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Abstract

Background: Ischemic heart disease (IHD) is a common cardiovascular disorder associated with inadequate blood
supply to the myocardium. Chronic coronary ischemia leads to ischemic cardiomyopathy (ICM). Despite their rising
prevalence and morbidity, few studies have discussed the lipids alterations in these patients.

Methods: In this cross-sectional study, we analyzed serum lipids profile in IHD and ICM patients using a lipidomics
approach. Consecutive consenting patients admitted to the hospital for IHD and ICM were enrolled. Serum samples
were obtained after overnight fasting. Non-targeted metabolomics was applied to demonstrate lipids metabolic
profile in control, IHD and ICM patients.

Results: A total of 63 and 62 lipids were detected in negative and positive ion mode respectively. Among them,
16:0 Lyso PI, 18:1 Lyso PI in negative ion mode, and 19:0 Lyso PC, 12:0 SM d18:1/12:0, 15:0 Lyso PC, 17:0 PC, 18:1–18:
0 PC in positive ion mode were significantly altered both in IHD and ICM as compared to control. 13:0 Lyso PI, 18:0
Lyso PI, 16:0 PE, 14:0 PC DMPC, 16:0 ceramide, 18:0 ceramide in negative ion mode, and 17:0 PE, 19:0 PC, 14:0 Lyso
PC, 20:0 Lyso PC, 18:0 PC DSPC, 18:0–22:6 PC in positive ion mode were significantly altered only in ICM as
compared to IHD and control.

Conclusion: Using non-targeted lipidomics profiling, we have successfully identified a group of circulating lipids
that were significantly altered in IHD and ICM. The lipids metabolic signatures shed light on potential new
biomarkers and therapeutics for preventing and treating ICM.
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Background
Ischemic heart disease (IHD), also referred to as cor-
onary heart disease, is associated with inadequate sup-
ply of blood to the myocardium. Patients are
described as stable when symptoms are manageable
with either medical or revascularization therapy [1].
Chronic coronary ischemia could cause significantly
impaired left ventricular function, leading to ischemic
cardiomyopathy (ICM) [2, 3]. It has been proven that
IHD are related to profound metabolic alterations, as
heart suffers from intermittent ischemia and hypoxia
[4]. It is also worth mentioning that metabolism dis-
orders, such as dyslipidemia, diabetes mellitus and
increased alcohol intake are associated with an in-
creased incidence of IHD [5]. Yet few studies have
utilized metabolomics approach to describe metabolic
profile and perturbance in IHD, especially during dif-
ferent levels of cardiac function lesions.
Metabolomics has been emerging as a powerful tool

for defining changes in both global and cardiac-specific
metabolism that occur across a spectrum of cardiovascu-
lar disease [6]. As an important branch of metabolomics,
lipidomics describes the spatial and temporal alterations
in the content and composition of different lipid mole-
cules [7]. Although metabolic disturbances have been
well established in IHD, few studies have discussed
metabolic alterations based on lipidomics.
It has been proven that cardiomyopathy is associ-

ated with profound changes in cardiac metabolism.
Pathological progression of ICM results in cardiac
structural remodeling, leading to an increased reliance
on glucose metabolism and decrease in fatty acid oxi-
dation [8, 9]. Moreover, during the transition from
cardiac hypertrophy to failure, mitochondrial number
and function progressively decline, leading to an over-
all decrease in the oxidative metabolites [10, 11]
Metabolic disturbances have been previously in-depth
investigated in heart failure. Yet few studies have ana-
lyzed metabolic profiles in ischemic cardiomyopathy,
especially during the progression from IHD to ICM.
Thus, elucidating lipids metabolic profile alteration
and identifying novel circulatory markers are of
critical importance in the treatment and evaluation of
IHD and ICM.
In this study, by utilizing lipidomics approach, we aim

to characterize and compare the serum lipids metabolic
profile in IHD and ICM patients. We have found signifi-
cant alterations in a number of lipids levels, which are
more prominent in ICM patients. Altered serum lipids
exhibit diagnostic value for ICM and are closely corre-
lated to clinical factors. Applied together, lipids profiling
could be applied to identify patients in disease progres-
sion from IHD to ICM, and thus potentially add to our
diagnostic armamentarium.

Materials and methods
Study design and population
Consecutive consenting patients less than 70 yrs. admit-
ted to the cardiology department of the First Affiliated
Hospital of Xi’an Jiaotong University for chest pain who
subsequently underwent coronary angiography from
February 2018 to August 2018 were screened. IHD and
ICM were defined according to the universal definition
criteria by the American Cardiology College respectively
[12]. The IHD was defined as: 1) Preserved myocardial
function characterized by EF > 50%; 2) Impaired blood
flow with more than 50% stenosis of coronary arteries;
3) Angina that occurs with exercise and is predictable,
usually promptly relieved by rest or nitroglycerin. ICM
were diagnosed upon: 1) More than 50% stenosis of cor-
onary arteries confirmed by angiography; 2) Impaired
myocardial function characterized by EF<40%. The
exclusion criteria were: 1) Acute decompensated heart
failure; 2) Acute myocardial infarction; 3) Unstable
hemodynamics; 4) Hepatic, nephritic, hematological or
autoimmune disorders; 5) Severe noncardiac disease
with expected survival of less than 1 year; 6) Cachexia; 7)
Patients over the age of 80 years; 8) Unwillingness to
participate.
Among more than 5000 patients screened, 642 pa-

tients met the inclusion and exclusion criteria, including
501 IHD and 141 ICM patients. Written informed con-
sent was obtained from 364 patients. Of these, 25 IHD
and 25 ICM patients were selected for serum lipidomics
assessments. Twenty-five volunteers with coronary
atherosclerosis less than 50% by angiography were
randomly selected as control. Demographic and bio-
chemical information was obtained as previously de-
scribed [13–15].

Serum sample preparation
Serum samples were collected from IHD, ICM and con-
trol patients after coronary angiography. Venous blood
was withdrawn the next morning after overnight fast
and immediately centrifuged at 3000 rpm for 10 min at
4 °C. Serum was separated and stored at − 80 °C and ali-
quots were thawed for further processing as previously
described [13, 15].

Determination of serum lipids profile
Before analysis, serum samples were collected and
thawed. 10 μl serum was mixed with 10 μl 0.9%Nacl,
10 μl internal control solution (isopropanol-acetonitrile
with 1 μg/mL 19:0–19:0 PC, 17:0–17:0 PE, 12:0 SM and
19:0 Lyso PC respectively). The mixture solution was
vortexed for 20s and stabled for 30 min in 4 °C. The
mixture was centrifuged at 7800 g/min for 3 min. Super-
natant was removed and leftover was transferred to 2
tubes, dried with nitrogen and kept in − 20 °C for
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positive and negative measurements afterwards. To per-
form the serum lipid analysis, the dried sample was re-
suspended in 20 μl isopropanol-acetonitrile and vortexed
for 60s. Lipid profling was performed by Eksigent LC100
and AB SCIEX Triple TOF 5600+ with mass spectrom-
eter Waters XBridge Peptide BEH C18 3.5 μm, 2.1 × 100
mm in positive ion mode and negative ion mode. The
lipidomics data was processed by the software Peak-
View1.2 for qualitative analysis and MultiQuant2.1 for
quantitative analysis.

Statistical analysis
Data were normalized using MetaboAnalyst before ana-
lyses as previously described [16–25] (Supplementary
Figures S1 and S2). Lipid values below the lower limit of
detection were excluded from these analyses. Partial
Least Squares Discriminant Analysis (PLS-DA) models
were employed to reduce a large number of correlated
metabolites to a smaller number of uncorrelated factors.

Individual lipids levels among three groups were com-
pared using one-way ANOVA. Data were presented as
mean ± SE. P-values < 0.05 were considered as significant
* < 0.05, ** < 0.01, and *** < 0.001. Receiver operating
characteristics (ROC) was used and areas under the
ROC curve (AUC) were calculated to explore the dis-
criminative capability of different lipids to identify ICM.
Pearson analysis was performed to compare the inter-
relation between lipids and biochemical indicators and
heat map was created using R studio.

Results
Baseline characteristics
A total of 75 patients were enrolled in the study, includ-
ing 25 IHD, ICM and 25 control patients. Table 1 de-
scribed the demographic and biochemical characteristics
of the enrolled patients. The mean age was 59.89 ± 16.81
for ICM, 60.48 ± 8.94 for IHD and 52.71 ± 16.09 for con-
trol participants. The mean left ventricular ejection

Table 1 Basic charectersticsbased in different patient groups

ICM IHD Control P value

Female(%) 32.00% 52.00% 44.00%

Age(y) 59.9 ± 16.8 60.5 ± 8.9 52.7 ± 16.1 ns

HR (bpm) 74.11 ± 23.61 68.57 ± 10.92 74.96 ± 12.65 ns

sBP (mmHg) 118.98 ± 31.49 129.96 ± 21.83 121.46 ± 12.79 < 0.05

dBP (mmHg) 67.71 ± 19.23 71.26 ± 9.67 71.83 ± 12.11 < 0.01

EF(%) 44.53 ± 18.57 64.14 ± 9.27 68.30 ± 5.46 < 0.001

AST(U/L) 20.64 ± 6.92 21.79 ± 7.22 21.03 ± 6.15 ns

ALT(U/L) 26.81 ± 13.42 25.18 ± 16.57 19.02 ± 12.82 ns

CRE (mg/dL) 68.58 ± 26.33 65.17 ± 12.38 58.92 ± 12.98 < 0.05

CHOL (mmol/L) 3.65 ± 1.44 3.87 ± 0.91 4.31 ± 1.14 ns

TG (mmol/L) 1.54 ± 0.72 1.80 ± 1.14 1.42 ± 0.76 ns

HDLC (mmol/L) 0.84 ± 0.25 0.95 ± 0.22 1.19 ± 0.35 < 0.001

LDLC (mmol/L) 2.25 ± 1.17 2.27 ± 0.77 2.50 ± 0.87 ns

PROBNP (ng/mL) 9190.28 ± 7955.63 415.15 ± 722.46 124.64 ± 115.36 < 0.001

In hospital treatment

Aspirin(%) 100.0% 100.0% 52.0%

clopidogrel(%) 100.0% 60.0% 52.0%

Anticoagulants(%) 20.0% 4.0% 0.0%

AECI(%) 68.0% 52.0% 12.0%

ARB(%) 20.0% 28.0% 8.0%

β-blocker(%) 92.0% 92.0% 8.0%

Statin(%) 100.0% 100.0% 100.0%

nitrate(%) 60.0% 52.0% 4.0%

CCB(%) 12.0% 20.0% 20.0%

Spironolactone(%) 80.0% 0.0% 0.0%

Stent afer angiography(%) 76.0% 72.0% 0.0%

Abbreviations: HR Heart Rate, BP blood pressure, EF Ejection Fraction, AST Aspartate transaminase, ALT Alanine aminotransferase, CRE Creatinine, CHOL Total
Cholesterol, TG Triglycerides, HDL High Density Lipoprotein Cholesterol, LDL Low Density Lipoprotein Cholesterol, proBNP pro Brain Natriuretic Peptide
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fraction (LVEF) was 34.53 ± 7.57 for ICM, 64.14 ± 9.27
for IHD and 68.30 ± 5.46 for control patients. No signifi-
cant differences at baseline were seen in age, heart rate
(HR), aspartate transaminase (AST), alanine aminotrans-
ferase (ALT), creatinine (CRE), total cholesterol (TC),
triglycerides (TG) high and low density lipoprotein chol-
esterol (HDL-C, LDL-C).

Non-targeted lipidomics analysis
Firstly, we employed PLS-DA for profile visualization and
differentiation among the multiple groups. The initial
overview of global metabolic profiles as revealed by PLS-
DA scores plot indicated that lipids among IHD, ICM and
control group were generally correlated but to some

extent separable, which is more prominent for lipids in
positive ion mode (Fig. 1). The heatmap overview for the
serum lipids levels were shown in supplemental Figures
S1 and S2. The variable importance in projection (VIP)
for lipids in negative and positive ion mode were shown in
Fig. 1c and Fig. 1d, which indicated the importance in pro-
jection of listed lipids.
To identify the individual lipids levels, we compared the

lipids levels in negative and positive ion modes among IHD,
ICM and control patients using one-way ANOVA (Fig. 2). A
total of 63 lipids were detected in negative ion mode (Supple-
mentary Table S1). Among them, 16:0 lysophosphatidylinosi-
tol (Lyso PI) and 18:1 Lyso PI were significantly altered both
in IHD and ICM; 13:0 Lyso PI, 18:0 Lyso PI, 16:0

Fig. 1 PLS-DA score plots of IHD, ICM and control patients based on lipidomics data. a 2D-projection plots of lipids from PLS-DA for the of IHD,
ICM and control patients in negative ion mode. b 2D-projection plots of lipids from PLS-DA for the of IHD, ICM and control patients in positive
ion mode. The discrimination plane between 3 groups was obtained by linear discrimination analysis (LDA). c Variable importance in projection
(VIP) of lipids rested in negative ion mode. d VIP of lipids rested in positive ion mode
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phosphatidylethanolamine (PE), 14:0 phosphatidylcholine
dimyristoylphosphatidylcholine (PC DMPC), 16:0 ceramide
and 18:0 ceramide were significantly altered only in ICM as
compared to IHD and control (Fig. 2a). In positive ion mode,
a total of 62 lipids were detected (Supplementary Table S1).
Among them, 19:0 lysophosphatidylcholine (Lyso PC), 12:0
sphngomyelin (SM) d18:1/12:0, 15:0 Lyso PC, 17:0 phosphat-
idylcholine (PC) and 18:1–18:0 PC were significantly altered
both in IHD and ICM; 17:0 PE, 19:0 PC, 14:0 Lyso PC, 20:0
Lyso PC, 18:0 phosphatidylcholine (PC DSPC) and 18:0–22:6
PC were significantly altered only in ICM as compared to
IHD and control (Fig. 2b). A heatmap of the individual levels
of significantly altered serum lipids (p < 0.05) is shown in
Fig. 3.

Receiver operating characteristics (ROC) analysis
Since non-targeted lipidomics analysis had identified sig-
nificant alterations between ICM and control, we further
performed ROC analysis for discovery and identification
of potential lipid biomarkers. Among 19 significantly al-
tered lipids tested in negative and positive ion mode, 16:
0 Lyso PI, 16:0 PE, 13:0 Lyso PI, 18:1 Lyso PI, 18:0 cer-
amdie and 18:0 Lyso PI detected in negative ion mode
(Fig. 4a-f) and 18:0–22:6 PC (Fig. 4g) in positive ion
mode showed diagnostic value for ICM with the area
under the ROC curve (AUR) all above 0.7 and P value<
0.05.

Interrelation between lipids and clinical characters
At last, we explored the interrelationship between the
significantly altered lipids and the clinical phenotype.
Figure 5 showed the heatmap of the Pearson’s correl-
ation coefficients between age, HR, blood pressure, EF,
hepatic function, renal function, serum lipid levels, thy-
roid function and lipids profile in negative ion mode
(Fig. 5a) and positive ion mode (Fig. 5b). Red squares in-
dicated the highest positive coefficient of 1 and blue
squares indicated the lowest negative coefficient of − 1.
It was noteworthy that the 16:0 ceramide and 18:0 cer-
amide were both significantly and negatively correlated
to renal function as indicated by serum creatinine. It was
also quite interesting to notify the prominent negative
correlation between systolic blood pressure and nearly
all altered lipids in positive ion mode except for 18:0–22:
6 PC.

Discussion
In this study, metabolic profile and the network of
serum lipids are analyzed in IHD and ICM patients.
Lipids metabolic perturbance is observed in both IHD
and ICM based on the following results: 1) A number of
lipids are altered in IHD and ICH; 2) Lipids metabolic
alterations are more significant in ICM and most of al-
tered serum lipids also show significant diagnostic value
for ICM; 3) Serum lipids profile exhibit interrelation to
clinical features among ICM patients.
Consistent to previous publications, our present lipi-

domics analysis further confirms metabolic alterations as
myocardial undergoes ischemia. Recent technological
advances have enabled integration of multiple layers
analysis from genome, epigenome, transcriptome, prote-
ome, metabolome to even the microbiome [5]. Previous
metabolic approaches have also identified that
differences in small-molecule metabolites may provide
biomarkers for coronary artery disease progression [4,
26–28]. In correlation to previous investigation, we have
further confirmed the metabolic perturbance of PE and
PC during myocardial ischemia. However, our study

Fig. 2 Relative levels of significantly altered metabolites based on
lipidomics. a. Relative levels of significantly altered lipids in IHD, ICM
and control patients in negative ion mode. b. Relative levels of significantly
altered lipids in IHD, ICM and control patients in positive ion mode. Data
were analyzed using one-way ANOVA. Mean± s.e.m. * p<0.05 as
compared to control
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indicate specific altered subunits of PE and PC, which
are helpful in further mechanism investigation.
It is also interesting to notify that, based on lipidomics

approach in positive ion mode, significantly altered lipids
are closely negatively related to systolic blood pressure,
although not to cardiac ejection fraction. It is well
known that sBP is regulated by cardiac contraction func-
tion, cardiac output, and aortic resilience. As cardiac
ejection fraction show no correlation to lipids both in
negative and positive ion mode, and most of correlated
lipids ascribe to phosphocholine, we suppose that de-
creased aorta resilience, especially during ICM, is associ-
ated with lower phosphocholine. However, the
hypothesis from this cross-sectional observational study
warrants further validation.
The novelty of the current study is that we have pro-

vided new lipidomic alteration evidence as heart under-
goes transition from IHD to ICM. The term ICM
describes significantly impaired left ventricular function

resulting from IHD. Previous analyses of conventional
metabolism and circulating metabolites have confirmed
metabolic disturbances as heart undergoes structural
and functional change from IHD to ICM [29, 30]. Car-
diac pathological structural remodeling has resulted in
reprogramming of cardiac metabolic pathways. The
metabolic consequences of ICM have been examined in
a wide variety of experimental animal models. Present
analysis has indicated that serum lipids have undergone
profound alterations as myocardial ischemia progressing
to myopathy. The altered lipids could serve as potential
biomarkers for prognosis of ICM. Identification for dee-
per molecular mechanism could be helpful for under-
standing pathophysiologic alterations.
Recent advances in metabolic profiling technologies

have enhanced the feasibility of high-throughput patient
screening for the diagnosis of disease state [31]. How-
ever, applying global metabolomics approach to explore
cardiovascular disease is still lacking, and prior studies

Fig. 3 Heatmaps of significantly altered metabolites based on lipidomics. a Heatmap of the significantly altered lipids in IHD, ICM and control
patients in negative ion mode. b Heatmap of the significantly altered lipids in IHD, ICM and control patients in positive ion mode. The colors in
the heat map indicated the log transformed values of each metabolites
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have generally assayed relatively limited subsets of me-
tabolites in focused approaches. In the present study, we
utilized non-targeted metabolomics analysis to investi-
gate lipidomic alterations in patients with different levels
of myocardial ischemia. Circulating lipids are found to

participate as regulatory signals and could be potential
biomarkers for ICM. The large-scale metabolic profiling
approaches have been recognized as a more comprehen-
sive survey to better inform underlying biological

Fig. 4 Receiver operating characteristics (ROC) analysis of different lipids to identify ICM patients. a-g Receiver operating characteristic (ROC)
curve analysis for 6 lipids detected in negative ion mode(a-f) and 1 lipid detected in positive ion mode (g). Area under the ROC curve and
confidence interval for each lipids were shown in each figure
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processes and identify potential biomarkers for disease
progression in the present analysis.
Our study has several limitations. Although we have

studied 3 major groups along the myocardial spectrum,
the cohort size for each group is relatively limited, and
the selection and observation bias could not be easily ex-
cluded. In addition, serum lipids alterations are based on
non-targeted metabolic approach and warrant further
confirmation by targeted metabolomics measurement.
Moreover, the present investigation is agnostic to tissue
source of circulating metabolites. Thus, molecular and
biochemical confirmation are also required to further
explain the exact metabolic pathway alterations. Since
this is a clinical observational study, we could not ex-
clude the confounding factor of the drugs, procedures,
etc. Large-scale and long-time follow-up studies are also
necessary to validate the diagnostic function of lipids for
disease phenotype, and to evaluated the lipidomic
markers between patients with differences in coronary
angiography.

Conclusion
In this study, we have demonstrated the application of
lipidomics platform to better understand pathogenic
progression from IHD to ICM. Lipidomics profile is

more significantly altered as myocardial ischemia pro-
gresses to ischemic cardiomyopathy. The lipids meta-
bolic signatures also provide novel biomarkers for
preventing and diagnosing IHD and ICM.
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