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Abstract

Despite a growing body of research devoted to the study of how humans encode environmental 

patterns, there is still no clear consensus about the nature of the neurocognitive mechanisms 

underpinning statistical learning nor what factors constrain or promote its emergence across 

individuals, species, and learning situations. Based on a review of research examining the roles of 

input modality and domain, input structure and complexity, attention, neuroanatomical bases, 

ontogeny, and phylogeny, ten core principles are proposed. Specifically, there exist two sets of 

neurocognitive mechanisms underlying statistical learning. First, a “suite” of associative-based, 

automatic, modality-specific learning mechanisms are mediated by the general principle of cortical 

plasticity, which results in improved processing and perceptual facilitation of encountered stimuli. 

Second, an attention-dependent system, mediated by the prefrontal cortex and related attentional 

and working memory networks, can modulate or gate learning and is necessary in order to learn 

nonadjacent dependencies and to integrate global patterns across time. This theoretical framework 

helps clarify conflicting research findings and provides the basis for future empirical and 

theoretical endeavors.
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1. Introduction

Many events in our daily existence occur not completely randomly or haphazardly, but with 

a certain amount of structure, regularity, and predictability. Because of the ubiquitous 

presence of structured patterns in human action, perception, and cognition, the ability to 
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process and represent these patterns is of paramount importance. This type of structured 

pattern learning – which is likely a crucial foundational ability of all higher-level organisms, 

and possibly of many lower-level ones as well – has been studied under the guise of different 

terms for what arguably tap into aspects of the same underlying construct, including 

“implicit learning” (A.S. Reber, 1967), “sequence learning” (Nissen and Bullemer, 1987), 

“sequential learning” (Conway and Christiansen, 2001), and “statistical learning” (Saffran et 

al., 1996).

Despite gains made in understanding how humans and other organisms learn patterned input, 

we are still far from an understanding of the neurocognitive mechanisms underlying learning 

and what factors constrain its emergence across individuals, species, and learning situations. 

What is needed is an integration of research findings across six key areas that have generally 

been treated in isolation:

1. Input modality and domain: How does learning proceed for inputs across 

different perceptual modalities (e.g., vision vs. audition) or domains (e.g., 

language vs. music)? Does the learning of patterns in one modality or domain 

involve the same neurocognitive mechanisms as learning in a different modality 

or domain?

2. Input structure and complexity: What mechanisms underpin the learning of 

different types of input patterns, such as associations between adjacent or co-

occurring elements to more complex “global” patterns that require integration of 

information over longer time-scales?

3. Role of attention. To what extent are attention and related cognitive processes 

necessary for statistical learning to occur? In turn, does the outcome of learning 

modulate attention?

4. Neural bases. What is the underlying neuroanatomy of statistical learning? Is 

there a single, common learning and processing network? Or are there different 

sets of regions or networks that are used for different types of learning 

situations?

5. Ontogenetic constraints. How does statistical learning emerge and change across 

the lifespan? Do different aspects of learning have different developmental 

trajectories?

6. Phylogenetic constraints. Which aspects of statistical learning are shared versus 

unique across different animal species? What drives variation or differences 

across species?

Although a number of theoretical perspectives exist (e.g., Arciuli, 2017; Aslin and Newport, 

2012; Daltrozzo and Conway, 2014; Forkstam and Petersson, 2005; Frost et al., 2015; 

Janacsek and Nemeth, 2012; Keele et al., 2003; Perruchet and Pacton, 2006; Pothos, 2007; 

P.J. Reber, 2013; A.S. Reber, 2003; Savalia et al., 2016; Seger, 1994; Thiessen and Erickson, 

2013), currently none of them sufficiently address all of these questions. In this paper, we 

begin by defining in more detail what is meant by “statistical learning” and how it relates to 

other similarly-used terms. A lack of clarity and consensus in regards to terminology has 
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proven to be a barrier for integrating findings across different research areas; furthermore, 

the use of certain terms denotes premature assumptions about what the underlying 

mechanisms are that characterize the construct of interest. Following this discussion, we 

provide a selective review and synthesis of research related to the six areas described above. 

Then, based on this review, we outline ten core principles that arise from an integration of 

the reviewed research and provide the beginnings of what could be construed as a unified 

theory of statistical learning. To preview, we propose there exist two primary sets of 

neurocognitive mechanisms – one based on the general principle of cortical plasticity and 

the other a specialized neural system that can provide top-down modulation of learning – 

with each affected and constrained by different factors in different ways. Only by taking into 

account the operation of these two mechanisms will we understand the neurocognitive bases 

of statistical learning and how they are constrained by factors such as input modality, 

complexity, ontogeny, and phylogeny.

2. Preliminary considerations

Statistical learning research began in earnest with the seminal study by Saffran et al. (1996), 

who showed that 8-month-old infants were sensitive to the statistical structure inherent in a 

short (2-minute) auditory nonword speech stream. In this study, statistical structure was 

operationalized as the strength of transitional probabilities between adjacent syllables (i.e., 

the likelihood of a given syllable occurring next based on the current syllable).

Subsequent research examined the generality of this phenomenon, demonstrating learning 

not only in human infants (Kirkham et al., 2002), but also adults, and not only with speech-

like input, but also for non-linguistic sound sequences (Saffran et al., 1999) and visual 

scenes (Fiser and Aslin, 2001). Thus, statistical learning was quickly recognized as a 

general-purpose mechanism, robust across tasks, situations, and perhaps even species 

(Conway and Christiansen, 2001). It should be noted that the term “statistical learning” is 

limited in that it would seem to imply that learning and processing of input patterns consists 

of making statistical computations. Although the input in learning tasks can often be 

described in terms of statistical regularities (e.g., transitional probabilities between stimuli), 

it is as yet an open question whether in fact the brain learns and represents statistical 

regularities per se or whether what is learned is something different such as memory for 

frequently occurring clusters of items or “chunks” (Orban et al., 2008; Perruchet and Pacton, 

2006; Slone and Johnson, 2018). This point will be returned to in section 3.2.

For decades prior to these initial studies, another area of research had been focused on a 

similar phenomenon, known as “implicit learning” (A.S. Reber, 1967, 1989). Implicit 

learning is generally defined as “learning without awareness” (Cleeremans et al., 1998) but it 

has been argued that statistical learning and implicit learning both refer to the same general 

learning phenomenon (Batterink et al., 2019; Christiansen, 2018; Perruchet and Pacton, 

2006). Indeed, both types of learning reflect a type of incidental pattern learning (i.e., 

learning occurring without intention or instruction). For this reason, we regard the 

similarities among statistical learning and implicit learning research as indicative that there 

may be core processes that contribute to both, and as such, we look for insights that may be 
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gained by considering research findings from both areas (and other areas of research as 

well).

Of course, even the early research on implicit learning did not occur in a vacuum. 

Behaviorist approaches to associative learning and conditioning provided an important 

historical context for the implicit learning work (e.g., see Pearce and Bouton, 2001; Rescorla 

and Wagner, 1972). Gureckis and Love (2007) in fact argued that much of what the field has 

been studying under the guise of statistical learning is embodied by behaviorist principles of 

conditioning and associative learning (c.f., Goddard, 2018). Additional neurophysiological 

antecedents of statistical learning include Hebb’s principles of learning and plasticity (i.e., 

the “Hebbian learning rule”; see Cooper, 2005; Hebb, 1949) and the demonstration that the 

development of primary visual cortex depends on environmental experience (e.g., 

Blakemore and Cooper, 1970). While acknowledging these important precursors, this review 

focuses primarily on the findings from the implicit learning and statistical learning 

literatures per se.

For simplicity the term “statistical learning” is used in the remainder of this paper to refer to 

incidental learning of structured patterns encountered in the environment. To constrain and 

operationalize the definition of statistical learning and provide added focus to this review, we 

delineate the task or situational characteristics of interest. Specifically, we propose three 

orthogonal dimensions that can help clarify the construct of statistical learning. These 

dimensions include: the level of structure present in input (i.e., random versus heavily 

structured sequences); the amount of exposure that is involved (i.e., a single exposure versus 

multiple instances); and the extent to which task situations provide explicit instruction or 

overt feedback (i.e., incidental versus intentional learning situations). These three 

dimensions are depicted graphically in Fig. 1. They create a “task space” containing a 

continuum of distributed points in which tasks (or situations) that are closer to the zero-point 

(0,0,0) can be thought of as being more characteristic of statistical learning compared to 

tasks at the periphery (note though, that technically speaking there is no actual zero-point as 

there could always be a situation with more exposures, or more structure, etc. and in that 

case the zero-point might be more appropriately regarded as a mathematical asymptote or 

singularity). Thus, the situations that we consider to be “canonical” for statistical learning 

have the following characteristics: structured input patterns presented over multiple 

exposures under incidental conditions in which there is no instruction to learn or attend to 

the patterns per se. Note, from this perspective, the phenomenon of statistical learning is not 

a categorical distinction, but a graded, continual one in which certain tasks or situations 

might elicit such learning more so than others.

Likewise, we can consider the types of tasks that have been used to investigate statistical 

learning and related learning phenomena. The primary tasks include the artificial grammar 

learning (AGL) task (A.S. Reber, 1967), the serial reaction time (SRT) task (Nissen and 

Bullemer, 1987), and the word segmentation task and its variants (Fiser and Aslin, 2001; 

Saffran et al., 1996). Table 1 differentiates these three tasks in terms of the measure of 

learning, the input structure and perceptual modality of the stimuli, and whether or not the 

task requires generalization to new, previously unencountered items. Despite some 

differences, what is common across tasks is that participants receive repeated exposure to 
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structured patterns, usually under incidental learning conditions and without overt feedback. 

The general finding is that under such conditions, participants show facilitation of or 

sensitivity to the underlying structure, and this often – though not always – is accompanied 

by an inability to verbalize one’s knowledge of what has been learned.

3. Six key questions

3.1. How is learning affected by input modality and domain?

For some time now, it has been known that statistical learning is not tied to a single 

perceptual modality or cognitive domain. Indeed, even a cursory review of findings from the 

three canonical tasks (Table 1), shows that learning can occur with auditory language-like 

material (Saffran et al., 1996), strings of letters (A.S. Reber, 1967), non-language auditory 

input such as pure tones (Saffran et al., 1999) or sequences of musical timbre (Tillman and 

McAdams, 2004), visual scenes and shapes (Fiser and Aslin, 2001), visual-motor patterns 

(Nissen and Bullemer, 1987), and tactile input (Conway and Christiansen, 2005). The 

demonstration of learning across such a widespread set of domains and input types 

immediately prompted suggestions that statistical learning should be thought of as a unitary, 

domain-general learning phenomenon that applies across a wide range of situations 

(Kirkham et al., 2002). That is, it is logically possible that statistical learning is governed by 

a single mechanism or neurocognitive principle that applies across a wide range of input 

types.

On the other hand, a series of studies showed that although learning of structured patterns 

can occur across various perceptual domains, the way that learning occurred in different 

modalities differed, suggesting the involvement of multiple modality-specific learning 

mechanisms (Conway and Christiansen, 2005; 2006; 2009; Emberson et al., 2011). For 

instance, adult participants showed higher levels of learning for auditory serial patterns 

compared to visual serial patterns – despite the patterns across perceptual modalities being 

equated in terms of low-level perceptual factors (Conway and Christiansen, 2005). In 

addition, the rate of presentation of serial input patterns had opposite effects on auditory and 

visual learning, with auditory and visual learning excelling at fast and slow presentation 

rates, respectively (Emberson et al., 2011). Moreover, different patterns presented in 

multiple streams of stimuli could be learned simultaneously and independently of each 

other, as long as the input streams were instantiated in different perceptual modalities (visual 

versus auditory) or perceptual categories (shapes versus colors; tones versus nonwords) 

(Conway and Christiansen, 2006). Given such findings, Conway (2005) and Conway and 

Christiansen (2005; 2006) proposed that aspects of statistical learning might share 

similarities with perceptual priming or perceptual learning (Conway et al., 2007), in which 

networks of neurons in modality-specific brain regions show decreased activity and 

improved facilitation for items that are similar to those previously experienced (P.J. Reber et 

al., 1998; Schacter and Badgaiyan, 2001). Furthermore, Conway (2005) suggested that 

although learning is implemented by a set of common computational principles or 

algorithms that exist across perceptual domains, there are processing differences within each 

perceptual modality that affect learning, such as audition and vision being differentially 

adept at picking up information distributed in time and space, respectively. Note, too, that 
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from this perspective, it is not only the sensory modality that is important (e.g., auditory), 

but also the type of domain or category (e.g., verbal material vs. nonlinguistic tones; 

Conway and Christiansen, 2006).

However, under a purely domain-specific viewpoint, learning in one perceptual modality or 

domain would have no bearing or relation to learning and processing in another perceptual 

modality or domain. This does not appear to be the case. For instance, a number of studies 

have demonstrated that input presented in one perceptual modality can affect pattern 

learning in a second concurrently presented modality (Cunillera et al., 2010; Mitchel and 

Weiss, 2011; Mitchel et al., 2014; Seitz et al., 2007; Thiessen, 2010). This implies an ability 

for learners to integrate information across different modalities or domains, a challenge for 

modality-specific processing accounts. However, it is important to note that for all of these 

demonstrations of cross-modal learning effects, the stimuli in the two different perceptual 

domains were presented simultaneously in time. A recent study showed that when cross-

modal dependencies are created between sequentially-presented input (e.g., a visual stimulus 

that is followed by an auditory stimulus with a certain statistical regularity), cross-modal 

learning does not occur (Walk and Conway, 2016); only sequential dependencies within the 

same perceptual modality were shown to be learnable by adult participants. One possibility 

therefore is that the learning of such sequential cross-modal patterns might require 

additional cognitive resources such as attention or working memory in order to focus on the 

dependencies in question and link them together across time.

It is also important to note that the motor modality can contribute to learning. For instance, a 

number of studies have investigated the role of perceptual versus motor learning using the 

SRT task (e.g., Nemeth et al., 2009; Song et al., 2008). The general finding is that motor 

learning can make independent contributions to learning over and above that which occurs 

perceptually (Goschke, 1998). In addition, motor-response learning, but not visual 

perceptual learning, is unaffected by sensory manipulations of the stimuli (e.g., changes to 

stimulus colors; Song et al., 2008). Furthermore, motor learning and perceptual sequence 

learning appear to follow different time-courses of consolidation (Hallgató et al., 2013), 

further suggesting that the motor and perceptual modalities should be thought of as 

independent learning systems.

In sum, that input modality can affect statistical learning is no longer questioned (e.g., Frost 

et al., 2015). However, exactly how these at least partially separable and independent 

modality-specific learning mechanisms (e.g., visual, auditory, tactile, motor, etc.) operate in 

a multimodal environment is still not completely understood. It is likely that there may be a 

combination of modality-specific and domain-general learning processes that work together 

(e.g., Conway, 2005; Batterink et al., 2019; Keele et al., 2003). Fig. 2 illustrates three 

candidate architectures corresponding to domain-general, modality/domain-specific, and 

combined general/specific accounts. As an example of how a combined domain-general and 

domain-specific account might be instantiated in the brain, Conway and Pisoni (2008) 

reviewed evidence that statistical learning is associated with both modality-specific 

perceptual/motor brain regions – such as visual processing occipital regions for learning 

visual input patterns, auditory processing brain regions for learning auditory input, and 

motor and premotor cortex for motor learning – as well as areas such as the prefrontal cortex 
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(PFC) which is involved in processing input across a variety of perceptual modalities and 

domains. Likewise, Tecumseh and Martins (2014) proposed that for the processing of 

sequential patterns, the PFC and specifically Broca’s area mediates domain-general 

predictive processing mechanisms that interact with posterior brain networks that mediate 

modality-specific input processing. Finally, Frost et al. (2015) proposed a similar interaction 

between domain-specific and domain-general processing, though their emphasis was on the 

hippocampus, basal ganglia, and thalamus as contributing to multimodal and domain-general 

processing, rather than the PFC.

More work is needed to specify to what extent different processing modes or mechanisms 

reflect a combination of modality-specific and domain-general learning under different 

situations. It is likely that certain cognitive processing resources such as selective attention 

and cognitive control may modulate or gate learning (e.g., Turk-Browne et al., 2005), and 

may be necessary for learning multimodal patterns across a temporal sequence. The role of 

attention as well as the neural bases of statistical pattern learning will be addressed further in 

subsequent sections (i.e., 3.3 and 3.4); but first, we turn to the question of input structure and 

complexity.

3.2. How is learning affected by the type of input structure?

Related to though independent of the question of input modality, is the question of input 

structure and complexity: what types of regularities and patterns can be learned, and what 

learning mechanisms are used to learn different types of structures? This question was 

central to much of early implicit learning research. Cleeremans et al. (1998) summarized the 

varying approaches emphasizing different aspects of learning, including distributional or 

statistical approaches (based on associative learning mechanisms as embodied for instance 

by neural network models; Cleeremans and McClelland, 1991), exemplar-based approaches 

(in which newly encountered exemplars are compared to the similarity of previously-

memorized whole items; Vokey and Brooks, 1992), fragment-based or chunking approaches 

(in which newly encountered exemplars are evaluated to the extent to which they contain 

previously-encountered short chunks that were observed in previous exemplars; Perruchet 

and Pacteau, 1990), and abstractionist approaches (in which the structure of the relationships 

among stimuli is represented, independent of the stimuli surface features, perhaps taking the 

form of IF-THEN statements or algebraic rules; Marcus et al., 1999; A.S. Reber, 1989). 

Artificial grammar learning research using “balanced chunk strength designs”, in which 

chunk/fragment information was independently varied with the rules of the artificial 

grammar, showed that the learning of fragment or chunk information can be at least partly 

dissociated from the learning of grammatical rules (Knowlton and Squire, 1996). That is, the 

two types of patterns can be learned independently of each other and are subserved by 

apparently distinct neural and cognitive mechanisms (Lieberman et al., 2004).

What exactly constitutes a grammatical “rule” has led to a certain amount of debate 

(Altmann and Dienes, 1999; Marcus et al., 1999). One possibility is that what is regarded as 

a rule is actually a type of “perceptual primitive” (Endress et al., 2009). Perceptual 

primitives include repetition-based structures (e.g., “ga-ti-ti” and “li-na-na” follow the same 

ABB repetition pattern), which are highly salient to learners, as well as edge-based 
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positional regularities, where items occurring at the beginning and ending of sequences tend 

to be learned more effectively than items in the middle. These perceptual primitives are so-

named because they appear to be a type of regularity that is detected and learned on the basis 

of low-level perceptual mechanisms, common across both ontogeny and phylogeny (though 

this does not rule out the possibility that other non-perceptual memory systems might also 

contribute to their learning). From a slightly different perspective, following from the 

research on balanced chunk-strength designs (Knowlton and Squire, 1996), what is referred 

to as rule-based information might include positional constraints (such as which stimuli are 

allowable in initial, middle, or ending positions of a sequence), which is not fully captured 

by analysis of local chunk information alone. Thus, the umbrella term “rule” likely refers to 

more than one type of pattern (e.g., perceptual primitives and positional information being 

two likely candidates).

Apart from rule-based information, one important question raised by Perruchet and Pacton 

(2006; c.f., Christiansen, 2018) is whether chunk-based learning and statistical learning are 

the same or independent processes. Research on implicit learning has generally stressed 

chunk-based approaches whereas research on statistical learning has stressed statistical 

computations. Chunking models such as PARSER assume that attention to frequently co-

occurring units results in an improved memory trace for those items, resulting in the 

formation of a chunk (Perruchet and Vinter, 1998). In a chunk-based view, chunking 

mechanisms are the primary way that learning proceeds; sensitivity to statistical relations are 

not learned per se but rather are a byproduct of the chunking process. On the other hand, it is 

possible that “chunks” are formed through the detection of transitional probabilities; in such 

a view, a chunk is the outgrowth of statistical learning processes, being the learned 

association between two items connected by high transitional probabilities. Several studies 

have attempted to clarify which mechanism governs pattern learning, with most of the 

evidence to date favoring chunk-based mechanisms (Giroux and Rey, 2009; Fiser and Aslin, 

2005; Perruchet and Poulin-Charronnat, 2012; Orban et al., 2008), though at least one study 

appears to support a statistical learning approach (Endress and Mehler, 2009). It is possible 

that both chunk-based and statistical-based computations are available to learners and which 

process is used depends on the learning conditions, such as the availability of temporal cues 

which might promote chunking (Franco and Destrebecqz, 2012). It is also possible that 

forming a chunk among items separated in time (i.e. as part of a temporal sequence) has 

different cognitive requirements compared to a chunk of spatially-arranged and 

simultaneously-presented stimuli.

In addition to the distinctions among chunks, statistical associations, and rules, pattern 

structure can be quantified in other ways. For instance, patterns can differ in relation to how 

many preceding items are needed to predict the subsequent item in a sequence: for a 1st 

order dependency, only one preceding item is needed to determine the next item, whereas for 

a 2nd order dependency, two preceding items are required, etc. (Gomez, 1997). Likewise, in 

the statistical learning literature, complexity can be manipulated in terms of the strength of 

the transitional probabilities between items, the size of the “words” or chunks in word 

segmentation tasks (e.g., pairs of items or triplets), and the hierarchical arrangement of 

chunks in visual learning tasks. Similarly, for the serial reaction time task, complexity can be 

manipulated in terms of the type of sequence pattern (fixed versus probabilistic; first-order 
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conditional versus second-order conditional; Remillard, 2008) and the length of the 

sequence.

Within the artificial grammar learning literature, there have been attempts to quantify the 

level of complexity of input patterns (e.g., Pothos, 2010; Schiff and Katan, 2014; van den 

Bos and Poletiek, 2008v). For instance, Wilson et al. (2013) used a metric that quantifies the 

complexity of a finite-state grammar by dividing the number of different stimulus elements 

in the grammar by the number of unique transitions between stimulus elements. This gives a 

measure of the grammar’s linear predictability or determinism, where a value of 1.0 denotes 

a perfectly deterministic grammar (i.e., a linear chain) and a lower value denotes a certain 

level of unpredictability (i.e., branching within the grammar). Wilson et al. (2013) used this 

metric to examine grammar learning of varying levels of complexity in humans and 

nonhumans, a point that will be returned to in section 3.6 (see also, Heimbauer et al., 2018). 

Pothos (2010) proposed an entropy model for quantifying complexity in AGL, borrowing 

concepts from information theory. Essentially, Shannon entropy is a logarithmic function of 

the number of different possibilities available; the greater the level of entropy the higher the 

level of uncertainty. Pothos (2010) found that this measure of entropy correlated with 

artificial grammar learning performance (greater levels of entropy were associated with 

lower levels of learning); entropy was also correlated with most other standard measures of 

complexity and regularity, such as associative chunk strength. Likewise, Schiff and Katan 

(2014) used a measure of topological entropy to assess 56 previously published AGL studies 

incorporating a total of 10 different artificial grammars. They found that their measure of 

entropy was significantly correlated with learning performance, despite the fact that the 

studies were carried out under different conditions and using different types of stimuli. In 

sum, it is clear that, regardless of the specific measure used, increased pattern complexity is 

associated with decreased learning performance on AGL tasks.

For patterns occurring in input sequences, it may also be possible to differentiate the types of 

structures in terms of three primary types of patterns: fixed sequences, where items in the 

sequence occur in an arbitrary, inflexible order (e.g., a phone number); statistical-based 

patterns, where the sequence consists of frequently co-occurring elements such as pairs or 

triplets defined by transitional probabilities; and hierarchical-based sequences, in which 

primitive units are combined to create more complex units, such as the case in natural 

language and other complex domains (Conway and Christiansen, 2001). Supporting this 

proposal, recent empirical work using the SRT task suggests that the learning of fixed 

sequences and statistical-based patterns reflect partially different characteristics, both at the 

behavioral and neural levels (e.g., Kóbor et al., 2018; Simor et al., 2019). For instance, 

statistical learning appears to occur relatively rapidly and plateaus quickly, whereas 

sequence learning shows a slower, gradual improvement across learning episodes (Simor et 

al., 2019). Furthermore, the two types of learning are reflected by different ERP components 

(Kóbor et al., 2018). These are interesting findings because from a certain perspective, the 

learning of both a fixed sequence and a statistical-based one could be construed as involving 

the learning of transitional probabilities inherent in the sequences, with a fixed sequence 

having transitional probabilities of 1.0 and statistical-based sequences containing transitional 

probability values less than one. However, the evidence suggests that at least partially 

separate mechanisms underly the learning of these two types of patterns.
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One way to distinguish fixed sequences and statistical-based patterns from hierarchical 

patterns is by considering the difference between adjacent and nonadjacent dependencies 

(Gómez, 2002; Remillard, 2008). Adjacent dependencies consist of regularities between two 

items immediately following each other (e.g., A–B) whereas nonadjacent dependencies 

consist of regularities between two items in which the two have one or more intervening 

elements between them (e.g., A-x-B). The distinction between adjacent and nonadjacent 

dependencies is similar to the distinction made in formal linguistics between finite-state 

grammars, that generally include adjacent-item dependencies and are thought to be 

inadequate to describe natural language, and phrase structure grammars, which incorporate 

non-adjacent item dependencies, can have a recursive or hierarchical structure, and are 

computationally more powerful and arguably more able to characterize natural language 

(Fitch and Friederici, 2012; Tecumseh and Martins, 2014; Jager and Rogers, 2012).

Because nonadjacent dependency learning is thought to be a hallmark of human language 

and possibly other aspects of cognition (Christiansen and Chater, 2015), it is not surprising 

that there has been much recent interest in this type of learning (e.g., Creel et al., 2004; 

Deocampo et al., 2019; Frost and Monaghan, 2016; Gómez, 2002; Lany and Gómez, 2008; 

Pacton and Perruchet, 2008; Romberg and Saffran, 2013; Vuong et al., 2016). The learning 

of nonadjacent dependencies is often difficult to demonstrate in the lab and appears to 

generally require that the nonadjacent structure be highlighted – such as by manipulation of 

the transitional probabilities or through perceptual cues – or for endogenous attention to be 

properly oriented to the dependencies in question (de Diego-Balaguer et al., 2016d; Gómez, 

2002; Newport and Aslin, 2004). More specifically, de Diego-Balaguer et al., 2016d 

suggested that the learning of nonadjacent dependencies likely is only possible later in 

development when endogenous attentional mechanisms become available to the learner. 

Research also suggests that the learning of nonadjacent dependencies recruits neural 

networks that are separate from those involved in the learning of adjacent dependencies 

(more on neural bases of nonadjacent dependency learning in section 3.4).

Taken together, it may be possible therefore to think about different types of input structures 

that vary in complexity. Table 2 presents a rough taxonomy of different types of patterns, 

with purportedly more “simpler” patterns (i.e., easier to learn) at the top and “more 

complex” patterns toward the bottom. Pattern complexity can thus be thought of as existing 

along a continuum from more serial, linear, and adjacent-item associations to dependencies 

that are more variable, nonadjacent, and/or contain recursive or hierarchical structure (c.f., 

Dehaene et al., 2015; Petkov and Wilson, 2012). Additional research is needed to specify the 

cognitive, computational, and neural prerequisites needed to learn patterns of varying 

structure and complexity, as there have been few studies systematically investigating these 

factors.

3.3. What is the role of attention in learning?

Although statistical learning generally occurs under “incidental” conditions (i.e., without 

direct instruction or feedback during the learning process), this does not necessarily imply 

that attention plays no role. Before examining the role of attention in statistical learning, it is 
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necessary to briefly define and discuss the construct of attention as well as related concepts 

such as automaticity, working memory, and conscious awareness.

An important distinction can be made between exogenous and endogenous attention (e.g., 

Chica et al., 2013). Exogenous attention is a bottom-up process in which cognitive resources 

are captured by salient stimuli in the environment; endogenous attention is a top-down 

process that provides a way to select which stimuli to process and which to ignore. Related 

to attention is the notion of automaticity. A cognitive process can be considered automatic if 

it occurs with little effort and requires few attentional resources (Hasher and Zacks, 1979). 

More specifically, it has been suggested that automatic behaviors or cognitive processes 

usually have the following four characteristics (Bargh, 1994): there is a general lack of 

awareness of the cognitive process that is occurring; there is no intentional initiation of the 

cognitive process in question; the cognitive process is difficult to stop or alter once it has 

been initiated; and the cognitive process has a low mental load. Thus, in regard to the role of 

attention in statistical learning, one question is whether statistical learning can be considered 

an automatic process (i.e., whether it proceeds without awareness, is initiated without 

intention, is unable to be controlled once it has started, and whether it has a low mental load 

or cost). A separate question is what roles do endogenous and exogenous attention play in 

learning, if any.

It is important to point out that (endogenous) attention is closely linked to the construct of 

working memory (Awh et al., 2006). For instance, one common definition of working 

memory is that it refers to processes that “hold a limited amount of information temporarily 

in a heightened state of availability for use in ongoing information processing” (e.g., Cowan, 

1988, 2017). Thus, by this definition, working memory and (endogenous) attention are 

closely intertwined as the items that are in a heightened state of availability are necessarily 

within the focus of attention.

Finally, related to the question of attention and working memory, is to what extent statistical 

learning results in knowledge that is accessible to conscious awareness. Attention and 

awareness are related – e.g., the involvement of attention is more likely to lead to conscious 

awareness – but they are not synonymous (Lamme, 2003; Norman et al., 2013). Awareness 

can emerge when the activation strength or quality of the representations reach a sufficient 

level (Cleeremans, 2011), regardless of how much attention was originally deployed during 

the learning task. The extent to which learning proceeds intentionally versus incidentally can 

be manipulated by task instructions, which in turn can influence the extent that the 

knowledge that is learned is accessible to conscious awareness (Bertels et al., 2015). Pattern 

awareness can also emerge naturally during the learning process, even when no instructions 

are given to explicitly promote explicit strategies or conscious awareness (Singh et al., 

2017). Decades of research on implicit learning has demonstrated that some aspects of 

learning can occur without the involvement of explicit strategies or conscious awareness 

(e.g., Song et al., 2007; Turk-Browne et al., 2009). To provide focus to the remaining 

discussion, we focus primarily on the roles of attention and working memory in relation to 

statistical learning.
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Understanding the role of attention and working memory during statistical learning is not 

straightforward and in fact is a matter of some debate (e.g., Janacsek, and Nemeth, 2013; 

2015; Martini et al., 2015). On the one hand, it seems plausible that having a larger working 

memory capacity provides a bigger “window” to encode and bind stimuli together across a 

temporal sequence that could subsequently improve learning of the contained regularities 

(Janacsek, and Nemeth, 2013). However, the empirical findings do not consistently 

demonstrate a functional relationship between working memory capacity and sequence 

learning ability as measured by the SRT task (Janacsek, and Nemeth, 2013). One possible 

reason for this is that if one takes a multi-component view of statistical learning (e.g., 

Arciuli, 2017; Daltrozzo and Conway, 2014), then each separate component in the system 

may depend upon attention or working memory to different degrees. For instance, the 

evidence appears to suggest that working memory may be more closely related to explicit 

forms of sequence learning compared to implicit forms of learning, as argued by Janacsek 

and Nemeth (2013). Likewise, the construct of working memory is multi-faceted, so 

different aspects of working memory may be more or less important for statistical learning. 

For instance, visual-spatial working memory may be closely tied to performance on 

statistical learning tasks that require visual-spatial encoding but less so for tasks involving 

the learning of verbal patterns (Janacsek, and Nemeth, 2013). In addition, for any given 

learning task, different participants may represent and conceptualize the task differently in 

terms of how they rely upon verbal, visual, or other types of representations (Martini et al., 

2013). This variability in how participants represent the learning tasks could therefore 

explain the lack of strong correlations observed between working memory capacity and 

performance on statistical learning tasks.

Further illustrating the complex relationships among these constructs is a study by 

Hendricks et al. (2013) that attempted to examine the role of working memory in statistical 

learning. Hendricks et al. (2013) used a concurrent loadtask in conjunction with an artificial 

grammar learning paradigm to examine whether the learning of grammatical rules versus 

chunk-based information was automatic or not (i.e., required working memory resources). 

The concurrent load task involved participants viewing six random numbers on the screen, 

maintaining the numbers in memory while they subsequently viewed a trial of letters 

generated from an artificial grammar, and then finally typing the six numbers from memory. 

This concurrent load task was given to participants either during the exposure phase of the 

AGL task, the test phase, or both. Performance was compared to a control group that did the 

AGL task without having to do the concurrent load task. The results of this study showed 

that the learning of chunk or fragment-based information could proceed with minimal 

cognitive requirements (that is, the concurrent load task did not impair performance), 

suggesting that this form is learning can occur relatively automatically and under incidental 

learning conditions. On the other hand, the expression of rule-based knowledge (at test 

following learning), required a certain amount of cognitive resources (that is, the concurrent 

load task given during the test phase interfered with test performance for rule-based 

knowledge). These findings were interpreted by suggesting that the learning of fragment or 

chunk information is mediated by a form of implicit “perceptual fluency” in which 

perception of items is facilitated via experience (e.g., Chang and Knowlton, 2004), whereas 
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the learning and expression of rule-based regularities was an explicit process involving 

something akin to “hypothesis generation” (e.g., Dulany et al., 1984).

Note, this conjecture appears to contradict earlier work suggesting that chunk learning and 

rule-learning occur via declarative and procedural memory, respectively (Lieberman et al., 

2004). Briefly, declarative memory refers to the recall and recognition of facts and events 

(Squire, 2004) whereas procedural memory is a type of nondeclarative and largely implicit 

form of learning (Ullman, 2004). The relationship between statistical learning and these two 

other forms of memory will be taken up in section 3.5. For now, it is important to point out 

that the findings from Hendricks et al. (2013) and Lieberman et al. (2004) are not 

necessarily contradictory of one another, as it is possible that chunk learning can proceed via 

multiple routes, using either perceptual-based or declarative memory-based forms of 

encoding. Likewise, rule-based learning similarly may rely on either procedural memory or 

hypothesis-generation depending on the particular task, learning context, or individual. As 

mentioned earlier, note that “rules” in the present case refer to any information in the 

stimulus sequences that denote grammaticality apart from bigram and trigram information, 

such as positional regularities (e.g., what stimuli are allowed in different positions of a 

sequence) or possibly even nonadjacent regularities as dictated by the grammar.

Interestingly, the concurrent load task also interfered with performance in a transfer 

condition in which the underlying rules were consistent but the stimulus set was changed 

(Hendricks et al., 2013). That is, knowledge of the underlying grammatical regularities could 

be transferred to a non-trained letter set but only if there were sufficient cognitive resources 

available during test (i.e., only if there was not a concurrent load task). It appears then that 

some aspects of statistical learning require attention / working memory (e.g., using 

hypothesis-generation strategies, expressing rule-based knowledge at test, and transferring 

knowledge to novel stimulus domains), whereas others appear to be automatic (e.g., 

perceptual fluency of chunk-based information). However, it should be noted that it is not 

perfectly certain that the Hendricks et al. (2013) concurrent load task completely eliminated 

attentional resources; some amount of attention may still have been available during 

learning.

Another way to manipulate attention is by capitalizing on its selective nature. Turk-Browne 

et al. (2005) did so by creating two interleaved streams of differently colored visual 

regularities and then instructing participants to detect repetitions in one stream but not the 

other. Across several experiments, Turk-Browne et al. (2005) determined that learning of the 

statistical regularities only occurred for the attended stream, not for the unattended stream. 

They concluded that visual learning of sequential regularities both is and is not automatic: it 

requires attention in the sense that the regularities are only learned if the stimuli are 

selectively attended; but learning is automatic in the sense that it can occur incidentally (i.e., 

in the face of a cover task that provided no information about the presence of regularities) 

and does not necessarily result in conscious awareness of what was learned. Selective 

attention therefore may act as a “gate” for statistical learning, at least for certain learning 

situations and task paradigms (e.g., Baker et al., 2004; Emberson et al., 2011; Toro et al., 

2005; Turk-Browne et al., 2005).
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Interestingly, there appears to be a reciprocal relationship, in which learning itself can 

modulate attention (Alamia and Zénon, 2016; Hard et al., 2018; Zhao et al., 2013). That is, 

attention affects learning by facilitating encoding of particular aspects of the input; and yet, 

learning itself can affect attention, for instance by creating a “pop-out” effect, drawing 

(exogenous) attention to input that violates the expectations that have been generated based 

on previous experience (Kristjansson et al., 2007). In support of this idea, Sengupta et al. 

(2018) recently found that functional connectivity between brain networks supporting 

attention and working memory processes changed following exposure to the statistical 

regularities presented in an artificial language.

Attention also plays a crucial role in the framework of de Diego-Balaguer et al., 2016d, in 

which top-down control of attention (i.e., endogenous attention) is a prerequisite for learning 

nonadjacent but not adjacent sequential dependencies. Consistent with such a dissociation 

are findings from Romberg and Saffran (2013). They constructed artificial languages in 

which the first and third items of 3-word phrases had nonadjacent deterministic relationships 

while the intervening elements had adjacent probabilistic relationships with the surrounding 

two items. Although adults were able to demonstrate learning of both the adjacent and 

nonadjacent dependencies, higher confidence ratings on nonadjacent trials were associated 

with higher accuracy, while greater confidence on adjacent trials was not associated with 

greater accuracy. This may suggest that learning of the nonadjacent dependencies occurred 

explicitly while learning of adjacent dependencies was accomplished by more implicit 

means. Interestingly, Turk-Browne et al. (2005) pointed out that, because their design 

involved two interleaved streams of stimuli, learning was occurring in many cases over 

intervening items, thus requiring learning of nonadjacent dependencies. Together these 

findings are consistent with the idea that selective attention perhaps is most needed for 

learning nonadjacent dependencies across a temporal stream (Diego-Balaguer et al., 2016).

A different perspective, however, stresses not only the necessity of attention for pattern 

learning, but also its sufficiency (Pacton and Perruchet, 2008; Perruchet and Vinter, 1998). 

Under this view, the learning of patterns in input is a natural consequence of attentional 

processing due to the laws of memory and associative learning. From this perspective, 

attention may be necessary not only for learning nonadjacent but also adjacent dependencies 

(Pacton and Perruchet, 2008). However, as reviewed previously, it appears that adjacent-item 

chunks can also be learned without the availability of attentional resources (Hendricks et al., 

2013).

Other studies are consistent with the notion that while some aspects of learning require 

attention or intention to learn, other aspects of learning can indeed proceed automatically 

and under incidental conditions. For instance, Bekinschtein et al. (2009) (see also Wacongne 

et al., 2011) used a local-global paradigm in which auditory sequences of pure tones that 

contained either local (within-sequence) or global (across-sequence) violations were 

presented. For instance, in “XXXXXY” the “Y” is a local violation in this sequence because 

it violates the expected pattern of “X’s”. However, after repeated exposures of “XXXXXY”, 

if the sequence “xref” is then encountered, the final “X” in the sequence becomes a global 

violation because the “Y” is expected after exposure to the “XXXXXY” sequences. 

Bekinschtein et al. (2009) found that the local deviants were processed automatically and 
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non-consciously; these types of violations were immune to attentional manipulations and 

were even elicited in coma patients as measured by event-related potentials (ERPs). On the 

other hand, the global deviants required explicit or controlled processing: they were 

accompanied by conscious awareness in healthy participants; in coma patients the ERPs 

related to these types of deviants were not detected.

Thus, it appears likely that both “implicit” (i.e., attention-independent / automatic) and 

“explicit” (i.e., attention-dependent) learning processes operate alongside each other. Such 

“dual-theory” approaches are common in the literature. For instance, Dale et al (2012) 

proposed that during a learning episode, implicit associative or reactive learning occurs 

initially, which leads to the formulation of predictive “wagers” that steadily become more 

correct and that in turn lead to explicit awareness of the learned patterns. This perspective is 

also consistent with research using a predictor-target paradigm in which visual “target” 

stimuli are predicted to varying degrees by “high” or “low” predictor stimuli; although 

learning is incidental, over the course of the experiment, adults and children display the 

emergence of a P300-like ERP component elicited by the high predictor stimulus (Jost et al., 

2015). This ERP component is strongly related to participants’ conscious awareness of the 

predictor-target contingency (Singh et al., 2017). This attention-based ERP component is 

distinct from participants’ learning as assessed through reaction times, which appeared to be 

indexing learning of the contingencies occurring outside attention and awareness (Singh et 

al., 2018).

Similarly, Batterink et al. (2015) proposed that implicit and explicit learning systems operate 

in parallel, with the implicit system more or less always engaged but the explicit system 

optional. They suggested that in the standard familiarity task often used in statistical learning 

research, the familiarity judgement reflects explicit knowledge but that implicit learning can 

also be displayed and measured indirectly using reaction times or possibly ERPs. Another 

dual-system approach is that of Keele et al. (2003), who proposed a theoretical perspective 

based on a review of findings from the SRT task. In their view, a dorsal neural system 

mediates implicit learning of unimodal or unidimensional stimuli, whereas a ventral system 

mediates the learning of cross-modal or cross-dimensional input, which can involve both 

implicit and explicit learning mechanisms. This last tenet is consistent with Walk and 

Conway (2016) who proposed that implicit learning is sufficient for learning unimodal 

sequential regularities (i.e., sequential dependencies between items in the same perceptual 

modality) but that additional cognitive resources such as selective attention or working 

memory may be required to learn cross-modal sequential patterns. Similarly, Daltrozzo and 

Conway (2014) also proposed a two-system view of pattern learning: a bottom-up implicit-

perceptual learning system that develops early in life and encodes the surface structure of 

input; and a second system that is dependent on attention, develops later in life, and relies to 

a greater extent on top-down information to encode and represent more complex patterns.

Finally, insight can also be gained from a related though somewhat distinct research 

literature on category learning. Smith and colleagues (Smith and Grossman, 2008; Smith et 

al., 1998) proposed that there are multiple types of category-learning systems: rule-based 

and similarity-based. They proposed that rule-based category learning involves selective 

attention and working memory processes to enable a decision to be made about whether an 
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item belongs to a particular category. On the other hand, similarity-based categorization 

processes can be mediated by the involvement of both explicit and implicit learning 

processes. The implicit learning system involves processes such as perceptual fluency and 

perceptual priming; that is, one decides whether an item belongs to the category in question 

in terms of the ease with which the perceptual features of the item can be processed (Smith 

and Grossman, 2008).

Taken together, we believe the evidence supports the idea that statistical learning reflects 

both implicit / automatic and attention-dependent / explicit aspects of processing. The 

attention-dependent learning system shares similarities with Baars (1988; 2005) global 

workspace theory of consciousness, in which consciousness is construed as a limited 

capacity attentional spotlight that “enables access between brain functions that are otherwise 

separate” (Baars, 2005, p.46). What determines the mode of learning (explicit vs. implicit) 

likely depends at least in part on the type of input to be learned; some types of structures 

appear to require attention to adequately process and encode the patterns, such as 

nonadjacent dependencies (de Diego-Balaguer et al., 2016d), global patterns (Bekinschtein 

et al., 2009), cross-modal dependencies (Keele et al., 2003), and rule-based processing 

(Hendricks et al., 2013; Smith et al., 1998). Other factors that may affect the involvement of 

automatic versus attention-dependent mechanisms include whether learning is assessed 

through the use of direct/explicit judgments versus indirect measures such as reaction times 

(Batterink et al., 2015) and whether learning requires generalization or transfer to new 

stimulus sets (Hendricks et al., 2013). We furthermore propose that the automatic learning 

system is “obligatory” in the sense that it is always active, whereas the attention-dependent 

system is optional and is only engaged when selective attention and working memory are 

brought to bear on the learning task (Batterink et al., 2015) via the involvement of 

endogenous or exogenous attentional mechanisms. It is also possible that the involvement of 

one or both systems is not an “either-or” phenomenon but may be graded; as learning 

proceeds, exogenous attention can be increasingly drawn to the regularities in question 

(Alamia and Zénon, 2016), which would necessarily gradually activate the attention-

dependent learning system. Thus, the involvement of automatic versus attention-dependent 

learning mechanisms could likely change across a learning episode or across multiple 

episodes.

3.4. An interim summary

Based on the preceding three sections, it is clear that statistical learning: 1) consists of both 

modality-specific and domain-general learning mechanisms; 2) can be used to learn patterns 

along a continuum of complexity from relatively simple to more complex structures; 3) and 

involves both implicit / automatic as well as explicit / attention-dependent modes of 

learning. We furthermore propose that these three factors “line up” so to speak, suggesting 

the involvement of two primary modes of learning (see Fig. 3). Specifically, statistical 

learning is mediated through the functioning of at least two (or more) distinct processing 

mechanisms. The first is the classic “implicit” learning system, that proceeds automatically 

and with minimal attentional requirements, is likely a perceptual-based process, and can 

mediate the learning of local, unimodal, and associative-based patterns. The second is an 

explicit, attention-dependent system that is necessary for learning nonadjacent, global, and 
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crossmodal dependencies; it is also needed for when transferring learning to new stimulus 

sets or contexts. These two systems likely operate in parallel with each other (Batterink et 

al., 2015), and each can be more or less engaged depending on the learning requirements 

and situation (Daltrozzo and Conway, 2014).

This dual-system approach has similarities to the distinction between “model-based” and 

“model-free” reinforcement learning (e.g., Savalia et al. 2016; Kurdi et al., 2019) which 

describes learning that is goal-directed, flexible, and reliant upon long-term knowledge (i.e., 

model-based learning) versus learning that is data-driven, automatic, and relatively inflexible 

(i.e., model-free learning). Together, these two types of learning provide complementary 

ways to best learn about and interact with the environment.

However, it should be pointed out that the two systems may possibly operate competitively, 

rather than independently of or in cooperation with one another, as has been suggested up to 

this point. For instance, some studies have shown that executive control processes may have 

an antagonistic relationship with implicit pattern learning (Ambrus et al., 2019; Filoteo et 

al., 2010; Nemeth et al., 2013; Tóth et al., 2017; Virag et al., 2015). Virag et al. (2015) 

observed a negative correlation between executive functions and implicit learning as 

measured by a variant of the SRT task. And Nemeth et al. (2013) used hypnosis to reduce 

explicit attentional processes in their subjects, which resulted in improved learning on the 

SRT task. At present it is not clear under what conditions these two systems act 

synergistically versus antagonistically but one possibility is that it is due to the task 

requirements. Most of the studies cited above that observed a competitive relationship used 

the SRT task, which differs in a number of important respects with other statistical learning 

tasks such as the segmentation task or AGL task. One important difference is that the SRT 

task requires a motor response on each trial, whereas the other two tasks have a passive 

exposure phase that involves perceptual learning or memory-based encoding without a 

motor response. It is possible that top-down attentional control interferes with the type of 

trial-by-trial stimulus-response learning that the SRT task elicits; it is currently an open 

question whether this holds true for learning during other types of statistical learning tasks 

that do not involve the same type of stimulus-response learning.

In the next section (3.5), we review the neuroanatomical bases of statistical learning through 

the lens of the operation of these two proposed learning systems. Then, we examine how 

each type of learning system might change across human development and may differ across 

phylogeny (sections 3.6 and 3.7) before concluding with a summary of ten core principles 

that flesh out the neurocognitive mechanisms underlying statistical learning (section 4).

3.5. What are the neuroanatomical bases of statistical learning?

Brain areas that have shown significant activation during different types of statistical 

learning and implicit learning tasks include practically the entire brain, including: perceptual 

regions (e.g., Turk-Browne et al., 2010), parietal cortex (e.g., Forkstam et al., 2006), 

prefrontal cortex and Broca’s area specifically (e.g., Abla and Okanoya, 2008), as well as 

subcortical regions such as the hippocampus (and medial temporal lobe, MTL) (e.g., 

Schapiro et al., 2014), and basal ganglia (e.g., Karuza et al., 2013). Rather than reviewing all 

of the available evidence in detail, we instead focus on theoretical perspectives that can help 
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explain why certain brain regions may or may not be active depending on the task or 

situation. For added focus, we mainly discuss the neocortical bases of statistical learning, 

while still acknowledging the important role played by subcortical structures such as the 

hippocampus, cerebellum and basal ganglia (see Batterink et al., 2019). At the end of this 

section we then discuss how the neocortical systems proposed here interact with “classic” 

learning and memory systems (i.e., declarative and procedural memory), thought to be 

mediated largely by subcortical structures.

One perspective that is consistent with the neural findings showing multiple brain regions 

involved with statistical learning is P.J. Reber’s (2013) proposal that implicit learning 

reflects a general principle of plasticity of neural networks that results in improved 

processing. That is, learning is an emergent property of neural plasticity that is pervasive and 

universal, not localized to a particular brain region, nor confined to any specific task, but 

contributes to cognition and behavior very broadly. Under this view, implicit learning cannot 

be defined exclusively by whether or not it involves for instance the MTL or conscious 

awareness; instead, it reflects the gradual tuning of neural networks and synapses to adapt to 

statistical structure encountered in the environment. Such neural plasticity and tuning 

generally is associated with reduction of neural activity that reflects increased processing 

efficiency (P.J. Reber, 2013).

Under this “plasticity of processing” perspective of statistical learning, the areas of the brain 

that will reflect learning are those same areas involved in processing the input in question. 

Thus, it is perhaps not surprising that perceptual regions of the brain are implicated in 

statistical learning (Turk-Browne et al., 2010), as perceptual processing is necessary in order 

to encode the stimuli in the first place. Note, perceptual areas have shown activity reflecting 

not just perception of the individual stimuli, but learning of the patterns themselves. But 

what about studies showing activity in frontal, parietal, subcortical, and other areas? It is 

likely that general constraints on processing in different neural networks determines which 

brain areas will reflect learning. There appear to be two primary sets of cortical regions 

involved in implicit learning of sequential structure (Conway and Pisoni, 2008): sensory/

perceptual regions as already discussed, but also frontal regions such as the prefrontal cortex 

(PFC) that have connective loops with subcortical networks including the basal ganglia and 

cerebellum. For tasks involving processing of sequential (i.e., temporal) structure in 

particular, working memory and selective attention are likely necessary, which in turn relies 

on PFC and associated brain networks. Thus, these two systems – perceptual and frontal – 

together constitute a dynamic and adaptive cortical network that is used to perceive, encode, 

and adapt to most types of input patterns encountered in the world.

The distinction between frontal “executive” cortical regions and posterior “perceptual” 

regions is nicely summarized by Fuster and Bressler (2012), who argued this dichotomy 

reflects a general characteristic of neural functioning, with frontal areas needed for actions 

(e.g., behavior, language) as well as higher-level planning, and posterior regions involved in 

sensory, perceptual, and memory operations. Under this view, all aspects of cognition 

involve the operation of large-scale cortical networks, not modular regions, and in particular 

involves the interaction of the posterior and frontal systems. Lateral PFC is argued 

specifically to be crucial for the temporal organization of behavior (Fuster, 2001). 
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Furthermore, working memory neuroimaging studies generally show lateral PFC 

involvement in conjunction with posterior areas that vary on the sensory modality of the 

particular input type that is encountered: “If the memorandum is visual, that posterior region 

includes inferotemporal and parastriate cortex ….. if it is auditory, superior temporal cortex; 

if it is spatial, posterior parietal cortex” (Fuster and Bressler, 2012, p.215). Integrating Fuster 

and Bressler’s (2012) view with P.J. Reber’s (2013) leads to the following conclusion: items 

encountered in a temporal sequence necessarily recruit PFC as well as sensory/posterior 

regions (the exact sensory region active depending on the input modality) in order to process 

the sequence; if that particular type of sequence is encountered repeatedly, containing 

structural regularities, then the networks involved in processing these sequences (i.e., PFC 

and perceptual regions) will show plasticity and tuning, resulting in learning of the 

underlying structure.

In a similar perspective, Hasson et al. (2015) noted that virtually all cortical circuits can 

accumulate information (i.e. learn) over time, but that timescales vary hierarchically in the 

brain: lower sensory areas can only process information on the order of 10 s to 100 s of 

milliseconds, whereas higher-order areas can process information over much longer 

timescales (many seconds or minutes) (see also Farbood et al., 2015; Kiebel et al., 2008). 

This appears to be due to the hierarchical arrangement of neural systems. That is, lower-

order sensory areas respond to relatively simple features (such as single tones or lines of 

particular orientations), whereas higher-order areas integrate across this information to 

represent increasingly complex stimuli (such as speech or faces). This same general “rostro-

caudal” framework appears to apply to temporal dynamics as well, in which timescales of 

representation generally increase as one moves from lower sensory areas to higher-level 

frontal areas (Kiebel et al., 2008).

Hasson et al. (2015) furthermore argued against a memory versus processing distinction; 

instead, in their view, prior information continuously shapes processing in the present 

moment, very similar to P.J. Reber’s (2013) view of implicit learning consisting of cortical 

tuning of processing networks. In addition, Hasson et al. (2015) argued for the existence of 

modulatory circuits: “attentional control processes supported by fronto-parietal circuits” 

(related to traditional working memory operations), “and binding and consolidation 

processes supported by [medial temporal lobe] circuits (related to episodic memory)”. Thus, 

the general principle of cortical plasticity is constrained by differences in processing 

characteristics of different areas of the brain (e.g., short vs. longer timescales) but is also 

modulated by attentional control, working memory, and consolidation processes. We thus 

suggest there are at least two primary neurocognitive (primarily, cortical-based) mechanisms 

that embody statistical learning: 1) gradual tuning of cortical networks based on experience 

(i.e., cortical plasticity); and 2) top-down modulatory control mechanisms that guide 

selective attention and working memory, which is especially needed for learning patterns 

that require integration of information across time (i.e., statistical patterns in temporal 

sequences).

As reviewed in section 3.1, statistical learning appears to be partly, and perhaps largely, 

based on perceptual processing mechanisms (Conway and Christiansen, 2005; Frost et al., 

2015). However, based on the review in this section so far, we now know there are at least 
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two reasons why sensory/perceptual regions cannot mediate all aspects of statistical 

learning. One is that due to the sizes of their temporal receptive windows, sensory areas 

cannot process information that spans longer than the order of milliseconds. Thus, learning 

sequential patterns over a temporal sequence, especially for long-distance or nonadjacent 

dependencies, cannot occur in these perceptual processing brain regions, but must rely on 

downstream networks including frontoparietal networks and perhaps PFC specifically. 

Second, the PFC and related frontoparietal networks appear to modulate learning in any 

given situation, even if these frontal regions don’t reflect cortical tuning and plasticity 

themselves. For example, through frontoparietal network involvement, attention to particular 

stimuli may occur, directing perceptual processing regions to then engage with those inputs, 

which over the course of repeated experience, results in those perceptual regions exhibiting 

neural plasticity and learning. It is also likely that the frontoparietal networks themselves 

may show neural tuning and plasticity with exposure, allowing learning itself to modulate 

attention, as reviewed in section 3.3.

This framework where learning (perhaps of sequential input specifically) might involve a 

combination of higher-level frontal areas as well as lower perceptual regions, is consistent 

with other relevant theoretical perspectives. For instance, Uhrig et al. (2014) provided 

evidence consistent with the idea that learning sequences occurs at hierarchical levels in the 

brain: lower/modality-specific areas are independent of attention and can mediate “local” 

processing operations whereas higher levels are attention-dependent and are needed for more 

“global” processing. Thothathiri and Rattinger (2015) further argued that frontal areas and 

controlled processing are necessary for sequence processing specifically. Their argument, 

based on a review of both neuroimaging and neuropsychological studies and focusing on 

sequence production, is that sequencing involves cognitive control (the ability to order items, 

reject incorrect items, resolve interference, and choose the correct item to produce). 

Therefore, the frontal lobe (specifically, left ventrolateral PFC) is needed for sequencing 

because cognitive control functions are necessary for selecting the correct stimulus among 

various alternatives in a sequence.

Cognitive control and selective attention are likely important not just for sequence 

production but also for sequence learning, especially for long-distance or nonadjacent 

dependencies. As mentioned earlier, de Diego-Balaguer et al., 2016d proposed that in order 

to learn a sequential nonadjacent dependency, cognitive control is needed to inhibit 

processing of intervening items occurring between the nonadjacent dependencies and to 

focus on the long-distance dependency itself. Indeed, areas of the PFC such as left inferior 

frontal gyrus (LIFG, or Broca’s region) have often been implicated in sequence learning that 

specifically involves structures that contain long-distance regularities (e.g., Bahlmann et al., 

2008; Friederici et al., 2006). In fact, LIFG has been proposed to be a “supramodal 

hierarchical processor” (Tettamanti and Weniger, 2006). It is possible that the reason that 

LIFG may appear to be necessary for hierarchical operations is that hierarchical 

dependencies necessarily require the processing (and learning) of long-distance 

dependencies, which relies on PFC involvement.

Finally, a crucial aspect of statistical learning appears to be prediction and expectation (Dale 

et al., 2012), which is mediated by both sensory and downstream areas such as the PFC 
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(though it is possible that the PFC generates the predictions and subsequently modulates 

sensory areas, Bubic, 2010). In particular, temporal sequencing appears to be an area where 

prediction is most important due to the prominent role of time and uncertainty (Bubic, 

2010). An important part of making predictions of upcoming events is the necessity of 

inhibiting the representation of events or stimuli that are not predicted, which likely involves 

PFC (Bar, 2009). However, predictive processing appears to be inherent to all levels of the 

hierarchically organized nervous system (Friston, 2005) and thus appears to go hand-in-hand 

with a “plasticity of processing” approach. Furthermore, Huettig (2015) suggested a dual-

system account of predictive processing similar to our proposal of statistical learning 

consisting of an implicit, automatic processing system and an explicit, attention-dependent 

one.

To summarize, there are a number of considerations that can illuminate why certain brain 

regions show consistent activation in studies of statistical learning. Under a “plasticity of 

processing” approach (P.J. Reber, 2013), whatever neural substrate is involved in processing 

the input in question, through repeated exposure and experience, becomes tuned through 

general principles of neural plasticity to become more efficient at processing that type of 

stimulus, resulting in lower levels of neural activation. This explains why it is common to 

observe a variety of distributed neural regions active for different kinds of tasks and input 

types, such as auditory and visual processing regions during auditory and visual statistical 

learning tasks, respectively. In addition, the brain is organized hierarchically, with upstream 

brain regions showing relatively short temporal receptive windows and downstream areas 

(such as PFC) showing the largest temporal receptive windows. This acts as a further 

constraint on processing: for sequences and especially long-distance or global dependencies, 

only brain regions with temporal receptive windows that are large enough to process the 

stimuli across longer periods of time will reflect learning of such dependencies. Finally, in 

addition to the general mechanism of cortical plasticity, the involvement of PFC and 

frontoparietal networks can act as a modulatory mechanism on learning, providing top-down 

control of attention and cognitive control, which can affect and direct learning, especially for 

more complex patterns such as hierarchical or long-distance dependencies. This distributed 

versus specialized dichotomy appears to map loosely onto the “implicit / automatic” and 

“explicit / attention-dependent” distinction outlined in section 3.4 and Fig. 3, with cortical 

plasticity instantiated in lower perceptual regions reflecting attention-independent, automatic 

implicit learning mechanisms, and downstream brain regions reflecting attention-dependent 

specialized functions needed for processing and learning certain aspects of structural 

regularities, especially those that require integration over longer periods of time.

However, as reviewed earlier in section 3.4, some research suggests that attention-

independent and attention-dependent systems might operate antagonistically, rather than 

synergistically. That is, frontal-based executive and cognitive control functions might 

operate competitively with more implicit forms of learning (e.g., Nemeth et al., 2013). For 

instance, Tóth et al. (2017) used EEG to measure functional connectivity during implicit 

sequence learning with the SRT task. They found that learning performance was negatively 

correlated with functional connectivity in anterior sites, which they proposed suggests that 

top-down attentional control interferes with automatic, implicit learning of the visual-motor 

sequences. More recently, Ambrus et al. (2019) investigated the relationship between these 
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two systems using inhibitory transcranial magnetic stimulation (TMS) on the dorsolateral 

prefrontal cortex (DLPFC) while participants engaged in the SRT task. The results revealed 

that disrupting this area of the frontal lobe resulted in better learning of nonadjacent 

dependencies. Thus, these findings appear to show that at least for the SRT task, frontal-

mediated executive and attentional functions act antagonistically with implicit learning, with 

the latter improving when the former are weak or disrupted.

The framework proposed here has been focused mainly on neocortical processing 

mechanisms. However, subcortical structures such as the hippocampus, cerebellum, and 

basal ganglia clearly play a central role in learning and memory more generally, and perhaps 

statistical learning specifically. For instance, the cerebellum is known to play an important 

role in associative motor learning (Steinmetz, 2000) but also possibly non-motor learning 

and other cognitive functions (e.g., Desmond and Fiez, 1998; Ivry and Baldo, 1992; 

Timmann et al., 2010). The classic memory systems view holds that declarative memory – 

which refers to the recall and recognition of facts and events – depends on the hippocampus 

and MTL (e.g., Squire, 2004). Procedural memory on the other hand – a type of 

nondeclarative and largely implicit form of learning – relies specifically on the basal ganglia, 

though the cerebellum also appears to play a role (Ullman, 2004; Ullman et al., 2020). These 

two forms of memory likely are both involved during statistical learning (Batterink et al., 

2019; Sawi and Rueckl, 2019), possibly in a competitive manner. The MTL and basal 

ganglia often show competitive interactions, which may be modulated by the PFC (Poldrack 

and Rodriguez, 2004). One way to unite the cortical perspective presented above with the 

workings of subcortical structures is to take a complementary learning systems approach 

(e.g., O’Reilly and Norman, 2002). Under this view, there is a trade-off between different 

types of learning and memory, necessary in order to achieve different goals and to meet 

certain demands, which is best handled by functional specialization of brain regions. For 

instance, the hippocampus is well-suited for rapidly encoding arbitrary associations and 

memories of specific events, while the neocortex can handle slowly developing 

representations of the general statistical structure of the environment (O’Reilly and Norman, 

2002). Atallah et al. (2004) proposed a tripartite model consisting of the hippocampus (for 

rapid learning of specific events and details), posterior neocortex (for learning general 

statistical information about the environment), and the PFC (with connections to the basal 

ganglia, for maintaining information in an active state). Together, these three brain systems 

can support different types of behavioral functions, with each brain area satisfying different 

kinds of demands. The cortical model proposed above encompasses two of the three 

components of this tripartite model (the posterior neocortex and PFC), but we acknowledge 

the recent work suggesting that the hippocampus also plays a role in statistical learning and 

needs to be integrated into such a model (Schapiro et al., 2014). More work is needed to 

outline the exact interactions between the cortical systems outlined here and the other 

(subcortical) brain systems underlying learning and memory more generally.

3.6. How does ontogeny constrain learning?

Most aspects of sensorimotor, cognitive, and social functioning increase from childhood to 

adulthood (Plebanek and Sloutsky, 2017). Is the same true for statistical learning? At least 

some aspects of statistical learning, such as the learning of adjacent transitional 
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probabilities, are present from very early in development. For instance, auditory learning of 

adjacent transitional probabilities is clearly available by 8-months (Saffran et al., 1996) and 

possibly even at birth (Teinonen et al., 2009). Similarly, visual adjacency learning has been 

demonstrated at 2 months (Kirkham et al., 2002) and in newborns (Bulf et al., 2011). 

Similarly, the detection of adjacent-item repetition structure also appears to be available very 

early in life (Endress et al., 2009; Gervain et al., 2008). This evidence of some aspects of 

statistical learning developing very early is consistent with A.S. Reber’s (2003) classic view 

of implicit learning as being an invariant ability, present across all (typically developing) 

individuals, with very little individual variation or change across development (Amso and 

Davidow, 2012; Jost et al., 2015).

On the other hand, other evidence points to a more complex developmental picture. When 

visual input sequences were created that allowed separate investigation of co-occurrence 

frequency information and transitional probabilities, a developmental progression was 

found, with 2.5-month-olds showing sensitivity to co-occurrence frequency only, but 4.5-

month-olds and older infants showing sensitivity to transitional probabilities as well 

(Marcovitch and Lewkowicz, 2009). Similarly, 5-month-olds were able to segment visual 

sequences that contained redundant co-occurrence frequency and transitional probability 

cues, but 2-month-olds were unable to do so (Slone and Johnson, 2015). Thus, potentially 

important changes occur in infants’ capacity to track statistical patterns in visual sequential 

input between 2 and 5 months of age, likely due to developmental changes to attention and 

memory (Slone and Johnson, 2015).

Complicating the developmental findings is that, as reviewed above, statistical learning itself 

appears to be a heterogeneous construct (e.g., Arciuli, 2017; Daltrozzo and Conway, 2014; 

Thiessen and Erickson, 2013). If there are multiple neurocognitive processes underlying 

statistical learning, then each one may be governed by different developmental constraints, 

leading to different patterns of development depending on what aspect of statistical learning 

is being measured in a given study. Thus, taking a multiple-systems approach to 

understanding statistical learning may provide some clarity. As an example, Janacsek et al. 

(2012) examined age-related changes in statistical learning in over 400 individuals between 

4 and 85 years of age using the SRT task. They found that 4–12-year-olds had the greatest 

learning effects as measured by RTs, with a dramatic decrease in learning ability around 12 

years that continued to decline across the lifespan. However, accuracy scores were lowest in 

the children and elderly participants with highest scores at the middle ages. Janacsek et al. 

(2012) suggested that these findings may be the result of their measures tapping into two 

separate learning systems, with accuracy related to voluntary attentional control (an under-

developed executive function mechanism in early childhood) and RT related to involuntary 

mechanisms. Other evidence for different developmental trajectories for different aspects of 

learning includes the distinction between nonadjacent and adjacent dependencies, with the 

former being not as easily learned early in development as the latter (e.g., Gervain et al., 

2008). In de Diego-Balaguer et al. (2016d) view, the learning of nonadjacent dependencies 

develops later in childhood, only when endogenous attentional control is mature, which they 

propose is needed to learn these types of dependencies. Thus, the type of input pattern 

appears to interact with age, with some types of structures learnable early in development 
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but others requiring the development of attention and memory mechanisms to support such 

learning.

Interestingly, input modality might also interact with age to determine learning success. 

Visual statistical learning (as measured by a variation of the classic triplet segmentation task) 

was found to have a gradual developmental progression between 5 and 12 years of age 

(Arciuli and Simpson, 2011; Raviv and Arnon, 2017). On the other hand, auditory learning 

showed no such age differences, at least within this age range (Raviv and Arnon, 2017). A 

subsequent follow-up study showed that the apparent modality differences might be driven 

by the specific nature of the stimuli in terms of being composed of linguistic stimuli (i.e., 

syllables) or not (Shufaniya and Arnon, 2018). That is, the most recent evidence suggests 

that whereas statistical learning of nonlinguistic auditory and visual input may show a steady 

increase with age, auditory learning of linguistic materials may be developmentally invariant 

(Raviv and Arnon, 2017; Shufaniya and Arnon, 2018). It is important to realize, however, 

that there may be other important developmental changes occurring earlier in life, before age 

5, that are not captured by these two studies.

Paradoxically, some aspects of statistical learning might actually be more efficient earlier in 

development, when cognitive abilities such as top-down attentional control and working 

memory have not yet reached mature levels of ability (Thompson-Schill et al., 2009). For 

instance, Plebanek and Sloutsky (2017) showed that 4- and 5-year-old children 

outperformed adults on a change-detection and a visual search task. They suggested that it 

was because children at that age tend to distribute attention across multiple aspects of 

stimuli, even when it is not relevant to the goal. This more distributed attention resulted in 

better processing of task-irrelevant information, which allowed the children to perform better 

on the change-detection and visual search tasks. Similarly, Juhasz et al. (2019) found that 

young children showed superior learning on the SRT task relative to adolescents and adults 

(note that this study also took into account the average response speed differences between 

age groups, an important methodological point for any developmental study that uses 

response times as the measure of learning). The idea that cognitive limitations early in 

development may confer a computational advantage for learning is not new (e.g., Elman, 

1993; Newport, 1990). In general, it could be evolutionarily adaptive for organisms to have 

more efficient and flexible learning mechanisms early in development (e.g., Johnson and 

Wilbrecht, 2011). This “less is more” proposal fits nicely with the theoretical framework 

offered by Ambrus et al. (2019) and related studies suggesting that top-down executive 

control (instantiated in frontal-based neural circuits) may impede (implicit) statistical 

learning. Under this framework, the reason that young children perform better than adults on 

statistical learning is that their PFC is under-developed, which allows for unhindered 

bottom-up, data-driven learning of environmental patterns (Ambrus et al., 2019).

As argued above, one general mechanism that underlies statistical learning is cortical 

plasticity (P.J. Reber, 2013). The ability for cortical networks to adapt and modify 

themselves based on environmental experience appears to be an intrinsic property of neural 

networks, present across the lifespan (Pascual-Leone et al., 2011). However, it is also clear 

that in general, neural plasticity declines with age (Kleim and Jones, 2008; Pascual-Leone et 

al., 2011). Furthermore, different neural systems may have different degrees of plasticity at 
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different points in development. For instance, different brain areas have different timescales 

of synaptic proliferation and pruning, with motor and sensory processing areas maturing 

first, followed by spatial and language processing regions (parietal lobe), and executive 

functions (frontal lobe) developing last (Gogtay et al., 2004). Furthermore, although there is 

a general trend for reduced plasticity with age, there appears to be a substantial amount of 

individual variability, with different individual brains having different “starting points” of 

plasticity as well as having different “slopes of change”, due to variations in genetic and 

environmental factors (Pascual-Leone et al., 2011). The environment plays a key role in 

dictating changes in plasticity due to the principle of neural commitment: as learning and 

experience with the environment progresses, neural networks become entrenched and tuned 

to the particular patterns of information experienced, making further plasticity-related 

changes more difficult (Kuhl, 2004). This mechanism of entrenchment has been argued to be 

a major factor giving rise to the existence of sensitive periods in language and other 

cognitive and perceptual domains (Kuhl et al., 2005; Meltzoff et al., 2009).

Thus, cortical perceptual plasticity changes over development (White et al., 2013). Early in 

development, plasticity is driven primarily by bottom-up (implicit) learning. Later in 

development (after the sensitive period ends), plasticity becomes increasingly reliant on top-

down factors, such as knowledge of higher order representations and categories gained 

through experience, which directs attention to particular features or types of input. In most 

cases, learning and plasticity is achieved through the interaction of these two processes. 

However, because of neural commitment and cortical maturation, there is a gradual 

developmental decline in the extent that bottom-up processes impact plasticity; at the same 

time, top-down influences such as selective attention increasingly modulate the capacity for 

cortical plasticity (Kral and Eggermont, 2007; White et al., 2013). A key developmental shift 

may occur around the age of 4 years (Mueller et al., 2018), from automatic associative 

learning that dominates infancy, to attention-guided frontal cortex-based mechanisms that 

guide learning (see also Deocampo and Conway, 2016).

Thus, the developmental trajectory of statistical learning appears to be due to the functioning 

of at least two interacting mechanisms. Early in development, statistical learning is driven 

almost entirely by bottom-up, automatic, associative learning mechanisms that reflect 

principles of cortical plasticity, in which neural networks slowly become attuned to 

environmental regularities with experience. Later in development, as selective attention and 

other executive functions mature, learning is increasingly modulated by such abilities, 

allowing for the learning of more complex input patterns such as nonadjacent dependencies 

and other types of structural patterns that can be considered to be more global. However, 

increased reliance on top-down control in learning, and a concurrent reduction in cortical 

plasticity, may not always be beneficial, leading to situations that paradoxically result in 

poorer learning by adults relative to children (e.g., Ambrus et al., 2019; Plebanek and 

Sloutsky, 2017). Likewise, in old age, as executive functions begin to show decline, it is 

expected that statistical learning will worsen, as both bottom-up and top-down mechanisms 

will be less effective.

In sum, it is argued that statistical learning is influenced by two different types of 

mechanisms that change over developmental time (see Daltrozzo and Conway, 2014). It 
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should be pointed out that the bottom-up learning system actually consists of multiple sub-

systems (i.e., visual, auditory, motor, etc.), with each neural sub-system having different 

developmental trajectories in terms of cortical plasticity and maturation. More research is 

needed to investigate the changes that occur in statistical learning across development, with 

careful attention paid to the factors reviewed so far (e.g., input modality, input complexity, 

and the role of attention) and how they impact different components of learning. Missing, 

too, from this view is the role of consolidation in learning and how that might change with 

age. For example, Adams et al. (2018) suggested that the ability to “off-load” information 

from the focus of attention into long-term memory might improve with age; such 

developmental changes would likely impact the efficiency of statistical learning as well. 

Thus, taking into account the multiple processes that influence statistical learning will help 

illuminate the complex developmental picture. Importantly, measures of learning need to be 

developed that tap into each of the different purported aspects of statistical learning (Arciuli 

and Conway, 2018) in order to track how each relevant process changes across the lifespan.

3.7. How does phylogeny constrain learning?

As with the developmental research, findings related to species comparisons is complicated 

by the variety of methods and approaches used to assess learning. Based on the review 

provided to this point, it is proposed that statistical learning in nonhuman species is 

governed by the operation of at least two partially dissociable learning systems, one based 

on the principle of cortical plasticity that mediates basic associative learning and perceptual 

processes, and the other a top-down modulatory “executive” system that directs attention 

and allows for the learning of more complex patterns. If true, then there are likely areas of 

overlap across species for evolutionarily-conserved mechanisms, primarily the learning of 

simple statistical associations mediated by mechanisms of cortical plasticity. In the same 

respect, it would not be surprising to observe species differences for the learning of more 

complex patterns such as nonadjacent dependencies or global patterns that require 

integration over larger timescales, which are proposed to be mediated by top-down cognitive 

control and attention processes instantiated in the frontal lobe.

Such a distinction was proposed by Conway and Christiansen (2001), who reviewed the 

extant findings on sequential learning in nonhuman primates, and concluded that all species 

of primates demonstrate the ability to learn relatively simple patterns (such as repeating 

sequences and adjacent dependencies) but that species differences are observed in the 

learning of more complex hierarchical sequential structures that are characterized by 

nonadjacent dependencies. This framework was based on earlier work, for instance, by 

Johnson-Pynn et al. (1999), who showed that whereas children 2–3 years of age display 

hierarchically-based behavioral strategies for organizing nesting cups, three species of 

nonhuman primates (chimpanzees, bonobos, and capuchin monkeys) do not spontaneously 

display such complex strategies, relying solely on simpler combinatorial actions. 

Furthermore, it was argued that these limitations in sequencing abilities could be a key 

reason for why nonhuman primates do not display human-like language (Conway and 

Christiansen, 2001). Such a perspective was echoed by Hauser et al. (2002) who argued that 

what nonhuman animals lack is a narrow faculty of language, specifically the ability to 

compute complex syntactic hierarchical structures. Thus, in both cases, the argument is that 
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certain simpler kinds of pattern learning are common across species, but that more complex 

processing of hierarchical structure containing nonadjacent dependencies is found only in 

some animal species (including humans).

Since Conway and Christiansen’s (2001) and Hauser et al.’s (2002) initial proposals, there 

have been demonstrations of learning of nonadjacent dependencies in chimpanzees (e.g., 

Sonnweber et al., 2015) and learning of center-embedded recursive structures in baboons 

(e.g., Rey et al., 2012). However, Rey et al. (2012) postulated that the baboons were not 

learning the recursive structure using specialized computational mechanisms as proposed by 

Hauser et al. (2002), but rather were doing so based on more elementary learning 

mechanisms such as associative learning and working memory processes. In an attempt to 

understand the neural basis of auditory sequence learning in rhesus monkeys, Uhrig et al. 

(2014) incorporated a version of the auditory “local-global” paradigm used in previous 

human work as described in sections 3.3 and 3.5. They used fMRI to determine that local 

transitions were mediated by bilateral auditory areas, whereas the learning of global rules 

showed more distributed activity in downstream prefrontal and parietal areas, similar to the 

findings found with humans (Bekinschtein et al., 2009). Findings such as these suggest that 

although sequence processing may be mediated by distinct systems for learning different 

types of regularities, these systems appear to be present at least in some nonhuman primate 

species and may be common across human and nonhuman primates.

On the other hand, in a review of the structure of animal communication and learning in 

artificial grammar studies, Cate and Okanoya (2012) concluded that nonhuman animals’ 

natural productions are only as syntactically complex as finite-state grammars, not more 

complex structures. Similarly, in a recent comparative investigation of statistical-sequential 

learning, Rey et al. (2018) showed that both humans and guinea baboons could learn local 

regularities (i.e., adjacent transitions between sequentially-presented items). However, 

humans but not baboons were also able to extract the global structure of hierarchically 

arranged sets of sequences. That is, learning the sequence A1B1C1 involves local, adjacent 

transitions only. However, learning the arrangement of this sequence A1B1C1 as it occurs in 

conjunction with other sequences such as A2B2C2 and A3B3C3 involves a more global 

understanding of the patterns that is not based on local transitions alone.

Clearly, more research is needed to investigate the role of input complexity in statistical 

learning across species. Wilson et al. (2013) and Stobbe et al. (1598) have both argued for 

the importance of cross-species research to better understand the origins and emergence of 

statistical learning and its role in human functions. Petkov and Wilson (2012) suggested that 

we need better ways to “bridge” findings between humans and nonhumans by using similar 

methods across species, such as eye-tracking and neuroimaging of nonhuman animals. They 

furthermore argued that it is important to focus on the learning of finite-state grammars 

(containing primarily adjacent dependencies) of varying complexity in order to better 

understand the evolutionary precursors of language and other human skills. As a recent 

example of such an approach, Heimbauer et al. (2018) used a SRT task with rhesus 

macaques using a more complex finite-state grammar than typically used with nonhuman 

primates, in order to probe the limits and extent of learning. Though the monkeys were able 

to show learning and generalization of this relatively complex grammar, for sequences up to 
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8 items in length, it took them hundreds of trials over multiple days to do so, whereas 

humans demonstrated learning of a similarly complex grammar within a single session 

(Jamieson and Mewhort, 2005).

In addition to input complexity, an area with even less research is the role of input modality 

on nonhuman learning, as pointed out by Heimbauer et al. (2018) and Milne et al., 2018b; 

Milne et al., 2018a. As reviewed in section 3.1, there is evidence to suggest that the learning 

of statistical patterns differs for different perceptual modalities, with generally superior 

learning observed for auditory compared to visual sequential patterns, at least in humans 

(e.g., Conway and Christiansen, 2005; Frost et al., 2015). It is not clear as of yet whether 

nonhuman animals show similar constraints on sensory modality in regard to statistical 

learning. In one of the few studies to directly compare auditory and visual statistical learning 

in both humans and nonhumans, Milne et al., 2018b; Milne et al., 2018a showed comparable 

learning in humans and macaque monkeys. However, other research suggests in fact that 

nonhuman primates may be better at visual temporal processing compared to auditory 

processing (Merchant and Honing, 2014). These modality differences were argued to be due 

to the nonhuman primate brain having impoverished auditory-motor connections in 

comparison to humans (Merchant and Honing, 2014). Such an inversion of the typical 

modality effect observed in humans has interesting implications for the evolution of 

language learning mechanisms, and perhaps could be a contributing factor for why humans 

but not nonhuman primates show complex (auditory-vocal) linguistic abilities.

Finally, more work is needed to understand the neural underpinnings of statistical learning 

across species. There have been some recent advances in this regard (e.g., Attaheri et al., 

2015; Meyer and Olson, 2011; Meyer et al., 2014; Milne et al., 2016; Petkov and Wilson, 

2012; Wilson et al., 2015, 2017; Uhrig et al., 2014). The current neuroscience evidence 

supports a combination of modality-specific neural networks (Meyer and Olson, 2011; 

Meyer et al., 2014; Uhrig et al., 2014) and anterior regions of the brain including frontal 

cortex (Wilson et al., 2017; Uhrig et al., 2014) that together support sequence processing, 

prediction, and statistical learning in nonhuman primates (Kikuchi et al., 2018). As reviewed 

above, a similar interplay between downstream frontal areas and low-level sensory regions 

appears to mediate statistical learning in humans (Conway and Pisoni, 2008). Frontal brain 

regions, such as the PFC and perhaps Broca’s area especially, may differ across species and 

may be an important crucial factor in the evolution of complex hierarchical functions such as 

language (Tecumseh and Martins (2014)).

It is important to examine not just brain regions that are active or elicited during tasks in 

nonhumans, but also the patterns of interconnectivity among different brain regions and the 

way that different networks may have evolved to take on specialized functions in different 

species. For example, humans, relative to other primate species, are known to have a larger 

PFC, which may be due to an increase in white matter and neural connections to the rest of 

the brain (Tecumseh and Martins (2014)). Furthermore, there may be differences across 

species in terms of how different neural pathways (ventral and dorsal) connecting frontal 

cortex to the rest of the brain are used to learn sequential patterns of varying complexity in 

language and other domains (e.g., Wilson et al., 2017). It is also important to consider not 

just learning abilities themselves, but also how learning mechanisms coevolved with 
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attentional and motivational biases to direct learning and support complex functions (Lotem 

and Halpern, 2012). Likewise, it is important to consider how statistical learning is used by 

different species in different ecological niches (Santolin and Saffran, 2018).

In sum, there is much we still do not know about how phylogeny constrains statistical 

learning. There has been progress in three areas of comparative research (input complexity, 

modality effects, and neural bases) but there are more questions than answers at this time. 

We suggest that considering statistical learning as being made up of two primary types of 

mechanisms (cortical plasticity interacting with higher-level modulatory control processes) 

might be helpful for constraining the types of research inquiries and hypotheses that are 

explored. The tentative proposal offered here is that associative-based perceptual learning 

mediated through general mechanisms of cortical plasticity will be conserved across species 

(Rey et al., 2018). For instance, despite vast differences in brain size across mammalian 

species, the temporal dynamics that govern neural communication and information 

integration is remarkably similar (Buzsáki et al., 2013). Similarly, the use of neurotrophic 

factors, which impact neuronal survival and differentiation in modulating synaptic plasticity, 

is relatively conserved across animal species (Casey et al., 2015). Even so, despite the 

apparent conservation of neural plasticity across species, there are differences, even among 

mammals: for example, in rodents, neurogenesis is a lifelong process, whereas in humans, 

adult neurogenesis is much more reduced (La Rosa and Bonfanti, 2018). However, at a 

behavioral level, it seems relatively clear that basic associative learning and sequence 

learning abilities are relatively conserved (Wilson et al., 2017).

We suggest that where species differences are observed, they are likely to be due less to 

variations in cortical plasticity-based mechanisms and more to differences in higher-level 

cognitive processing, such as top-down cognitive control, attention, and working memory 

processes, supported by frontal cortex and related networks, and in the different patterns of 

connectivity among PFC and sensory brain regions. Thus, examining the way that frontal 

cortex, which mediates top-down control of information-processing, interacts with bottom-

up sensory-motor processes, may offer insights into both commonalities and variations 

across different species (Mishra and Gazzaley, 2016).

4. Ten core principles

Based on the review of findings related to these six areas of research, we outline ten core 

principles that we believe provide a scaffolding for the construct of statistical learning and 

lead to testable predictions to help focus future research. Together, the principles argue for 

the existence of two primary sets of neurocognitive mechanisms or modes of learning that 

interact to support statistical learning across a variety of contexts. Each principle is 

described fully below and then presented succinctly in Table 3.

1. Statistical learning is a multifaceted construct (e.g., Arciuli, 2017; Daltrozzo and 

Conway, 2014; Thiessen and Erickson, 2013). We specifically propose two 

primary cortical mechanisms that underlie statistical learning. The first is based 

on the general principle of cortical plasticity, which is not localized to any 

particular area but is prevalent throughout the brain, that mediates basic 
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associative learning and perceptual learning processes. The second is a top-down 

modulatory “executive” system (primarily centered in the prefrontal cortex) that 

directs attention and allows for the learning of more complex patterns. The 

operation of these two systems or modes of learning likely occurs independently 

and in parallel (Batterink et al., 2015), though the functioning of the executive 

system can also emerge as learning occurs through the associative system. These 

two cortical mechanisms also interact with hippocampal, cerebellar, and basal-

ganglia based learning, with each subcortical system contributing to learning 

depending on the demands of the task and situation (Atallah et al., 2004).

2. The general property of cortical plasticity, which mediates bottom-up, 

associative learning, is instantiated over multiple, hierarchically-embedded 

networks (Hasson et al., 2015; P.J. Reber, 2013). When we perceive, encode, or 

act upon a given stimulus, the particular neurocognitive processes that were 

active tune adaptively with experience, thereby facilitating further processing 

with the same or similar stimuli. This “plasticity of processing” approach 

explains the wide and distributed pattern of activity observed in statistical 

learning neuroimaging studies (e.g., as reviewed in Conway and Pisoni, 2008; 

Frost et al., 2015; Keele et al., 2003). Furthermore, this type of learning based on 

cortical plasticity is ever-present and obligatory, always being active.

3. Different areas of neocortex have different cortical processing capabilities in 

terms of perceptual modality and temporal timescales (Fuster and Bressler, 

2012), and these processing differences provide constraints on which brain areas 

will reflect plasticity and learning in any given situation (Frost et al., 2015). For 

instance, posterior modality-specific perceptual brain regions generally 

encompass shorter timescales of processing (Hasson et al., 2015), and thus can 

mediate the learning of local or adjacent dependencies in a modality-specific 

manner. More anterior downstream regions such as the PFC have longer 

timescales for integrating information (Hasson et al., 2015), thus allowing for the 

processing and learning of nonadjacent, long-distance, and global patterns.

4. Existing alongside the general principle of cortical plasticity are endogenous 

attention and working memory processes that provide top-down modulation of 
learning (Fuster and Bressler, 2012; Hasson et al., 2015). Top-down modulation, 

a specialized process centered primarily in PFC and related frontoparietal 

networks, is used to direct attention and processing toward certain aspects of 

stimuli encountered in the environment, and it may be necessary for learning 

nonadjacent dependencies in temporal sequences (de Diego-Balaguer et al. 

(2016d)). Top-down control also allows for inhibition of stimuli or features 

contained in stimuli, in order for selective attention to be deployed in strategic 

ways and thus is crucial for learning patterns arrayed across temporal sequences, 

such as crossmodal sequential dependencies (Walk and Conway, 2016) and 

global patterns that require integration over longer timescales (Wacongne et al., 

2011). Top-down control and endogenous attention may also be needed for the 

expression of knowledge; it may be particularly necessary when attempting to 

generalize or apply knowledge to new settings such as when the perceptual 
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features are changed and a mapping between the old patterns and new ones must 

be ascertained (Hendricks et al., 2013). On the other hand, at least for some types 

of learning situations such as perceptual-motor sequence learning embodied by 

the SRT task, top-down control may actually interfere with or impede implicit 

learning (Ambrus et al., 2019).

5. Central to statistical learning is prediction and expectation (Dale et al., 2012), 

mediated across both sensory and downstream areas such as the PFC (though it 

is possible that the PFC generates the predictions and subsequently modulates 

sensory areas, Bubic, 2010). Prediction is particularly important for serial 

learning and sequencing because of the prominent role of time and uncertainty in 

temporal sequences (Bubic, 2010). Predictive processing appears to be inherent 

to all levels of the hierarchically organized nervous system (Friston, 2005) and 

thus goes hand-in-hand with a “plasticity of processing” approach. Predictive 

processing consists both of implicit/automatic as well as explicit, attention-

dependent processing (Huettig, 2015). An important part of making predictions 

of upcoming events is the necessity of inhibiting the internal representations of 

events or stimuli that are not predicted, which likely involves PFC (Bar, 2009).

6. Modality and domain effects arise due to plasticity of processing in perceptual 

cortical networks, similar to the mechanism of perceptual priming (Conway and 

Christiansen, 2006; Frost et al., 2015; P.J. Reber, 2013). Cross-modal learning 

may be possible though only under particular conditions, such as when the cross-

modal dependencies are presented simultaneously in time, rather than across a 

temporal sequence (Walk and Conway, 2016), or when selective attention is 

deployed. Thus, domain-general cognitive mechanisms such as selective 

attention are needed to gate or modulate learning (e.g., Turk-Browne et al., 

2005). Likewise, certain aspects of statistical learning appear to be domain-

general in the sense that some amount of transfer or correspondence across 

different stimulus sets can occur, such as the recognition of repetition structures 

and other perceptual primitives (Endress et al., 2009; Gomez et al., 2000). These 

cross-modal or domain-general functions likely involve PFC and related 

attention and working memory processes.

7. Learning can occur for a variety of input structures that vary in complexity, 

ranging from simple associations between two stimuli and perceptual “chunks” 

to more complex and highly variable patterns that span across a temporal 

sequence and that form recursive or hierarchical structure (Dehaene et al., 2015; 

Petkov and Wilson, 2012). The limited research suggests that complexity directly 

influences learning performance, with more complex input patterns leading to 

lower levels of learning (Schiff and Katan, 2014). It appears that learning 

different types of structures entails different processing requirements, with some 

types of perceptual-based and simple patterns being learned relatively 

automatically and effortlessly (Hendricks et al., 2013), and more complex, 

nonadjacent patterns requiring the involvement of selective attention or working 

memory (de Diego-Balaguer et al. (2016d)). Thus, nonadjacent or long-distance 

dependencies, as well as “global” learning that requires integrating information 
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across exemplars over time necessarily requires processing by brain networks 

such as the PFC that can handle information over these larger timescales (Fuster 

and Bressler, 2012).

8. Statistical learning and attention have a bidirectional relationship: attention can 

modulate or gate learning (Turk-Browne et al., 2005) and learning itself can lead 

to heightened levels of attention for the structure that has been learned (Zhao et 

al., 2013). However, learning can also proceed in a relatively implicit or 

automatic fashion. The involvement of these two primary “modes” or systems, 

one explicit (attention-dependent) and the other implicit (attention-independent) 

appears to occur in parallel (Batterink et al., 2015), with the implicit system 

always “on” but the explicit system optional. As reviewed, the learning of some 

types of input structures appear to require the explicit system to greater extents, 

including nonadjacent dependencies, global patterns, abstract rule-based 

processing, and possibly cross-modal temporal patterns (Bekinschtein et al., 

2009; de Diego-Balaguer et al. (2016d); Walk and Conway, 2016). Other types of 

patterns, such as chunks, can likely be learned through implicit learning via a 

form of perceptual learning (Chang and Knowlton, 2004; Hendricks et al., 2013) 

although explicit, attention-based learning can also mediate the formation of 

chunks in memory (Pacton and Perruchet, 2008). Conscious awareness of what is 

learned occurs when the strength or quality of the representations reaches a 

threshold level (Cleeremans, 2011).

9. Ontogeny differentially constrains the development of different aspects of 

statistical learning (cortical plasticity and top-down modulatory control). 

Because cortical plasticity is a general property of nervous systems, present in 

varying degrees across all brain networks and in all individuals across the 

lifespan, from a certain point of view, plasticity-based statistical learning is likely 

relatively age-invariant. However, this is an oversimplification; plasticity 

generally is heightened early in development before neural entrenchment results 

in the ending of sensitive periods (Kuhl et al., 2005; White et al., 2013). Thus, 

plasticity-mediated associative learning mechanisms dominate learning in 

infancy and early in development. A second and independent ontogenetic 

constraint is due to the relatively late maturation of the frontal lobe (Thompson-

Schill et al., 2009), which mediates top-down control of learning. Thus, certain 

aspects of learning that rely on selective attention and cognitive control, such as 

the learning of nonadjacent and global regularities as well as crossmodal 

temporal associations, is more effective later in development when the frontal 

system matures (Daltrozzo and Conway, 2014; de Diego-Balaguer et al. 

(2016d)). Later in life, in old age, plasticity is still present but likely not at pre-

sensitive period peak levels; the frontal system also shows a certain amount of 

decline in healthy aging (e.g., Van Petten et al., 2004). Thus, a full account of 

developmental changes across the lifespan must take into account the 

independent trajectories of these two mechanisms that impact learning.

10. Phylogeny also constrains different aspects of statistical learning in different 

ways. It is likely that neural plasticity is evolutionarily conserved, and thus basic 
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associative learning principles are likely to be present across the phyla, at least in 

species that have nervous systems (Rey et al., 2018). On the other hand, it is 

likely that top-down modulatory control differs across species. This is expected 

to result in a relatively attenuated ability to learn nonadjacent dependencies, 

global patterns, and hierarchical structures (Conway and Christiansen, 2001; Rey 

et al., 2018), which depend crucially on the PFC and is believed to be less 

developed in most nonhuman species (Tecumseh and Martins, 2014). There may 

be species differences, too, in terms of neural connectivity and the integrity of 

specific neural pathways that connect PFC to other brain areas (Tecumseh and 

Martins, 2014). It is also expected that there may be species-specific differences 

that vary based on ecological niche and the unique selection pressures faced by 

the organism (Santolin and Saffran, 2018), making it possible for instance that 

some species excel at statistical learning but only in certain types of functions or 

contexts.

5. Conclusion

In sum, it is proposed that the construct of statistical learning can be decomposed into 

multiple components; primary among them are two mostly dissociable, cortically-based, 

cognitive mechanisms (Fig. 4). The first mechanism is based on the principle of neural 

plasticity, and therefore encompasses the entire neocortex. Through experience with 

particular types of patterned input, the brain networks involved in processing that input will 

show improved processing due to cortical tuning. This system is likely to be largely 

automatic and attention-independent and is constrained by the processing limitations of the 

cortical network(s) in question. One such limitation is the timescale of processing, with 

more posterior networks processing information over shorter timescales, and more anterior 

networks able to process information over longer timescales. An additional constraint on 

processing is sensory modality, with modality-specific perceptual regions able to show 

plasticity only for the types of input available to those networks. It is expected that the 

general principle of plasticity is present across most individuals and species, though there 

may be variations within development (increased plasticity prior to the end of the sensitive 

period) as well as across species (with variations specific to the ecological demands and 

requirements). In a sense, this first mechanism can be thought of as “obligatory”; it is always 

online and active in encoding regularities in the environment.

A second mechanism that acts in concert– or sometimes in competition – with the first is one 

that mediates top-down modulatory control to help filter and selectively attend to particular 

inputs or features. This “executive” system involves frontoparietal networks (and perhaps 

specifically the PFC) that mediate endogenous attention and working memory to modulate 

learning. This system is specifically needed to learn nonadjacent and global regularities as 

well as crossmodal contingencies across temporal sequences. This mechanism is less likely 

to be available early in development; it is also likely to be found to varying degrees across 

species but mainly in cognitively more advanced species such as chimpanzees and humans. 

At least for the learning of perceptual-motor sequences, the executive system may actually 

impede learning rather than contribute to it (Ambrus et al., 2019). One could consider this 
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second system to be “optional” in the sense that it does not seem to be universally active in 

all situations or contexts, unlike the first mechanism.

Note that this multi-component proposal is similar to and draws upon a number of other 

theoretical frameworks (e.g., Arciuli, 2017; Batterink et al., 2015; Daltrozzo and Conway, 

2014; Frost et al., 2015; Keele et al., 2003; P.J. Reber, 2013; Thiessen and Erickson, 2013). 

However, the current proposal is the only one that addresses all six factors reviewed above 

(i.e., how learning proceeds across different input modalities and domains and for different 

types of input structures; the role of attention in statistical learning; the underlying 

neuroanatomy of statistical learning; and ontogenetic and phylogenetic constraints on 

learning). This framework also makes specific and unique predictions that future research 

can usefully examine. For instance, this framework predicts that the learning of nonadjacent 

dependencies as well as global patterns that span across time will necessarily require the 

involvement of PFC and frontoparietal networks and related attentional and working 

memory processes. Likewise, the learning of cross-modal sequential dependencies will also 

require these same frontal-based neural processes. It is also predicted that where statistical 

learning will differ across age and across species will be for the learning of nonadjacent, 

global, and cross-modal sequential patterns; on the other hand the learning of perceptual 

chunks or local transitions in a sequence will be relatively conserved across species and 

across age.

Finally, there are a number of outstanding questions that this review did not address and thus 

remain as ripe areas for future research. Five specific areas are highlighted here (see 

additional discussion by Arciuli and Conway, 2018):

1. What is the relationship between statistical learning and other forms of learning 
and memory? Although the stance taken here is that statistical learning, implicit 

learning, and sequence learning are essentially referring to the same underlying 

construct, it is also likely that different tasks used to probe learning (e.g., the 

AGL task versus the SRT task) may reflect partially dissociable aspects of 

learning. Likewise, further work is needed to specify to what extent statistical 

learning overlaps with for instance procedural memory (Ullman, 2004), category 

learning (Smith and Grossman, 2008), or other forms of nondeclarative memory 

(Squire, 2004). The evidence so far supports the notion that statistical learning 

relies upon both procedural and declarative forms of memory (Batterink et al. 

(2019), but more work is needed to work out the exact interactions.

2. What is the relationship between statistical learning and language processing and 
development? Although much work has highlighted the role of statistical 

learning as a language learning mechanism (e.g., Nemeth et al., 2011; Romberg 

and Saffran, 2010), there are still unanswered questions about which aspects of 

statistical learning map onto which aspects of language (e.g., phonology, word 

learning, syntax, etc.) at different points in development.

3. What is the relationship between statistical learning and development in non-
language domains? Because statistical learning is a general and pervasive 

learning mechanism, it should impact a wide range of domains in addition to 
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language, such as music, perceptual and motor skill development, and 

educational outcomes, but these connections are still underspecified and thus 

represent potentially rich areas in need of further investigation.

4. Which aspects of atypical development are associated with atypical statistical 
learning abilities? There is a growing body of evidence suggesting a link 

between atypical statistical learning and language learning disabilities such as 

developmental language disorder (Obeid et al., 2016), developmental dyslexia 

(Gabay et al., 2015), and autism spectrum disorder (Jeste et al., 2015). There is 

also evidence that variation in statistical learning abilities explains variability in 

language outcomes in children who are deaf or hard of hearing (Conway et al., 

2011; Deocampo et al., 2018; Gremp et al., 2019). More work is needed to 

understand which aspects of learning causally impact which aspects of atypical 

development across a variety of clinical populations (c.f., Arciuli and Conway, 

2018; Krishnan et al., 2016; Zwart et al., 2019).

5. Finally, to what extent is statistical learning itself affected by experience? There 

are two related questions here. The first is whether the mechanisms underlying 

statistical learning can be improved to increase the effectiveness of learning. The 

second concerns the issue of “rewiring”: to what extent can knowledge of 

statistical regularities be modified or even unlearned in order to assimilate new 

regularities? In regards to the first question, there is some initial work to suggest 

that statistical learning may be modifiable to some degree (Onnis et al., 2015; 

Smith et al., 2015). Likewise, in regards to the second question, it appears 

possible that knowledge of statistical regularities can be rewired, allowing for the 

learning of new regularities (Szegedi-Hallgató et al., 2017). If it is possible to 

improve learning and/or rewire one’s knowledge of what has been learned, then 

this represents an unprecedented opportunity to use targeted intervention or 

controlled manipulation of environmental factors to help promote statistical 

learning across a range of language and learning disorders (Plante and Gómez, 

2018). Similarly, it is yet unknown whether methods of improving statistical 

learning could have an impact across developmental, language, and educational 

outcomes even in typical developing individuals.

Statistical learning is a robust learning mechanism that provides adaptability, flexibility, and 

improved behavioral functioning for organisms that can capitalize on the structure inherent 

in the world. The quest for a unified theory of statistical learning requires continued research 

to help understand how learning proceeds for different types of input, what cognitive and 

neural systems undergird learning, and how it emerges across species and within individuals 

across developmental time. Future research that integrates findings across a number of key 

areas, as embodied by the ten core principles outlined here, will help us better understand 

how the brain learns environmental structure.
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Fig. 1. 
Three orthogonal dimensions outlining a proposed task space for statistical learning.
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Fig. 2. 
Three candidate architectures for how input modality and domain interacts with statistical 

learning. (Top left): A domain-general (DG) account posits a single, unitary mechanism that 

implements statistical learning for all input modalities and domains. Here, the frontal lobe of 

the brain (prefrontal cortex) is offered as one potential domain-general brain region, though 

others areas are also likely candidates. (Top right): A modality/domain-specific account 

posits multiple, relatively independent mechanisms, each handling a specific type of input 

such as auditory (A), visual (V), tactile (T), and motor (M) patterns. For simplicity, only 

these four modality/domain-specific regions are illustrated though others would be posited 

to exist as well. (Bottom): Finally, perhaps the most viable account is one which combines 

domain-general and domain-specific architectures, here shown with connections between 

modality-specific brain regions and the prefrontal cortex.
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Fig. 3. 
Depiction of two distinct learning mechanisms, “implicit” and “explicit”, in relation to the 

factors of input modality, input complexity, and attention.
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Fig. 4. 
A multicomponent model of statistical learning. The first set of (“implicit”) mechanisms is 

based on the principle of cortical plasticity, which allows networks to adaptively change 

through experience. Posterior modality-specific networks allow for improved perceptual 

processing of input patterns spanning short timescales (A: auditory; V: visual; T: tactile; M: 

motor). More anterior networks can handle patterns spanning across perceptual modalities 

and over larger timescales. The second “executive” (or “explicit”) mechanism is rooted in 

frontal lobe (prefrontal cortex, PFC) and frontoparietal networks that mediate top-down 

control of attention and working memory to modulate learning and allow for the learning of 

more complex patterns such as nonadjacent dependencies. Not only does the executive 

system modulate plasticity-based learning; but through the principle of plasticity, as learning 

occurs, attention itself can be affected, drawing resources toward certain environmental 

events or stimuli, thus affecting the operation of the executive system.
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Table 2

A rough taxonomy of input structures learnable through statistical learning.

Perceptual primitives (repetitions, etc.)

Serial transitions

Chunks

Finite state grammars (of varying complexity)

Nonadjacent dependencies

Recursive / hierarchical / phrase structure
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