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Summary

In many biomedical applications, interest focuses on the occurrence of two or more consecutive 

failure events and the relationship between event times, such as age of disease onset and residual 

lifetime. Bivariate survival data with interval sampling arise frequently when disease registries or 

surveillance systems collect data based on disease incidence occurring within a specific calendar 

time interval. The initial event is then retrospectively confirmed and the subsequent failure event 

may be observed during follow-up. In life history studies, the initial and two consecutive failure 

events could correspond to birth, disease onset and death. The statistical features and bias of 

observed data in relation to interval sampling were discussed by Zhu & Wang (2012). Here we 

propose nonparametric estimation of the association between bivariate failure times based on 

Kendall’s tau for data collected with interval sampling. A nonparametric estimator is given, where 

the contribution of each comparable and orderable pair is weighted by the inverse of the associated 

selection probability. Analysis methods for bivariate survival data with interval sampling rely on 

the assumption of quasi-independence, i.e., that bivariate failure times and the time of the initial 

event are independent in the observable region. This paper develops a nonparametric test of quasi-

independence based on a bivariate conditional Kendall’s tau for such data. Simulation studies 

demonstrate that the association estimator and testing procedure perform well with moderate 

sample sizes. Illustrations with two real datasets are provided.
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1. Introduction

In natural history studies of diseases, interest often lies in two or more consecutive failure 

events and the relationship between event times. For instance, in HIV progression through 

successive stages, birth is the initial event, and HIV infection and death are the consecutive 
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bivariate failure events. Disease registries or surveillance systems commonly collect data 

with onset of disease constrained to lie within a specific calendar time interval. This type of 

sampling is referred to as interval sampling, where the initial event is retrospectively 

identified and the subsequent bivariate failure events are observed during follow-up. Interval 

sampling occurs because only individuals diagnosed with disease within a specific time 

interval can be included, and the data represent a nonrandomly screened subset of a 

population. For example, for individuals having a fixed date of birth, those with an early age 

of disease onset cannot be sampled. Therefore, methods of analysis must account for biased 

sampling.

Examples of such data are seen in a study of HIV seroconversion and subsequent death, and 

in a study of the natural history of ovarian cancer. In the first example, over 800 subjects 

aged 15–49 years were ascertained with HIV seroconversion between 1995 and 2003 

(Lutalo et al., 2007). Investigators recorded the date of birth, date of HIV seroconversion and 

subsequent time of death or censoring. The second example involves a cohort of patients, 

from the Surveillance, Epidemiology and End Results database, diagnosed with ovarian 

cancer between 1995 and 2002 (Ries et al., 2005). The patients’ dates of birth were 

ascertained retrospectively, and dates of death were recorded prospectively until the end of 

2002.

A common feature of data collected with interval sampling is that the study cohort under 

interval sampling is made up of subjects experiencing the first failure event within a specific 

calendar time interval [0, t0]. Let us denote the calendar time of the initial event by B, the 

time from the initial event to the first failure event by X, the time from the first event to the 

second event by Y, and the time from the initial event to the time of censoring by C, where 

C ⩽ t0 – B. The bivariate failure times of interest are (X, Y). Under interval sampling, a 

subject is included in the sample only if 0 ⩽ X + B ⩽ t0; that is, observation of the first 

failure time X is doubly truncated. The observation of the second failure time Y could be 

further complicated by right censoring. Conditional on 0 ⩽ X + B ⩽ t0, the observed data 

include independent and identically distributed copies of (B, X, Y , δ), where Y  = min(Y, C – 

X) and δ = I (Y ⩽ C – X). The primary aim of this paper is to investigate the dependence 

structure of the triplet (B, X, Y).

The measurement of association has long been a major topic in bivariate survival analysis. 

For example, in HIV studies, the dependence between age at HIV infection and residual 

lifetime reveals useful information about HIV progression. However, analyses of such 

consecutive failure times, commonly termed gap times, are challenging because within-

subject gap time associations induce dependent censoring for the second and subsequent 

failure times (Lin et al., 1999). It is appealing to develop methods with simple measures of 

association between gap times in life history processes in order to quantitatively describe the 

dependence between the two consecutive event times, taking into account disease virulence 

and possibly natural ageing. This suggests estimation of Kendall’s tau, a popular measure of 

association between two random variables which does not depend on the marginal 

distribution. Because of its rank-invariance, Kendall’s tau is suitable for measuring 

dependence in lifetime models. Lakhal-Chaieb et al. (2010), for example, discussed the 

analysis of the association between gap times based on Kendall’s tau for follow-up data 
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from a randomized trial of patients with colon cancer (Moertel et al., 1990), with respect to 

the lifetime process from randomization to cancer recurrence to death. Alternatively, copulas 

have become an attractive tool for the semiparametric modelling of bivariate survival data. 

For bivariate right-censored data, Shih & Louis (1995) developed a semiparametric 

association estimator through a copula model-based two-stage procedure. This method was 

extended to bivariate survival data with interval sampling to study the association, and it was 

applied to the ovarian cancer data (Ries et al., 2005) for a joint analysis of age of cancer 

onset and residual lifetime (Zhu & Wang, 2012). For complete data, Kendall’s tau can be 

consistently estimated by an empirical estimator. For bivariate right-censored data, several 

nonparametric estimators have been developed (Oakes, 1982; Wang & Wells, 2000; Lakhal-

Chaieb et al., 2010). Nevertheless, nonparametric estimation of Kendall’s tau in the presence 

of both censoring and truncation has not been systematically investigated. In this paper, we 

propose a nonparametric estimate of Kendall’s tau as a measure of association between 

bivariate failure times for data collected with interval sampling.

Most methods proposed in the literature on survival data under truncation (Tsui et al., 1988; 

Efron & Petrosian, 1999) make the key assumption of independence or a weaker assumption 

of quasi-independence, namely that the truncation time and failure time are independent, or 

independent in the observable region. Kendall’s tau serves as the basis of popular 

nonparametric tests of independence between two random variables. Most survival data are 

subject to censoring and/or truncation, so Kendall’s tau is not directly applicable. For 

survival data under truncation, several authors have proposed tests for quasi-independence 

between truncation and failure times via a conditional Kendall’s tau; see Martin & Betensky 

(2005) for a review. In analysing bivariate survival data with interval sampling, we have 

adopted a similar assumption of independence between B and (X, Y), which supposes that 

the disease process does not depend on when the initial event occurs. However, this 

independence assumption may be questionable when, for example, an improved screening 

strategy has been developed which potentially leads to earlier disease detection, or an 

effective treatment has become available during the observation interval. Further, since we 

only observe data in the region − B ⩽ X ⩽ t0 − B due to interval sampling, we cannot 

identify the relationship between B and (X, Y) outside the region, and so cannot determine 

whether they are independent. Quasi-independence between B and (X, Y) in the observable 

region implies that the joint density of (B, X, Y) factors into a product proportional to the 

density of B and the joint density of (X, Y) in the region − B ⩽ X ⩽ to − B. Methods for 

bivariate survival data with interval sampling still work under quasi-independence. The 

second purpose of this paper is to develop a procedure to test nonparametrically the 

assumption of quasi-independence based on a bivariate conditional Kendall’s tau which 

quantifies the association between B and (X, Y). The two major issues considered in this 

paper, association estimation and quasi-independence testing, centre on the dependence 

structure of the triplet (B, X, Y).

2. Nonparametric estimation of unconditional Kendall’s tau

Kendall’s tau (Kendall & Gibbons, 1990) quantifies any association between random 

variables X and Y. Let (X1, Y1) and (X2, Y2) be independent and identically distributed 

copies of (X, Y). Kendall’s tau is defined as
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τ = E[sgn{(X1 − X2)(Y1 − Y2)}],

where sgn(u) is the sign of u. The pair (1, 2) is said to be concordant if (X1 − X2)(Y1 − Y2) 

> 0, and discordant if (X1 − X2)(Y1 − Y2) < 0. Clearly, −1 ⩽ τ ⩽ 1, and this association 

measure equals zero when X and Y are independent. For completely observed data {(Xi, Yi): 

i = 1,…, n}, τ can be consistently estimated by

τ = n
2

−1
∑

i < j
sgn{(Xi − Xj)(Yi − Y j)},

which is an unbiased U-statistic (Randles & Wolfe, 1991) with the property that n1 ∕ 2(τ − τ)
converges weakly to a normal distribution as n → ∞. For bivariate data under censoring, 

various estimates of τ have been developed. With censored observations, the concordance 

status can be established only for orderable pairs, making estimation of τ difficult. Oakes 

(1982) suggested an estimator using only orderable pairs, which is inconsistent when 

bivariate survival data are not independent and also ignores partial information provided by 

censored data. Lakhal-Chaieb et al. (2010) introduced a modification of Oakes’s estimator 

by a Horvitz–Thompson-type correction, where the contribution of each orderable pair is 

weighted by the inverse of the associated selection probability; this estimator enjoys 

consistency and asymptotic normality.

For bivariate survival data with interval sampling, Zhu & Wang (2012) considered 

semiparametric association estimation of bivariate failure times (X, Y) based on a copula 

model under the assumption that B is independent of (X, Y), although this independence 

assumption can be relaxed to quasi-independence. In the present paper, we focus on an 

unconditional Kendall’s tau, τXY = E[sgn{X1 − X2)(Y1 − Y2)} ], as a measure of association 

between X and Y. For bivariate survival data with interval sampling, to handle the selection 

bias from the truncation effect and the uncertainty of pair ranking from censoring, attention 

should be further restricted to pairs that are comparable in addition to orderable. Under 

quasi-independence, we adopt inverse-probability weighting to adjust for interval sampling 

bias, and propose a nonparametric estimate of τXY where the contribution of each 

comparable and orderable pair is weighted by the inverse selection probability. In fact, one 

can consider the comparable and orderable pairs as a sample selected from the population, 

and a common way to correct the bias in survey sampling is to weight each pair by the 

inverse of the estimated selection probability.

The challenge is to identify the comparable and orderable pairs and to compute the 

associated probability. The concept of a comparable pair was first introduced by 

Bhattacharya et al. (1983). In our setting, the pair (i, j) is comparable if 

{ − Bij
max ⩽ Xij

min, Xij
max ⩽ − Bij

min + t0}, owing to the dual double truncation on B and X, 

where −Bij
max = max( − Bi, − Bj), −Bij

min = min( − Bi, − Bj), Xij
max = max(Xi, Xj), and 

Xij
min = min(Xi, Xj). In the presence of censoring, the order of (Yi, Yj) and the concordance 

or discordance status of the pair (i, j) may not be clear. Following Oakes (1982), the pair (i, 
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j) is orderable if {Y ij
min < min(Ci − Xi, Cj − Xj)}, where Y ij

min = min(Y i, Y j). Let λij denote the 

indicator of comparability and orderability. For ease of exposition, we assume that the 

censoring time and bivariate failure times are conditionally independent given the calendar 

time of the initial event and the observable region, written as C ⫫ (X, Y) ∣ (B, − B ⩽ X ⩽ t0 

− B), and that the calendar time of the initial event B and the censoring time C are 

independent. For such a comparable and orderable pair, Y ij
min is observed, so the conditional 

probability of a pair being comparable and orderable is

pij = pr( − Bijmax ⩽ Xijmin, Xijmax ⩽ − Bijmin + t0, Yijmin < min(Ci − Xi, Cj − Xj) ∣
Xi, Xj, Yijmin)

= pr( − Xijmin ⩽ B ⩽ t0 − Xijmax ∣ Xi, Xj)2 × pr(Ci > Xi + Yijmin ∣ Xi, Xj, Yijmin)
× pr(Cj > Xj + Yijmin ∣ Xi, Xj, Yijmin) .

Denote the distribution function of B by G(·), and denote the survival function of C by K(·). 

Then pij can be expressed as

pij = {G(t0 − Xijmax) − G( − Xijmin)}2 × K(Xi + Yijmin) × K(Xj + Yijmin),

which can be estimated by replacing G and K with estimators. Since the overall follow-up 

process is assumed to be under independent censoring, K(·),the survival function of C, can 

be estimated by the Kaplan–Meier estimator K( ⋅ ) based on {(Xi + Y i, 1 − δi) : i = 1, …, n}.

We now discuss estimation of G(·), the distribution function of B, which is essentially dual 

to estimation of the distribution function of the failure time X, because B is also doubly 

truncated with the constraint − X ⩽ B ⩽ t0 − X. For doubly truncated data, Shen (2010) 

provided an algorithm to jointly compute the nonparametric maximum likelihood estimators 

for the distribution functions of truncation and failure time variables. Under the assumption 

of quasi-independence, the full likelihood of the (Bi, Xi) can be expressed as

L(g, f) = ∏
j = 1

n gj
Gj

× ∏
j = 1

n Gjfj
∑i = 1

n Gifi
= L1(g) × L2(g, f),

where g = (g1, …, gn) and f = (f1,…, fn) are probability masses assigning probability gi to Bi 

and fi to Xi, respectively, and Gi = ∑m = 1
n gmI( − Bm ⩽ Xi ⩽ t0 − Bm) for i = 1, …, n. Here 

L1(g) refers to the conditional likelihood of the Bi given the Xi, and L 2(g, f) is the marginal 

likelihood of the Xi. Interchanging the roles of the Bi and Xi, the full likelihood can also be 

decomposed into a product of the conditional likelihood L1
∗(f) of the Xi given the Bi and the 

marginal likelihood L2
∗(g, f) of the Bi. An iterative algorithm can be used to compute the 

nonparametric maximum likelihood estimators g and f  by maximizing L1(g) and L1
∗(f), and 

the corresponding nonparametric estimator of G(·) is denoted by Gnon( ⋅ ). Although g and f
have no explicit form and must be computed iteratively, the estimation procedure has been 

implemented in an R (R Development Core Team, 2014) package DTDA (Moreira et al., 
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2010). Alternatively, if parametric information about the distribution of B is available, we 

may consider a joint model of (B, X) and parameterize the distribution of B by G(·, θ). 

Under quasi-independence, the joint sampling density of (B, X) can be expressed as

pB, X(b, x) =
g(b)fX(x)I( − x ⩽ b ⩽ t0 − x)

pr( − B ⩽ X ⩽ t0 − B)

=
g(b)I( − x ⩽ b ⩽ t0 − x)

G(t0 − x) − G( − x) ×
{G(t0 − x) − G( − x)}fX(x)

∫ {G(t0 − u) − G( − u)}fX(u) du
= pB ∣ X(b ∣ x) × pX(x),

where g(·) and fX(·) are the population densities of B and X, respectively, and pX(·) is the 

sampling density of X. Then the conditional likelihood function of the Bi given the Xi 

eliminates fX(·) by conditioning, and involves only the parameter θ:

Lc(θ) = ∏
i

pB ∣ X(Bi ∣ Xi, θ) = ∏
i

g(Bi, θ)
G(t0 − Xi, θ) − G( − Xi, θ) .

Maximizing Lc(θ) leads to an estimator of θ, and the corresponding parametric estimator of 

G(·) is G( ⋅ , θ).

Therefore, with G(·) being either nonparametrically estimated by Gnon( ⋅ ) or parametrically 

estimated by G( ⋅ , θ), and with K(·) estimated by the Kaplan–Meier estimator K( ⋅ ), an 

estimator of Pij is pij = {G(t0 − Xij
max) − G( − Xij

min)}2 × K(Xi + Y ij
min) × K(Xj + Y ij

min). The 

unconditional Kendall’s tau is estimated by

τXY = ∑
i < j

λij
pij

−1
∑

i < j

λij sgn{(Xi − Xj)(Y i − Y j)}
pij

.

Define an un-rescaled estimator as

τu = n
2

−1
∑

i < j

λij sgn{(Xi − Xj)(Y i − Y j)}
pij

.

The parameter τXY is defined on the domain {(x, y) : x + y ⩽ t0 − b−}, where b− = inf{b : 

G(b) > 0}. In the Appendix it is shown that under suitable regularity conditions, 

n1 ∕ 2(τu − τXY ) is asymptotically equivalent to a zero-mean U-statistic of order 2 as n →∞, 

and a similar result holds for n1 ∕ 2(τXY − τXY ). Consistency and asymptotic normality 

follow the lines of van der Vaart (1998) and are summarized in Theorem 1, whose proof is 

given in the Appendix.

THEOREM 1. As n → ∞, τXY  is a consistent estimator of τXY, and n1 ∕ 2(τXY − τXY )

converges weakly to a normal distribution with mean zero and variance σXY
2 .
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While the asymptotic variance σXY
2  may be estimated by its empirical version, the 

computation is rather complicated. Since the asymptotic normality has been established, it is 

more convenient to use the bootstrap. The performance of the proposed estimator is 

evaluated in § 4.

3. Test of quasi-independence via conditional Kendall’s tau

Analysis methods for bivariate survival data with interval sampling rely on the assumption 

of independence between B and (X, Y). Using the Surveillance, Epidemiology and End-

Results ovarian cancer data as an illustrative example, independence implies that the age of 

cancer diagnosis and the residual lifetime are both independent of the birth cohort. In a 

nonparametric model, the independence between B and (X, Y) cannot be identified due to 

the incompleteness of observed data. Nevertheless, quasi-independence between B and (X, 

Y) in the observable region −B ⩽ X ⩽ t0 − B, expressedas B ⫫ Q (X, Y), can be tested. A 

test is then developed for hypothesis testing based on the fact that violation of quasi-

independence implies dependence. Kendall’s tau is not directly applicable to survival data 

subject to censoring and truncation effects, and a consistent estimate of an unconditional 

Kendall’s tau cannot be obtained without adjustment. As an extension, a conditional 

Kendall’s tau has been widely used for tests of quasi-independence for survival data under 

truncation (Tsai, 1990; Martin & Betensky, 2005), based on comparability of truncated data. 

Since both B and X are doubly truncated, we adapt this method to the context of interval 

sampling and define a bivariate conditional Kendall’s tau to test the association between B 
and (X, Y). Additionally, the second failure time Y is subject to right censoring and may not 

be observed exactly, so we consider the testing of quasi-independence under censoring 

rather than testing for independence.

We construct a test statistic from comparable and orderable paired observations. As 

discussed in § 2, the pair (1, 2) is comparable if { − B12
max ⩽ X12

min, X12
max ⩽ − B12

min + t0}, 

where −B12
max = max( − B1, − B2), −B12

min = min( − B1, − B2), X12
max = max(X1, X2), and 

X12
min = min(X1, X2). The pair (1, 2) is orderable if {Y 12

min < min(C1 − X1, C2 − X2)}, where 

Y 12
min = min(Y 1, Y 2). To test quasi-independence between B and (X, Y) under censoring, we 

assume that the censoring time and bivariate failure times are conditionally independent 

given the calendar time of the initial event and the observable region, i.e., C ⫫ (X, Y) ∣ (B, − 

B ⩽ X ⩽ t0 − B), which is a weaker condition than C ⫫ (X, Y). The parameter of interest is a 

bivariate conditional Kendall’s tau for the association between B and (X, Y),

τc =
τBX
c = E[sgn{(B1 − B2)(X1 − X2)} ∣ Ω12],

τBY
c = E[sgn{(B1 − B2)(Y1 − Y2)} ∣ Λ12],

where (B1, X1, Y1, C1) and (B2, X2, Y2, C2) are observations from the distribution of (B, X, 
Y, C) ∣ (−B ⩽ X ⩽ t0 − B), Ω12 denotes the event that the pair (1, 2) is comparable in the 

observable region of (B, X), i.e.,
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Ω12 = { − B12
max ⩽ X12

min, X12
max ⩽ − B12

min + t0},

and Λ12 denotes the event that the pair (1, 2) is both comparable and orderable in the 

observable region of (B, Y), i.e.,

Λ12 = { − B12
max ⩽ X12

min, X12
max ⩽ − B12

min + t0} ∩ {Y12
min < min(C1 − X1, C2 − X2)} .

We give the proof of the following theorem in the Appendix.

THEOREM 2. Under the hypothesis of quasi-independence, H0: B ⫫ Q(X, Y), and the 

assumption that C ⫫ (X, Y) ∣ (B, −B ⩽ X ⩽ t0 − B), the bivariate conditional Kendall’s tau 

satisfies τc = (τBX
c , τBY

c )T = 0.

A consistent estimator of τc based on the observed data {(Bi, Xi, Y i, δi) : i = 1, … , n} is

τc =
∑

i < j
I(Ωij) sgn{(Bi − Bj)(Xi − Xj)} ∕ NΩ,

∑
i < j

I(Λij) sgn{(Bi − Bj)(Y i − Y j)} ∕ NΛ,
=

U1
n
2 /NΩ,

U2
n
2 /NΛ,

=
U1 ∕ UΩ,
U2 ∕ UΛ,

where Uc = (U1, U2)T is a vector of U-statistics, Nω is the number of comparable pairs for 

(B, X), and NΛ is the number of comparable and orderable pairs for (B, Y). The expected 

values of UΩ, UΛ and Uc = (U1, U2)T are pr(Ωij) = μΩ, pr(Λij) = μΛ and 

E(Uc) = (τBX
c μΩ, τBY

c μΛ)T. Following a theorem on the joint distribution of U-statistics, 

n1/2{Uc − E(Uc)} is asymptotically N(0, 4η), where the elements of the matrix η are

η11 = E[sgn{(X1 − X2)(B1 − B2) × (X1 − X3)(B1 − B3)}I(Ω12 ∩ Ω13)] − (τBX
c μΩ)2,

η12 = E[sgn{(X1 − X2)(B1 − B2) × (Y1 − Y3)(B1 − B3)}I(Ω12 ∩ Λ13)] − τBX
c μΩτBY

c μΛ,
η22 = E[sgn{(Y1 − Y2)(B1 − B2) × (Y1 − Y3)(B1 − B3)}I(Λ12 ∩ Λ13)] − (τBY

c μΛ)2,

provided that η11 and η22 are positive as n → ∞. Similarly, n1 ∕ 2(τc − τc) is asymptotically 

N(0, 4D−1ηD−1) as n → ∞, where D is a diagonal matrix with [μΩ, μΛ] on the diagonal. A 

consistent estimator of the matrix η is obtained by averaging over all possible observations 

of (B, X, Y), and its exact form is given in the Appendix. Estimating η, μΩ and μΛ based on 

the data, the statistic nτc
TDη−1Dτc ∕ 4 is asymptotically distributed as a χ2

2 distribution as n 

→ ∞, under H0 : B ⫫ Q(X, Y).

4. Simulations

The first simulation was conducted to examine the performance of the estimation method 

proposed in § 2 with moderate sample sizes. In measuring the association between X and Y, 
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we compare the proposed nonparametric estimator τXY
n  with the copula model-based 

semiparametric estimator τXY
s . A set of data {(B1, X1, Y1), …, (Bn, Xn, Yn)} is generated 

with interval sampling, where B = 9 − 13 W with W ~ Un(0, 1) and correlated pairs (X, Y) 

are generated from three Archimedean copula models: the Clayton (1978), Gumbel (1960) 

and Frank (1979) copulas. For each, we use unit exponential margins and choose three 

values of τXY to accommodate different levels of dependence between X and Y. An 

observation (Bi, Xi, Yi) is included in the dataset if and only if − Bi ⩽ Xi ⩽ −Bi + 10, and is 

censored if Xi + Yi ⩾ −Bi + 10. The censoring fraction is around 20–25%. For each value of 

τXY, 1000 simulated samples are generated with n = 400. Table 1 shows the empirical bias, 

standard error, average bootstrap standard error and 95% coverage probability for τXY
n  and 

τXY
s , based on asymptotic normality, in which the standard error is computed using 500 

bootstrap resamples. The empirical 95% coverage probability is based on the 1000 

confidence intervals. Under all the simulation scenarios, the nonparametric estimator τXY
n

works well, with the bias of τXY
n  being comparable to that of τXY

s . The variance of τXY
n  is 

much smaller, which demonstrates the inefficiency of the two-stage estimation procedure for 

τXY
s . The empirical standard error of τXY

n  is very close to the average bootstrap standard 

error, and the empirical coverage probabilities of τXY
n  are close to 95%, which may imply 

that the nonparametric inference about τXY is reasonably good, and that the bootstrap 

estimator of the variance σXY
2  provides an appropriate measure of the variability of τXY

n .

The second simulation was carried out to evaluate the test of quasi-independence between B 
and (X, Y) described in § 3. The power is calculated from 500 replications. For each 

replication, we generate a dataset of size n = 400 under interval sampling, assuming a 

trivariate normal distribution of a random vector (B, X, Y) with E{(B, X, Y)} = (1, 0, 0), and 

vary the population correlation (ρBX, ρBY) to yield different values of the parameter of 

interest, τc = (τBX
c , τBY

c )T. The population correlation between X and Y, ρXY, is a nuisance 

parameter corresponding to the parameter τXY
c = E[sgn{(X1 − X2)(Y 1 − Y 2)} ∣ Λ12], which is 

a conditional Kendall’s tau for the association between X and Y. An observation (Bi, Xi, Yi) 

is included in the dataset if and only if −Bi ⩽ Xi ⩽ −Bi + 2, and is censored if Xi + Yi ⩾ −Bi 

+ 2. Figure 1 displays contour plots of test power. For each panel, the contours are based on 

a linear interpolation of the estimated probability, with interpolation neighbours determined 

by a Delaunay triangulation of the points in the (τBX
c , τBY

c ) plane. The orientation of the 

power surface with respect to τBX
c  and τBY

c  reflects the association between X and Y. For 

positive ρXY, the power to detect quasi-dependence is greatest when τBX
c  and τBY

c  have 

opposite signs; for negative ρXY, the power to detect quasi-dependence is greatest when τBX
c

and τBY
c  have the same sign.
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5. Illustrative examples

The proposed nonparametric methods are applied to two sets of real data to test quasi-

independence and study the relationships for bivariate survival data with interval sampling. 

The first dataset is from the Rakai AIDS study of HIV seroconverted subjects (Lutalo et al., 

2007). The study cohort consists of 837 subjects with a documented date of HIV 

seroconversion between 1995 and 2003, and followed until their death or the end of 2003. 

Among these subjects, 120 died and others were censored by outmigration or administrative 

censoring at the end of 2003. Clearly, the observed data could be biased due to interval 

sampling. Estimation or analytical methods that do not consider this fact could yield biased 

results. Information on the date of birth, date of death, sex, place of residence and HIV 

subtype is available. In the analysis, the calendar time of birth is denoted by B, and the 

bivariate failure times are age at HIV infection X and residual lifetime Y; the times are 

measured in years. Under interval sampling, X is doubly truncated with the constraint −B ⩽ 
X ⩽ −B + 9, and Y is dependently right censored. Here the null hypothesis of quasi-

independence corresponds to HIV progression not depending on birth time in the observable 

region, i.e., that B is independent of (X, Y) in the region of −B ⩽ X ⩽ −B + 9, written as B 
⫫ Q(X, Y).

We first perform a test of quasi-independence for the HIV seroconversion data. The bivariate 

conditional Kendall’s tau for testing the association between B and (X, Y) is estimated as 

τc = (τBX
c , τBY

c )T = (0 ⋅ 225, 0 ⋅ 067)T. The quasi-independence test statistic χ2
2 = 2 ⋅ 156 and 

the p-value of 0·340 indicate that there is insufficient evidence to reject quasi-independence 

between B and (X, Y), which suggests the stability of HIV infection for those diagnosed 

incidences occurring between 1995 and 2003. Next, given quasi-independence, we quantify 

the association between X and Y in terms of the unconditional Kendall’s tau, τXY, estimated 

by the inverse-probability weighting method. Studies suggest that progression of HIV 

infection is affected by HIV subtype (Kaleebu et al., 2001). Therefore, to illustrate the 

method, we focus on the entire cohort and three subgroups of patients with infection of A 

subtype, non-A subtype, and unknown subtype. A preliminary Cox regression analysis of 

residual lifetime conditional on age at HIV infection suggests a significant negative 

association, but this does not account for interval sampling bias, nor does it give an explicit 

measure of the association. We compute the nonparametric estimate τXY
n  together with the 

semiparametric estimate τXY
s  by fitting the Frank copula model. Table 2 shows a negative 

overall association; interestingly, there is a comparable negative association for non-A and 

unknown subtypes but a positive association for the A subtype, although the associations are 

not significant. The results suggest that the HIV epidemic is likely to have a predominance 

of non-A subtype infection, and subtype A appears to be a very different virus subtype from 

the others in terms of HIV progression, which is consistent with conclusions from other 

studies (Kaleebu et al., 2001).

The second dataset is from the Surveillance, Epidemiology and End-Results database. The 

study cohort consists of 1814 nonwhite ovarian cancer patients diagnosed between 1995 and 

2002, who were followed until 2002 (Ries et al., 2005). Their dates of birth were ascertained 

retrospectively, and their dates of death were recorded prospectively. By the end of 2002, 
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1018 patients had died and the others were right censored. As women tend to have relatively 

short residual lifetime after diagnosis of ovarian cancer, the competing cause of death due to 

other risks is relatively small or ignorable. The birth time is denoted by B, and the bivariate 

failure times of interest are age at cancer onset X and residual lifetime Y. For the quasi-

independence test, the bivariate conditional Kendall’s tau is estimated as 

τc = (τBX
c , τBY

c )T = (0 ⋅ 016, 0 ⋅ 073)T, the test statistic is χ2
2 = 0 ⋅ 308, and the p-value is 0·857, 

which indicates no evidence to reject quasi-independence. The association between X and Y 
is assessed by τXY, and a significant negative association between the age of cancer onset 

and residual lifetime is detected by both the nonparametric and the semiparametric methods. 

Specifically, τXY
n = − 0 ⋅ 275 with confidence interval (−0·313, −0·218) and τXY

s = − 0 ⋅ 372
with confidence interval (−0·434, −0·302). Our analyses show that, compared with the 

semiparametric estimate τXY
s , the nonparametric estimate τXY

n  generally suggests slightly 

smaller negative associations. Further, the semiparametric method depends on a specific 

copula, the Frank model; thus it is less robust and possibly subject to model 

misspecification.

6. Discussion

This paper establishes nonparametric inference on bivariate survival data with interval 

sampling through Kendall’s tau and an extension of it. There is growing interest in assessing 

the relationship between bivariate failure times, but conditional Kendall’s tau can be a poor 

measure of dependence. Moreover, frailty models for bivariate survival data suggest that the 

conditional Kendall’s tau depends on the marginal distribution of each failure time, as well 

as the copula governing their dependence.

To quantify the dependence between bivariate failure times based on the observed data with 

interval sampling, we focus on an unconditional Kendall’s tau as a measure of association. 

Further, since the association parameters in copula models are closely related to Kendall’s 

tau, the copula association parameter can then be identified via tau. Potentially, the 

nonparametric estimate of tau may be used to develop a model selection procedure or a 

goodness-of-fit test of copulas, which could increase the practical utility of copula models. 

In addition, for bivariate failure times, we can derive estimators for the joint survival 

function and conditional survival function of the second failure time based on a standard 

copula formulation, where the copula association parameter is estimated by inverting the 

proposed estimator of tau. Generally, the proposed methods can be used to help understand 

the time course of life history processes with an initial event and first and second failure 

events where transitions between these events represent a progression, for which data are 

collected with the first event occurring within a time interval and the second event observed 

subject to right censoring.
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Appendix

Proof of Theorem 1

First, we develop asymptotic results for τu. For convenience of discussion, let us write 

sgn{(Xi − Xj)(Y i − Y j)} = aijbij, where aij = 2I(Xi − Xj > 0) − 1 and bij = 2I(Y i − Y j > 0) − 1, 

with (Xi, Y i) and (Xj, Y j) being two observed bivariate failure times. We have

n1 ∕ 2(τu − τXY ) = n1 ∕ 2 n
2

−1
∑
i < j

λijaijbij
pij

− τXY

= n1 ∕ 2 n
2

−1
∑
i < j

λijaijbij
pij

− τXY

+ n1 ∕ 2 n
2

−1
∑
i < j

λijaijbij
1

pij
− 1

pij
.

(A1)

For comparable and orderable pairs, Y ij
min is observed and Y ij

min = Y ij
min. The first term in 

(A1) is a U-statistic of order 2, and

E ∑
i < j

λijaijbij
pij

− τXY = ∑
i < j

E
λijaijbij

pij
− τXY

= ∑
i < j

E E
λijaijbij

pij
Xi, Xj, Yijmin − τXY

= ∑
i < j

E 1
pij

E λijaijbij Xi, Xj, Yijmin − τXY .

Similarly to the discussion in Lakhal-Chaieb et al. (2010), we can show that the concordance 

or discordance status is conditionally independent of the comparability and orderability 

event. Once Xi, Xj and Y ij
min are fixed, by the formula for the conditional probability pij of 

the comparability and orderability event, described in § 2, the comparability and orderability 

event depends only on the initial event time B and the censoring time C. The concordance or 

discordance status depends only on the original pairs, so these events are conditionally 

independent, and

E(λijaijbij ∣ Xi, Xj, Yijmin) = E(λij ∣ Xi, Xj, Yijmin) E(aijbij ∣ Xi, Xj, Yijmin)
= pij E(aijbij ∣ Xi, Xj, Yijmin) .

Then E{∑i<j (λijaijbij/pij − τXY)} = 0, so the first term in (A1) is a zero-mean U-statistic of 

order 2. By the standard theory of U-statistics, the asymptotic variance of the first term in 

(A1) is equal to
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lim
n ∞

4
n3 ∑

i < j < k

λijaijbij
pij

− τXY
λikaikbik

pik
− τXY +

λijaijbij
pij

− τXY
λjkajkbjk

pjk
− τXY

+
λikaikbik

pik
− τXY

λjkajkbjk
pjk

− τXY .

The variation in the second term of (A1) is due to the estimation of pij, the conditional 

probability that a pair is comparable and orderable. We have 

pij
−1 − pij−1 = {(ΔG)2KiKj}−1 − {(ΔG)2KiKj}−1, where ΔG = G(t0 − Xij

max) − G( − Xij
min), 

Ki = K(Xi + Y ij
min), Kj = K(Xj + Y ij

min),ΔG = G(t0 − Xij
max) − G( − Xij

min), Ki = K(Xi + Y ij
min)

and Kj = K(Xj + Y ij
min). To be specific, G is either the nonparametric maximum likelihood 

estimator Gnon( ⋅ )(·) (Shen, 2010) or the parametric estimator G( ⋅ , θ) from the conditional 

likelihood, and K is the Kaplan–Meier estimator. Note that ΔG − ΔG and K – K can be 

approximated by a sum of independent and identically distributed zero-mean terms. 

Therefore,

G(b) − G(b) = ∑
k = 1

n ψ1(Bk, Xk, b)
n + op(n−1 ∕ 2),

K(s) − K(s) = ∑
k = 1

n ψ2(Xk, Y k, δk, s)
n + op(n−1 ∕ 2),

where E{ψ1 (Bk, Xk, b)} = 0 and E{ψ2 (Xk, Y k, δk, s)} = 0. Then we have

n1 ∕ 2 1
pij

− 1
pij

= n1 ∕ 2 (ΔG)2KiKj − (ΔG)2KiKj
(ΔG)2KiKj(ΔG)2KiKj

= n1 ∕ 2 ΔG{Ki(Kj − Kj) + Kj(Ki − Ki)} + 2KiKj(ΔG − ΔG)
ΔGKiKj(ΔG)2KiKj

+ op(1)

= n−1 ∕ 2 ΔG{Ki∑k = 1
n ψ2j + Kj∑k = 1

n ψ2i} + 2KiKj∑k = 1
n (ψ1, min − ψ1, max)

ΔGKiKj(ΔG)2KiKj

+ op(1),

where

ψ1, min = ψ1(Bk, Xk, Xijmin), ψ1, max = ψ1(Bk, Xk, Xijmax − t0),
ψ2i = ψ2(Xk, Y k, δk, Xi + Yijmin), ψ2j = ψ2(Xk, Y k, δk, Xj + Yijmin) .

Therefore, the second term in (A1) can be expressed as
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n−1 ∕ 2 ∑
k = 1

n n
2

−1
∑

i < j
λijaijbij

ψ2j
Kj(ΔG)2KiKj

+
ψ2i

KiKj(ΔG)2Ki
+

2(ψ1, min − ψ1, max)
ΔGKiKj(ΔG)2

+ op(1)

= n−1 ∕ 2 ∑
k = 1

n
E λ12a12b12

ψ22
K2(ΔG)2K1K2

+
ψ21

K1K2(ΔG)2K1
+

2(ψ1, min
12 − ψ1, max

12 )

ΔGK1K2(ΔG)2
+ op(1)

where ψ1, min
12 = ψ1(Bk, Xk, X12

min) and ψ1, max
12 = ψ1(Bk, Xk, X12

max − t0), and it is a sum of 

independent and identically distributed zero-mean terms. Thus n1 ∕ 2(τu − τXY ) is 

asymptotically equivalent to a zero-mean U-statistic of order 2.

Next, we derive the asymptotic properties of τXY . We have

n1 ∕ 2(τXY − τXY ) = n1 ∕ 2
(n
2)−1∑i < j

λijaijbij
pij

(n
2)−1∑i < j

λij
pij

− τXY

= n1 ∕ 2(τu − τXY ) − n1 ∕ 2τXY
n
2

−1
∑
i < j

λij
pij

− 1 + op(1)

= n1 ∕ 2(τu − τXY ) − n1 ∕ 2τXY
n
2

−1
∑
i < j

λij
pij

− 1

− n1 ∕ 2τXY
n
2

−1
∑
i < j

λij
pij

− ∑
i < j

λij
pij

+ op(1) .

(A2)

The first term in (A2) has been shown to be asymptotically equivalent to a zero-mean U-

statistic of order 2. The second term in (A2) is a sum of n independent and identically 

distributed zero-mean terms. Similar to the derivation of asymptotic results for the second 

term in (A1), the third term in (A2) is also asymptotically equivalent to a sum of 

independent and identically distributed zero-mean terms. These three terms together imply 

that n1 ∕ 2(τXY − τXY ) converges weakly to a normal distribution with mean zero and 

variance σXY
2  as n → ∞.

Proof of Theorem 2

Under (i) the null hypothesis of quasi-independence, H0 : B ⫫ Q(X, Y), and (ii) the 

assumption of independence between the censoring time and bivariate failure times 

conditional on the time of the initial event and the observable region, i.e., C ⫫ (X, Y) ∣ (B, 

−B ⩽ X ⩽ −B + t0), we show that τc = (τBX
c , τBY

c )T = 0. First, we consider 

τBX
c = E[sgn{(B1 − B2)(X1 − X2)} ∣ Ω12]. Notice that
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τBX
c ∝ E[sgn{(B1 − B2)(X1 − X2)}I(Ω12)]

= pr(X2 − t0 ⩽ − B1 < − B2 ⩽ X1 < X2) − pr(X1 − t0 ⩽ − B1 < − B2
⩽ X2 < X1)

+ pr(X1 − t0 ⩽ − B2 < − B1 ⩽ X2 < X1) − pr(X2 − t0 ⩽ − B2 < − B1
⩽ X1 < X2) .

(A3)

Given (i) H0 : B ⫫ Q(X, Y), the joint density of (X, B) in the observable region −B ⩽ X ⩽ 
−B + t0 can be expressed as fX(x)g*(t) for −b ⩽ x ⩽ −b + t0, where fX is the population 

marginal density of X and g* is proportional to the density of B ∣ (−B ⩽ X ⩽ −B + t0). Each 

probability in (A3) equals

pr( − B ⩽ X ⩽ − B + t0)2∫b = − ∞
∞ ∫s = b

∞ ∫u = s

s + t0
SX(u)fX(u)g∗(s)g∗(b) du ds db,

where SX is the marginal survival function of X. Therefore τBX
c = 0 under (i).

Next, we focus on τBY
c = E[sgn{(B1 − B2)(Y 1 − Y 2)} ∣ Λ12]. Suppose that (B1, X1, Y1, C1) 

and (B2, X2, Y2, C2) are observations from the distribution (B, X, Y, C) ∣ (−B ⩽ X ⩽ −B + 

t0) where pr(−B < C) = 1. Let (X,, Y i, δi, Ti) and (Xj, Y j, δj, Tj), where Y = min(Y , C − X)
and δ = I(Y ⩽ C − X), denote two observations with interval sampling. We have

τBY
c ∝ E[sgn(Bi − Bj)(Y i − Y j)}I(Λij)]

= pr(δi = 1, Xj − t0 ⩽ − Bi < − Bj ⩽ Xi < Xj, Y i < Y j)
+ pr(δj = 1, Xi − t0 ⩽ − Bi < − Bj ⩽ Xj < Xi, Y i < Y j)
− pr(δj = 1, Xj − t0 ⩽ − Bi < − Bj ⩽ Xi < Xj, Y j < Y i)
− pr(δj = 1, Xi − t0 ⩽ − Bi < − Bj ⩽ Xj < Xi, Y j < Y i)
+ pr(δj = 1, Xj − t0 ⩽ − Bj < − Bi ⩽ Xi < Xj, Y j < Y i)
+ pr(δj = 1, Xi − t0 ⩽ − Bj < − Bi ⩽ Xj < Xi, Y j < Y i)
− pr(δi = 1, Xj − t0 ⩽ − Bj < − Bi ⩽ Xi < Xj, Y i < Y j)
− pr(δi = 1, Xi − t0 ⩽ − Bj < − Bi ⩽ Xj < Xi, Y i < Y j) .

(A4)

Given (i) H0 : B ⫫ Q(X, Y), and (ii) C ⫫ (X, Y) ∣ (B, −B ⩽ X ⩽ −B + t0), the joint density of 

(B, X, Y, C) in the observable region −B ⩽ X ⩽ −B + t0 can be expressed as fXY(x, y)q (b, 

c) for −b ⩽ x ⩽ −b + t0, −b < c, where fXY is the population joint density of (X, Y) and q is 

proportional to the joint density of (B, C) ∣ (−B ⩽ X ⩽ −B + t0). Then, each probability in 

(A4) equals

pr( − B ⩽ X ⩽ − B + t0)2∫b = − ∞
∞ ∫s = b

∞ ∫u = s

s + t0∫v = 0
∞

SXY (u, v)fXY (u, v)Q(b, v)Q(s, v) dv du ds, db,
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where SXY is the joint survival function of (X, Y) and Q(b, v) = ∫c = v
∞ q(b, c)dc. Therefore, 

τBY
c = 0 under (i) and (ii). In summary, we have proved that τc = (τBX

c , τBY
c )T = 0 under quasi-

independence and the assumption (ii).

Estimation of asymptotic variance and covariance in matrix η

The estimators of the asymptotic variance and covariance in matrix η derived in § 3 are of 

the form {n(n − 1)(n − 2)}−1∑i < j < kβijγik = {n(n − 1)(n − 2)}−1∑i = 1
n (βi . γi . − ϵi . ), where 

βi . = ∑j ≠ iβij, γi . = ∑j ≠ iγij, ϵi . = ∑j ≠ iβijγij, and n is the sample size. For example, in § 

3, the estimator of the covariance term η12 is obtained by using βij = sgn{(Xi − Xj)(Bi − 

Bj)}I(Ωij) and γij = sgn{(Yi − Yj)(Bi − Bj)}I(Λij).
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Fig. 1. 

Contour plots of quasi-independence test power versus τBX
c  on the horizontal axis and τBY

c

on the vertical axis. The values of the nuisance parameter ρXY are 0·5, 0 and −0·5 from left 

to right. The power contours are 0·15, 0·25, 0·50, 0·75 and 0·85 from innermost to 

outermost.
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Table 1.

Nonparametric and semiparametric estimators of τXY for bivariate survival data with interval sampling

τXY Bias(τXY
n ) SEe(τXY

n ) SEb(τXY
n ) CP(τXY

n ) Bias(τXY
s ) SEe(τXY

s ) SEb(τXY
s ) CP(τXY

s )
Clayton 0·2 1·6 4·5 4·4 95·2 1·5 14·4 14·2 96·1

0·5 2·8 3·6 3·6 94·4 1·7 9·9 9·7 96·3

0·8 1·8 1·6 1·7 95·5 1·2 4·2 4·0 96·6

Gumbel 0·2 0·6 4·4 4·1 94·3 2·4 14·3 13·9 94·5

0·5 0·9 3·6 3·4 94·6 −0·3 10·2 9·8 94·9

0·8 1·1 1·5 1·3 94·8 −0·8 4·5 4·1 95·2

Frank 0·2 0·7 4·4 4·2 95·3 −1·8 15·6 15·3 95·7

−0·1 −0·3 4·6 4·3 95·6 1·4 17·9 17·5 96·0

−0·2 −1·0 4·6 4·4 95·4 2·0 15·7 15·3 96·3

τXY
n

, nonparametric estimator; τXY
s

, copula model-based semiparametric estimator; Bias, empirical bias (× 102); SEe, empirical standard error 

(× 102); SEb, average bootstrap standard error (× 102); CP, coverage probability.
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Table 2.

Association estimations of τXY for HIV seroconversion data

Cohort Group size τXY
n SEb(τXY

n ) CI(τXY
n ) τXY

s SEb(τXY
s ) CI(τXY

s )
All 837 −0·018 0·047 (−0·110, 0·074) −0·022 0·053 (−0·126, 0·082)

A 64 0·297 0·156 (−0·011, 0·603) 0·303 0·153 (−0·063, 0·538)

Non-A 349 −0·038 0·057 (−0·150, 0·074) −0·041 0·071 (−0·179, 0·101)

Unknown 424 −0·034 0·040 (−0·112, 0·044) −0·039 0·046 (−0·129, 0·053)

τXY
n

, nonparametric estimator; τXY
s

, copula model-based semiparametric estimator; SEb, bootstrap standard error; CI, 95% confidence interval.
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