellular defect caused the short root
phenotype in cek3-1, we observed the roots of 7 DAG
seedlings. In the aerial part, we did not observe any
abnormality, as previously reported (Lin et al., 2015). In
the root, however, knockout of CEK3 caused not only
shorter root growth (Fig. 8A) but also a shorter distance
from the root tip to the first root hair of the maturation
zone (length of elongation zone; Fig. 8B). To discern
whether these phenotypes were caused by peculiarities
in either cell division or cell elongation in the roots, we
checked the root meristem size of both the wild type
and cek3-1, which was expressed as the number of
meristematic cortex cells from the quiescent center to
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the first elongated root cortex cell (Fig. 8C). However,
we observed no significant difference in the root meri-
stem size of cek3-1 compared to the wild type. Thus, the
short root length and elongation zone observed in the
cek3-1 mutant suggest that CEK3 may be involved in
maintaining the normal cell elongation process in
Arabidopsis roots.

Genetic and Chemical Complementation Rescued the Root
Phenotype in cek3-1

To test whether the cellular anomalies observed in the
cek3-1 mutant were due to genetic ablation of CEK3, we
transduced ProCEK3:CEK3 in the cek3-1 background to
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perform a genetic complementation test. The root length
of two independent genetic complementation lines
(ProCEK3:CEK3 cek3-1 lines 2 and 3) was not significantly
different from that of the wild type, while that of cek3-
1 was significantly shorter (Fig. 8D), which indicates that
the root phenotype in cek3-1 is due to knockout of CEK3.
Next, to examine whether the short root phenotype is due
to compromised Cho kinase activity, we exogenously
supplemented the reaction product PCho and measured
the root length. As shown in Figure 8E, the root length of
cek3-1 supplemented with PCho was not significantly
different from that of the wild type. Overall, these data
suggest that CEKS3 is a functional Cho kinase localized at
the ER in cortex/endodermal cells of the root meriste-
matic zone and may be involved in root cell elongation.
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The cek2-1 cek3-1 Double Mutant Did Not Further Enhance
the Short Root Phenotype

Since both cek2-1 and cek3-1 single mutants showed a
similar short root phenotype (Fig. 7), we created a
double mutant to test whether the double knockout
mutant shows an enhanced root phenotype. Although
seedlings of cek2-1 cek3-1 produced a shorter root
length, it was not significantly shorter than that of cek2-
1 or cek3-1 either at 7 or 10 DAG (Fig. 9, A and B). Also,
no morphological phenotype was observed in the aerial
part of the double mutant. These results suggest that the
role of CEK2 and CEKS3 in root growth may overlap
despite their distinct cell-type expression patterns.

cek1-1 cek3-1 But Not cek2-1 cek3-1 Considerably
Decreased Cho Kinase Activity in Vivo

The results of pulse-chase analysis (Fig. 3; Supplemental
Figs. S1 and S2) suggest that CEK1, CEK2, and CEK3
function as Cho kinases, whereas only CEK4 functions
as an Etn kinase in vivo. To further examine how these
three Cho kinases contribute differentially to the total
Cho kinase activity in vivo, we produced multiple
mutants by genetic crossing of cek1-1, cek2-1, and cek3-1.
In F2 progeny, we obtained cekl-1 cek3-1 and cek2-
1 cek3-1 by PCR-based genotyping. However, we iso-
lated only cek1-1/+ cek2-1/+ but not cek1-1/— cek2-1/—.
Because no morphological change was observed in
gametophytes or embryos of cekl-1/+ cek2-1/+ plants,
we genotyped the offsprings of double heterozygous
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mutants, which again did not produce any homozygous
mutants. As CEK1 and CEK2 are both on the same
chromosome, we speculated that cekI-1/— cek2-1/—
cannot be obtained due to high genetic linkage. Thus, we
abandoned the production of cek1-1/— cek2-1/— and cek1-
1/— cek2-1/— cek3-1/—, and focused on cek1-1 cek3-1 and
cek2-1 cek3-1. We first examined whether any of these
Cho kinases is transcriptionally upregulated in the mu-
tant background. We found no such upregulation except
CEK2 in the cek1-1 background, which showed a >3-fold
increase (Supplemental Fig. S5). Next, we performed
radioactive pulse-chase metabolic flux analysis with
[*C]Cho using 14-d-old cek1-1 cek3-1, cek2-1 cek3-1, and
wild-type seedlings to test whether Cho kinase activity is
further decreased in these double mutants. Although
cek2-1 cek3-1 did not show any significant difference
from the wild type in the profiles of ['*C]Cho, [**C]PCho,
and [M“C]PC, we observed a significant decrease in Cho
kinase activity in cek1-1 cek3-1 (Fig. 9C). Considering that
a major part of seedling biomass is attributable to the
shoot, the level of ["*C]Cho detected in cek1-1 cek3-1 was
considerably higher than that of cek1-1 (Fig. 3). These
results suggest that CEK3 rather than CEK2 plays an
additive role to CEK1 in total Cho kinase activity in vivo.

Phylogenetic Analysis of the CEK Family in
Brassicaceae Species

To give relevance to the functions and evolution of the
four Arabidopsis CEK paralogs in terms of their differ-
ences and similarities, we created a phylogenetic tree of
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the four paralogs in Arabidopsis and 87 orthologs in 15
fully /semisequenced Brassicaceae species available at the
National Center for Biotechnology Information (https://
blast.ncbinlm.nih.gov/) and The Universal Protein Re-
source (https://www.uniprot.org/). As shown in Fig-
ure 10, the tree clearly separated AtCEK4 from the other
AtCEKs, and the clade for Cho kinase (ie. AtCEKI1,
AtCEK2, and A#CEK3) was more complicated than that
for Etn kinase (i.e. AfCEK4). Among AtCEK1, AtCEK2,
and AtCEK3 (including three predicted splice variants,
AtCEK3.1, AtCEK3.3, and AtCEK34), AtCEKl and
AtCEK2 were more closely related. Regarding the other
Brassicaceae species analyzed, most of them possess CEK1
(except Brassica napus and Eutrema salsugineum), CEK2
(except Arabis alpina, B. cretica, and E. salsugineum), CEK3
(except A. alpina), and CEK4 (except B. cretica and E. sal-
sugineumn). Besides, some species possess an additional
copy of CEK that is more distantly related to CEK1, CEK2,
and CEKS3. Thus, Etn kinase and Cho kinase show differ-
ent evolutionary divergence in Brassicaceae species.

DISCUSSION
Distinct Roles of the Four CEKs in Cho/Etn Metabolism

Earlier enzymological studies in soya bean demon-
strated two distinct CEK activities: a Cho-preferring
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kinase (with substrate preference for Cho over Etn of
3:1; Wharfe and Harwood, 1979b) and an Etn-specific
kinase (Wharfe and Harwood, 1979a). Although this
evidence suggests that plants possess multiple copies of
CEK activity with different substrate specificity, a
comprehensive study on the substrate specificity of the
CEK family has not been conducted previously in any
plant species. Here, results of the in vitro enzyme ac-
tivity assay demonstrated that four CEK isozymes in
Arabidopsis have clear substrate specificities (Fig. 2).
Whereas CEK2 showed similar substrate specificity to
CEK1 (Lin et al., 2019), CEK3 showed a clearer speci-
ficity for Cho than for Etn. Remarkably, CEK4 showed
substrate specificity for Etn. Thus, four CEKs showed
different substrate preference in vitro. For the three Cho
kinases, we tested in vivo activities by pulse-chase
radiolabeling experiments in the mutants. Previously,
cek1-1 was shown to have a significant defect in phos-
phorylating Cho in whole seedlings (Lin et al., 2019).
Our data elaborated that the defect was more pro-
nounced in roots than in shoots (Fig. 3). Compared with
cek1-1, both cek2-1 and cek3-1 showed a rather lim-
ited effect on Cho phosphorylation. Also, none of
these cek mutants affected Etn kinase activity in vivo
(Supplemental Figs. S1 and S2). To investigate a possi-
ble functional redundancy among Cho kinases, we
produced double mutants and observed an enhanced
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Figure 10. Unrooted maximum likelihood tree of CEK homologs in Brassicaceae species. This tree was calculated with the
raxm|GUI 2.0 program. The numbers on each branch indicate the confidence level in percentage of maximum likelihood
method.
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Cho kinase defect in cekI-1 cek3-1 but not in cek2-1 cek3-
1 (Fig. 9C). Regarding the effect of Cho kinase activity
on PC biosynthesis, in vivo pulse-chase flux analysis
showed that none of the single and double mutants
examined affected PC production (Figs. 3 and 9C; Lin
et al., 2019). Although functional redundancy among
these three isozymes cannot be ruled out until a triple
mutant is characterized, a contribution of Cho kinase
activity to PC biosynthesis may be minor in Arabi-
dopsis. Taken together, we suggest that (1) CEK4 may
be the sole Etn kinase in vivo; (2) CEK1 may be the
major Cho kinase isoform, whereas CEK3, rather than
CEK2, may play a minor role in total Cho kinase in vivo;
and (3) Cho kinase activity may have no major impact
on PC biosynthesis in Arabidopsis.

Distinct Roles of the Four CEKs in Plant Growth
and Development

Seedling phenotype observation indicated that
both cek2-1 and cek3-1 mutants show reduced root
length (Fig. 7, A and B). Since CEK2 and CEKS3 are
both Cho kinases in vivo (Fig. 3), the root phenotype
may be associated with reduced production of PCho.
Indeed, exogenous supplementation of PCho rescued
the root phenotype in cek3-1 (Fig. 8E). PCho is re-
quired for root growth, as a knockout of phospho-
base N-methyltransferasel (PMT1), which catalyzes
the major pathway for PCho biosynthesis, showed
the short-root phenotype (Cruz-Ramirez et al., 2004),
and the phenotype was enhanced in pmt1 pmt2 dou-
ble mutants (Chen et al., 2019; Liu et al., 2019). Also,
another pathway that produces PCho from PC cata-
lyzed by nonspecific phospholipase C (NPC) 2 and
NPC6 is involved in root growth (Ngo et al., 2019).
Regarding PCho production from Cho by Cho kinase,
CEK1, CEK2, and CEK3 may be responsible based on
the in vivo data (Fig. 3). However, cek1-1 mutant did not
show any root growth defect under normal growth
conditions (Fig. 7, A and B) despite the fact that CEK1
has a major contribution to the Cho kinase activity in
both shoots and roots (Fig. 3; Lin et al., 2019). Interest-
ingly, CEK2-VEN and CEK3-VEN showed somewhat
complementary cell-type-specific expression patterns
in the root meristematic zone (Fig. 6; Supplemental Fig.
S6). Although CEK2-VEN was more predominantly
expressed in root columella cells, a more evident defect
in the columella cell structure was found in the cek3-
1 mutant (Fig. 7C). Since CEK3-VEN was expressed
specifically in juvenile cortex/endodermal cells in root,
and defective cell elongation was associated with the
short root phenotype in cek3-1, CEK3 may produce
PCho in this type of cell to maintain cell elongation in
roots. It is possible that the three CEK isoforms produce
PCho at different cell types for different purposes
in roots.

Our substrate specificity assays provide a clue in
addressing the embryonic lethal phenotype of cek4-
1 (Lin et al., 2015). Since CEK4 is an Etn-specific
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kinase (Fig. 2), the lethal phenotype may be caused by
the loss of Etn kinase activity in vivo. Since neither
CEK1, CEK2, nor CEKS3 likely functions as an Etn ki-
nase in vivo, based on the result of pulse-chase analysis
(Fig. 3; Supplemental Figs. S1 and S2), the lethality of
cek4-1 may be due to lack of Etn kinase activity that
cannot be compensated by any of the remaining CEK
isoforms. Unlike Cho kinase, Etn kinase activity takes
part in the metabolic pathway of de novo PC and PE
biosynthesis (Lin et al., 2015). Starting from the con-
version of Ser to Etn by Ser decarboxylasel (SDC1;
Rontein et al., 2001; Yunus et al., 2016), CEK4 phos-
phorylates Etn to produce PEtn, which is a common
precursor for the biosynthesis of PC and PE. It should
be noted that the knockout of SDC1 causes embryonic
lethal phenotype (Yunus et al., 2016), similar to the ef-
fect with knockout of CEK4 (Lin et al., 2015). Triple
knockout mutants of three PMTs, which block the
conversion of PEtn to PCho in the PC biosynthesis
pathway, did not cause embryonic lethality (Chen
et al., 2019; Liu et al., 2019). However, a knockout of
CTP:PHOSPHORYLETHANOLAMINE CYTIDYLYL-
TRANSFERASE (PECT1), which converts PEtn to
CDP-Etn in the PE biosynthesis pathway, caused an
embryonic lethal phenotype (Mizoi et al., 2006). These
pieces of evidence suggest that the embryonic lethality
may be due to a defect in PE biosynthesis.

An Evolutionary Insight into the CEK Family

Phylogenetic analysis of the CEKs in Brassicaceae
species indicated that the Cho kinase family (CEK1,
CEK2, and CEK3 clades) is more diversified than the
Etn kinase family (CEK4 clade; Fig. 10). Most species
included in the analysis possess homologs for each Cho
kinase isozyme, suggesting that functional divergence
among the three Cho kinases may be conserved in
Brassicaceae. However, of note, A. alpina possesses
CEK1 and another distantly related isoform, but not
CEK?2 or CEK3. The A. alpina genome is fully sequenced
(Willing et al., 2015) and the species is known to grow
on a rocky alpine mountain under harsh growth con-
ditions (Tordng et al., 2015). By contrast, the phyloge-
netic tree for the CEK4 clade showed a less diverse
pattern. Whereas PC is an abundant phospholipid class
in most eukaryotes, this lipid class is absent from most
prokaryotes. In contrast, PE is widely present in both
prokaryotes and eukaryotes. Heterotrophic eukaryotes
such as animals obtain Cho through diet intake, which
is readily used for the biosynthesis of PC (Wu and
Vance, 2010). In plants, however, Cho is synthesized
from Etn by Etn kinase (Lin et al., 2015), PMTs (Chen
et al., 2018, 2019; Liu et al., 2018, 2019), and PCho
phosphatase (May et al, 2012; Angkawijaya and
Nakamura, 2017; Hanchi et al., 2018). Since knockout
of all PMTs makes the mutant unable to synthesize
PCho and PC (Chen et al., 2019; Liu et al., 2019), it follows
that this pathway may be essential for the production of
Cho-containing compounds. Thus, in Arabidopsis, as a
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photoautotrophic plant, Etn kinase plays a crucial role
in synthesizing both PC and PE, while Cho kinase has
less commitment to PC biosynthesis compared with
heterotrophic organisms that can take up exogenous
Cho through diet. The facts that Etn compounds—but
not Cho compounds—are widely found in prokaryotes,
and that Etn kinase is absolutely required for PC and PE
biosynthesis might have exerted strong selection pres-
sure for the CEK4 clade through evolution. It is possible
that the contribution of Cho kinase activity to PC bio-
synthesis may differ between autotrophic and hetero-
trophic organisms.

In conclusion, we revealed the isozyme-specific roles
of the four CEKs in vitro and in vivo in Arabidopsis.
Our results demonstrate the divergent roles of these
four CEKs in phospholipid metabolism and plant
development.

MATERIALS AND METHODS
Plant Materials and Growth Conditions

Arabidopsis (Arabidopsis thaliana) plants (Columbia-0 ecotype) were grown
under a 16-h light/8-h dark photoperiodic condition at 22°C with light intensity
of 150 umol m~2 s~1. Murashige and Skoog (MS) medium was used at one-half
strength for plant culture (Murashige and Skoog, 1962). The mutant seeds are
as previously reported (Lin et al., 2015). Double mutants were produced by
genetic crossing. For root observation, plants were grown vertically on a
MS-agar plate.

Vector Construction and Plant Transformation

ProCEK2:CEK2-GUS

A 3,430-bp genomic sequence for CEK2 was amplified by PCR with the
primers PK072 and JL.249 (Supplemental Table S1). The fragment was cloned
into the pENTR /D-TOPO plasmid vector (Invitrogen, Thermo Fisher Scientific)
to obtain pPK33. Then, the Sfol site was added immediately before the stop
codon of pPK33 by PCR-based site-directed mutagenesis (Sawano and
Miyawaki, 2000) with the primer JL273 to obtain pPK39. The GUS cassette
was inserted into the Sfol site of pPK39 to obtain pPK45.

ProCEK2:CEK2-VEN

The triple (3X) repeat of a Venus fluorescent reporter construct was inserted
into the Sfol site of pPK39 to obtain pPK44.

ProCEK3:CEK3

A 5,452-bp genomic sequence for CEK3 was amplified by PCR with the
primers JL269 and JL254. The fragment was cloned into the pENTR/D_TOPO
plasmid vector (Invitrogen, Thermo Fisher Scientific) to obtain pLHI.

ProCEK3:CEK3-GUS

The Sfol site was inserted before the stop codon of pLH1 by PCR-based site-
directed mutagenesis (Sawano and Miyawaki, 2000) with the primer JL302 to
obtain pLH2. Next, the GUS cassette was inserted into the Sfol site of pLH2 to
obtain pPK35.

ProCEK3:CEK3-VEN

The triple (3X) repeat of a Venus fluorescent reporter construct was inserted
into the Sfol site of pLH2 to obtain pPK34.

The obtained entry vector plasmids pPK45, pPK44, pLH1, pPK35, and pPK34
were recombined into the pBGW destination vector by Gateway LR reaction (Karimi
et al., 2002) to obtain pPK48, pPK52, pGA006, pPK43, and pPK42, respectively.
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These plant binary vectors were transduced into cek2-1 (for pPK48 and pPK52) or
cek3-1 (for pGA006, pPK43, and pPK42) via Agrobacterium tumefaciens-mediated
gene transformation. For each transformation, a total of 24 T1 plants were geno-
typed and T2 seeds from those carrying transgenic lines were harvested individ-
ually. To distinguish the transgene from endogenous CEK2, the following primers
were designed: JL252 and KK098 for ProCEK2:CEK2-GUS, JL251 and KK104 for
ProCEK2:CEK2-VEN, YN896 and YN748 for ProCEK3:CEK3, PK073 and KK098 for
ProCEK3:CEK3-GUS, and PK073 and KK104 for ProCEK3:CEK3-VEN. Lines used
for observation were ProCEK2:CEK2-GUS, lines 11 and 22; ProCEK2:CEK2-VEN,
lines 14 and 19; ProCEK3:CEK3 cek3-1, lines 3 and 9; ProCEK3:CEK3-GUS, lines 4
and 21; and ProCEK3:CEK3-VEN, lines 18 and 24.

RNA Extraction and RT-qPCR

Total RNA was isolated from samples as follows: 14-d-old root and leaf, 25-d-
old stem, inflorescence node, cauline leaf, and flowers in stages 1-14. RNA was
extracted by TRI Reagent (AM9738, Invitrogen, Thermo Fisher Scientific) in-
cluding DNase treatment, and cDNA was synthesized using the SuperScriptIII
First-Strand Synthesis Kit (11752050, Invitrogen, Thermo Fisher Scientific). RT-
qPCR was performed using the QuantStudio 7 Flex Real-Time PCR System
(Applied Biosystems, Thermo Fisher Scientific). The comparative threshold
cycle method was used to determine relative gene expression, with the ex-
pression of ACT2 (KK129/KK130) as an internal control. Data are means * sp
from three biological replicates for each tissue sample, which involves three
technical replicates. The primer sets for RT-qPCR are as reported (Nakamura
etal., 2014).

Recombinant Protein Production and Enzyme Assay

Recombinant proteins of CEK2, CEK3, and CEK4 were produced, purified
and used for Cho or Etn kinase activity assay as reported for CEK1 (Lin et al.,
2019). For cloning of CEK2, CEK3, and CEK4, their open reading frames (1,053
bp, 1,041 bp, and 1,125 bp, respectively) were amplified by PCR from Arabi-
dopsis ¢cDNA, using Phusion high-fidelity DNA polymerase (M0530S, New
England Biolabs) with the primer sets JL329/JL330, JL354/JL332, and JL333/
JL334, respectively. PCR products were digested with restriction enzymes Ndel
and BamHI for CEK2 and CEK4, and EcoRV and EcoRI for CEK3. The PCR
fragments were ligated into the pMAL-c5x vector (N8108S, New England
Biolabs) to produce pMAL-CEK2 (pJL103), pMAL-CEK3 (pJL104), and pMAL-
CEK4 (pJL105) for expression of recombinant proteins N-terminally tagged
with MBP in Escherichia coli strain C41 (DE3; 60442, Lucigen).

Radioisotope Pulse-Chase Labeling Assay

The pulse-chase labeling assay was conducted as follows: 14-d-old wild-
type, cekl-1, cek2-1, cek3-1, cek1-1 cek3-1, and cek2-1 cek3-1 seedlings were la-
beled with either 192.4 kBq of [**C]Cho chloride (52 mCi/mmol, PerkinElmer)
or 40.7 kBq of [MC]Etn (55 mCi/mmol, American Radiolabeled Chemicals) for
10 min; then the seedlings were washed twice with water and the labeling of
metabolites was chased at 0, 5, 30, 60, and 180 min. The extraction and quan-
tification of the labeled compounds from root or shoot are as previously de-
scribed (Lin et al., 2019). For each sample, data are means * sp from three
biological replicates.

Histochemical GUS Staining

GUS staining of different tissues from various development stages was
performed as previously described (Lin et al., 2015).

Confocal Microscopy

Subcellular localization of both ProCEK2:CEK2-VEN and ProCEK3:CEK3-
VEN was observed by confocal microscopy (LSM 510 Meta; Carl Zeiss)
equipped with Plan-Apochromat 20X/0.8-NA, and Plan-Apochromat 10X/
0.45-NA. To stain the plasma membrane or the ER, samples were immersed in
5 ug mL~" of FM4-64 (F34653, Thermo Fisher Scientific) for 5 min or 2 uM of the
ER-Tracker Red dye (E34250, Thermo Fisher Scientific) for 30 min, respectively,
before confocal observation. Images were captured using the LSM 510 version
3.2 (Carl Zeiss) with filters for Venus (514 nm laser, 520-555 nm band pass),
FM4-64 (543 nm laser, 560-615 nm band pass), and ER-Tracker Red dye (543 nm
laser, 560 nm long pass).
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Root Cell Architecture Observation

The architecture of the root cells was observed by PI staining according to
the previous report (Cruz-Ramirez et al., 2004) and was performed under the
confocal microscope. Root meristem size was observed as previously described
(Berger et al., 1998).

Phylogenetic Analysis of the CEK Family in Brassicaceae

Sequences of CEK homologs in Brassicaceae were acquired from the National
Center for Biotechnology Information (https://blast.ncbi.nlm.nih.gov/) and
The Universal Protein Resource (https://www.uniprot.org/) using the protein
BLAST search with Arabidopsis CEKs as queries. Arabidopsis CEK sequences
used were according to The Arabidopsis Information Resource (http://www.
arabidopsis.org/), including CEK1, 2, 4, and 3 splice variants of CEK3. Amino
acid sequence alignment was performed using Multiple Sequence Comparison
by Log-Expectation (MUSCLE; https://www.ebi.ac.uk/Tools/msa/muscle/).
Four rounds of modifications according to the first round of structural mod-
eling were performed as described (Sato, 2010). Jalview (Clamp et al., 2004) was
used to remove the sites having >20% of gaps in sequences. The retrieved
alignment (87 operational taxonomic unit, 380 sites) was used for estimating the
optimal model on MEGA X (Kumar et al., 2018). The optimal model was de-
termined with the lowest Bayesian Information Criterion score, as shown in
Supplemental Dataset S1. The tree was estimated on raxmlGUI 2.0 (Edler et al.,
2019) using a maximum likelihood statistical method with 1,000 replications of
bootstrap. The alignment files used for phylogenetic analysis are shown in
Supplemental Dataset S2.

Accession Numbers

Sequence data from this article can be found in the GenBank/EMBL data
libraries under accession numbers Atlg71697 (CEKI), Atlg74320 (CEK2),
At4g09760 (CEK3), and At2g26830 (CEK4).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. In vivo radioactive pulse-chase analysis for the
metabolism of Etn in the shoots of cek1-1, cek2-1, and cek3-1 mutants.

Supplemental Figure S2. In vivo radioactive pulse-chase analysis for the
metabolism of Etn in the roots of cek1-1, cek2-1, and cek3-1 mutants.

Supplemental Figure S3. Tissue-specific expression of CEK2-GUS by his-
tochemical GUS staining of transgenic plants harboring ProCEK2:CEK2-
GUS (line 22).

Supplemental Figure S4. Tissue-specific expression of CEK3-GUS by his-
tochemical GUS staining of transgenic plants harboring ProCEK3:CEK3-
GUS (line 21).

Supplemental Figure S5. Transcript levels of CEK1, CEK2 and CEK3 in 14-
d-old wild-type, cekl-1, cek2-1, cek3-1, cekl-1 cek3-1, and cek2-1 cek3-
1 seedlings.

Supplemental Figure S6. Cell type-specific expression pattern and subcel-
lular localization in the seedling roots of transgenic plants harboring
ProCEK2:CEK2-VEN (line 19) or ProCEK3:CEK3-VEN (line 18).

Supplemental Table S1. List of oligonucleotide sequences used in this study.

Supplemental Dataset S1. Maximum Likelihood fits of 56 different amino
acid substitution models.

Supplemental Dataset S2. Sequences of CEK homologs in Brassicaceae
used for phylogenetic analysis.
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