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Abstract 

Colorectal cancer is the third common cancer in this world, accounting for more than 1 million 
cases each year. However, detailed etiology and mechanism of colorectal cancer have not been fully 
understood. For example, cyclooxygenase-2 (COX-2) and its product prostaglandin E2 (PGE2) have 
been closely linked to its occurrence, progression and prognosis. However, the mechanisms on how 
COX-2 and PGE2-mediate the pathogenesis of colorectal cancer are obscure. In this review, we 
have summarized recent advances in studies of pathogenesis and control in colorectal cancer to 
assist further advances in the research for the cure of the cancer. In addition, the knowledge gained 
may also guide the audiences for reduction of the risk and control of this deadly disease. 
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Introduction 
Colorectal cancer (CRC) is a common fatal cancer 

in developed countries such as USA [1, 2], accounting 
for more than 1 million cases each year [3] and 700,000 
deaths [4]. Most recently, it is reported that colorectal 
cancer ranks fourth in the world's deadly cancer, 
accounting approximately 900,000 deaths yearly, due 
to increase of aging populations, obesity and lack of 
exercise [5]. In fact, colorectal cancer (CRC) is the 
second most frequent deadly cancer in the United 
State. The proposed causative factors include but not 
limited to genetic mutations and chronic 
inflammation. Until recently, it is still not known what 
causes CRC because of complexity of the etiology of 
CRC. 

Etiologically, colon cancer is caused by spread of 
colorectal cancer cells to other parts of the body. The 
causative factors include genetic alterations, 
overexpression of Cytooxgenase-2 (COX-2), smoking, 
drinking of alcohol, harmful diet and lack of physical 
exercises [6-8]. Among those ricking factors, the 
occurrence of the cancer is closely linked to 
overexpression of COX-2, which has been noted in 

most of CRC [9, 10]. Increased levels of COX-2 mRNA 
and protein are found in the great majority of 
colorectal adenocarcinomas compared with levels in 
adjacent histologically normal mucosa [9]. A causal 
role for COX-2 in colorectal carcinogenesis is 
demonstrated in vivo in a murine model, and the 
biologic effects of upregulation of the enzyme are 
mediated predominantly through increased PGE2 
production [11]. Therefore, many researchers have 
been trying to use COX-2 inhibitors such as 
nonsteroidal anti-inflammatory drugs (NSAID) and 
COX-2 inhibitors (COXIB) to control this deadly 
disease.  

In this review, we summarize recent advances in 
understanding of COX-2 signaling in etiology of CRC. 
We also try to renew our interest in prevention and 
control of colorectal cancer by NSAID and COXIB. 

COXs  
COXs are important regulators of angiogenesis, 

inflammation and carcinogenesis. COXs are located at 
luminal side in the endoplasmic reticulum and 
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associated with the nuclear envelope [12], containing 
three isoforms, that is, COX‐1, COX-2 and COX‐3 [13]. 
COX-1 is a housekeeping enzyme to meet the basic 
requirement for prostaglandins (PGs) [13, 14]. COX-3 
is a variant of COX-1 mainly within central nervous 
system [15, 16]. In contrast, COX‐2 is an inducible 
isoform [17] in normal tissue such as colorectal, 
kidney, reproductive organs and stomach [18, 19]. 
However in carcinogenesis, COX2 can be constantly 
upregulated [17, 20], for example, adenocarcinoma, 
squamous cell carcinoma, cholangiocarcinoma, 
endometrial carcinoma and hepatocellular carcinoma 
[21, 22].  

Many factors, for example, DCA, IL-1β and LPS 
might promote expression of COX-2 moderately in 
normal fibroblasts (NFs), but profoundly in 
cancer-associated fibroblasts (CAFs) [23]. Our results 
have clearly demonstrated that COX-2 is enhanced by 
DCA, HGF and IL-1β [24-27]. As a result, 
Prostaglandin E2 (PGE2) production is greatly 
promoted, and such promotion increases proliferation 
and invasiveness of epithelial cancer cells [25, 27, 28]. 
Nevertheless, COX-2 inhibitors such as NS398 may 
decrease proliferation and invasiveness of colorectal 
cancer cells by overexpression of COX-2 and its 
product PGE2 [25, 27, 28]. 

Stromal Cells in Colorectal 
Carcinogenesis 

Stromal cells, for example, fibroblasts actively 
participate in carcinogenesis [29]. We have reported 
that fibroblasts from the stromal compartment play a 
pivotal role in COX-2 signalling and carcinogenesis 
[25-27, 30]. As shown previously, cancer-associated 
fibroblasts (CAFs) may promote epithelial ovarian 
cancer [31]. Cytokines, for example, IL-1β, Tumor 
Necrosis Factor-α (TNF-α) and other compounds, for 
instance, deoxycholic acid (DCA) stimulates COX-2 
expression, which enhances PGE2 production in 
colorectal fibroblasts [32-38]. In addition, COX-2 
expression and PGE2 production in CAFs from 
biopsies of colorectal cancer tissues are much greater 
than those from normal fibroblasts (NFs) [33]. 
Therefore, we should focus on the mechanism how 
COX-2 expression and PGE2 production is medicated 
and how such findings are linked to progression and 
invasion of colorectal cancers. 

PGEs and Their Receptors 
COX-2 is an enzyme regulating PGE2 within our 

body [39]. Prolonged PGE2 increase is usually a sign of 
inflammation, cancer genesis and spread. COX-2 
mediates biosynthesis and release of prostaglandins 
using arachidonic acid (AA) as the substrate [39]. In 
other words, this enzyme first converts arachidonic 

acid into prostaglandin G2 and prostaglandin H2, and 
then synthesize prostaglandin D2, E2, F2α, I2 and 
thromboxane A2, exerts their actions through the 
cognate G-protein-coupled receptors (GPCRs) [39]. 

Prostaglandins are active lipid compounds 
which have multiple hormone functions to participate 
in inflammation and progression of colon cancer [40, 
41].  

Prostaglandin signaling is involved in the 
progression of many diseases including chronic 
diseases such as cancer, suggesting prostaglandins are 
indeed associated with regulation of both acute and 
chronic inflammation [9]. The main form of 
prostaglandin involved in colorectal cancer is PGE2. 
PGE2 can act on the receptors, for example, EP1, EP2, 
EP3, and EP4 to induce PGE2 signal cascade, leading 
to changes of intracellular calcium, cAMP and some 
inflammatory factors. As a result, physiological or 
pathological processes follow [23, 42]. Recent 
investigations support that PGE2 may enhance 
progression of colorectal cancer [41, 43, 44], and EP4 is 
a therapeutic target for cancer therapy [45, 46]. COX-2 
derived PGE2 can also contribute to tumor 
development through several mechanisms including 
inhibition of apoptosis. However, the mechanisms by 
which PGE2 regulates apoptosis are still largely 
unknown. The EP2 and EP4 receptors mediate their 
activities through cAMP production. Suppression of 
apoptosis has been seen in intestinal cells by cAMP 
through the induction of the IAP family 
member-inhibitor of apoptosis 2 (IAP-2) [47, 48] 
Therefore, it is wise to investigate the hypothesis that 
anti-apoptotic effects of PGE2 are mediated through 
cAMP, which results in the induction of the IAP 
family member c-IAP2. 

The cellular distribution of COX-2 and 
PGE2 

The sub-epithelial tissue lies immediately 
underneath the epithelial layer. The mesenchyme of a 
tissue lies immediately underneath the epithelium. 
That is, fibroblasts are the predominant cells of the 
sub-epithelial layer. Interestingly, the cellular site of 
COX-2 upregulation in the earliest intestinal cancer 
tissue is sub-epithelial, and not epithelial. 

In fact, recent studies have demonstrated that 
fibroblasts play a far more varied role than you 
anticipate. The cells express many receptors for 
cytokines and hormones and modulate intestinal 
secretary responses to inflammatory mediators by 
releasing PGE2.  

The sub-epithelial site of inducible COX-2 
expression in early murine intestinal adenomas 
conflicts with alternative evidence that, rather, 
upregulation of this enzyme occurs in colorectal 
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epithelial cells [49]. To reconcile the issue, we 
hypothesize that in normal and premalignant 
colorectal tissue, mesenchymal cells are the principal 
source of COX-2 expression. Nevertheless, once 
malignant transformation has occurred, the enzyme is 
also expressed in the epithelium. The question, then, 
arises of which mesenchymal cells might express 
COX-2 in nonmalignant colorectal tissue. 

COX-2 signaling is a marker for tumorigenesis 
COX‐2 is a short-lived rate‐limiting enzyme [19, 

50]. It converts arachidonic acid (AA) to 
prostaglandins (PGs) and thromboxanes [51]. A major 
PG product of COX-2 is PGE2, which may regulate 
angiogenesis, immunity and tumorigenesis [52-54]. In 
carcinogenesis, COX-2 may be uncontrollably 
elevated, transcriptionally or post‐transcriptionally 
[55, 56]. Therefore, increase of COX-2 expression is a 
marker for tumor diagnosis, which is associated with 
patients’ survival rate [17, 57-60]. The significant roles 
of COX2 signaling has closely been correlated various 
types of cancer as reported [13, 18, 61-63]. Recent 
research suggests that PGE2 may indeed significantly 
promote development and progression of colorectal 
cancer [41, 43, 44]. COX‐2 is also critical to promote 
metastasis [64] participating in metastasis to bone 
[65], brain [66], liver [67] and lymph nodes [68]. 
COX-2-medicated Factors like IL‐11 is associated with 
cancer metastasis [65]. Metastasis occurs when cancer 
cells invade extracellular matrix, blood vessels and 
finally lymphatics [69]. Growing evidence has 
indicated that COX-2 signaling plays important roles 
in colorectal cancer metastasis. For instance, 
transactivation of EGFR by Src can promote the 
invasion mediated by PGE2 [70]. PGE2 may also 
promote invasion of colorectal cancer cells through 
PI3K [71]. In addition. COX-2 overexpression can 
affect adhesion properties of intestinal cells [72] and 
promote matrix metalloproteinase activity and thus 
cancer invasion [73]. Inhibition of COX-2 can 
antagonize colorectal metastasis in human [74] and in 
mouse [75] models. c-Met, hepatocyte growth factor 
receptor, may be transactivated by PGE2 via EGFR in 
case of colorectal cancer [76] which is linked with loss 
of cell-cell contact and invasion [77]. The supporting 
evidence includes co-existence of β-catenin and c-Met 
at invasive edge of colorectal tumor [76]. COX‐2 may 
promote carcinogenesis via β1‐integrin [78, 79]. In all, 
these reports indicate that COX-2 indeed actively 
participate in tumorigenesis. Interestingly, a recent 
article demonstrates that COX-2 in addition to cancer 
epithelial cells is also expressed in the cancer stroma 
cells and in the stroma cells of the adjacent normal 
tissue and that prostaglandin E2 (the final product of 
arachidonic acid catalysis by COX-2) is significantly 

more profoundly expressed in the adjacent normal 
tissue compared to cancer tissue (p <0.002) [80], 
suggesting that the role of COX-2 appears to be 
involved in the early stages of progression of the 
oncogenetic mechanism of CRC, initially affecting the 
host (tumor microenvironment) of the tumor in 
normal cells and later tumor epithelial cells of the 
tumor itself. The authors suggest that treatment 
should be given to prevent CRC rather than to 
suppress this progression especially to colorectal 
tumors in which the expression was found to be 
greatest. 

COX-2-promoted carcinogenesis is 
related to angiogenesis 

Suppression of COX-2 inhibits corneal 
neovascularization in colorectal cancer [81] by 
promoting production of angiogenic vascular 
endothelial growth factor (VEGF), a potent angiogenic 
growth factor [82]. In fact, overexpression of COX-2 
promotes overexpression of VEGF, which induces 
tumor angiogenesis in Apc/COX-2 knockout mouse 
model [83]. Deletion of COX-2 gene may result in 
reduced growth in tumor xenografts and vascular 
density [84], probably via activation of Rac1 and 
Cdc42 [85]. In all, evidence indicates that COX-2 may 
induce uncontrollable angiogenesis in colorectal 
cancer.  

Cytokines and other compounds 
regulating COX-2 signaling 

Recent reviews have summarized recent 
advances in the role of COX-2 and prostaglandin E2 in 
the pathogenesis of colorectal cancer [18, 61, 62]. A 
report suggests that PGE2 signaling mediates chronic 
inflammation in the colorectal microenvironment [86]. 
Cytokines and other compounds such as DCA, IL-1β, 
tumor necrosis factor α (TNF-α) and lipopolysac-
charide (LPS) may promote expression of COX-2 
mRNA and protein in human colorectal fibroblasts, 
profoundly in cancer-associated fibroblasts (CAF) 
[25-27]. When stimulated with the pro-inflammatory 
cytokines interleukin (IL)-1β or TNF-α, orbital 
fibroblasts express high levels of COX-2 and 
synthesized correspondingly high levels of PGE2 [87]. 
Powell and colleagues described a population of 
specialized sub-epithelial “myofibroblasts” with 
pleiotropic capabilities, including the ability to 
modulate intestinal secretory responses to 
inflammatory mediators by releasing PGE2 [88]. We 
have noted that IL-1β or TNF-α promotes production 
of PGE2 by as much as 25-fold in human colorectal 
fibroblasts we obtained from colonoscopies [30]. 
Equivalent or greater increases in COX-2 mRNA and 
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protein expression preceded the increases in PGE2 
synthesis. We also report that inducible COX-2 
expression is substantially more robust in 
cancer-associated than normal colorectal fibroblasts 
[28]. IL-1β may stimulate expression of COX-2 and 
production of PGE2 synthesis in cancer-associated 
fibroblasts by activating COX-2 promoter activities. 
The rate at which COX-2 mRNA decays can be 
dramatically retarded in vitro by PGE2 [89]. We believe 
that this mechanism may be an important 
contributing factor to the enhanced PGE2 synthesis of 
cancer-associated colorectal fibroblasts. Those 
reactions are probably through activation of protein 
kinase C (PKC) [90], suggesting that stromal cells also 
play an important role in colorectal carcinogenesis. 
Such activation may be through enhanced production 
of PGE2, and as a result, mediating proliferation, 
invasion and apoptosis of colorectal cancer cells [25, 
27]. Such activation of COX-2 is closely associated 
with increased proliferation and invasiveness in 
human colorectal epithelial cancer cells [25, 27, 28], 
because COX-2 inhibitor (NS398) or PKC inhibitor 
(Bisindoylmalemide I, BIM or Staurosporine, STA) 
can dramatically down-regulate the proliferation and 
invasiveness of colorectal epithelial cancer cells [25, 
27, 28]. Combination of PKC and COX-2 inhibitors can 
synergistically inhibit melanoma metastasis [91]. We 
have noted that IL-1β and TNF-α induce mRNA 
overexpression of COX-2 and promote production of 
PGE2 in human colorectal fibroblasts, especially in 
CRC-associated strains [27, 92]. We have also noted 
that DCA strongly promotes COX-2 expression and 
PGE2 production in colorectal cancer fibroblasts in 
vitro [25]. Inducible nitric oxide synthetases (iNOS) 
are also probably involved in the carcinogenesis of 
colorectal cancer because activation of iNOS by LPS is 
associated with activation of COX-2 signaling, and 
inhibition of iNOS by iNOS inhibitor 1400W or iNOS 
siRNA may nullify production of nitric oxide (NO) 
and PGE2 [26]. NO may also promote mRNA 
production of COX-2 from colorectal cancer cells, for 
example, HCA7 and HCT116 [56]. We have reported 
that deoxycholic acid (DCA) also dramatically 
promotes COX-2 expression in colorectal cancer 
fibroblasts in vitro [25]. The expression and activity of 
iNOS and COX-2 may also be induced by LPS in those 
fibroblasts, resulting in increased NO production and 
COX-2 expression [26]. DCA is also a transcriptional 
activator of COX-2 in esophageal cancer cells [93]. 

Nonsteroidal Anti-inflammatory drugs 
For decades, a significant progress is achieved to 

discoveries of effective drugs for CRC. One of those is 
nonsteroidal anti-inflammatory drugs (NSAID) which 
inhibit COX-2 [94-96]. NSAID includes aspirin, 

ibuprofen, naproxen, nimesulide and sulindac acid. 
Different NASID may act via different signaling 
pathways. For example, ibuprofen, indomethacin and 
naproxen can bind the activity site of COX-2, inhibit 
its activity reversibly, while aspirin acetylates the 
activity site of COX-2, attenuating its activity 
irreversibly. Some NSAID drugs for example, Aspirin, 
can facilitate the effect of COX-2 inhibitors for 
treatment of stage III colorectal cancer [97]. In fact, 
Aspirin may reduce colon cancer mortality in women 
by as much as 50 % [9, 98, 99]. Recently, a hybrid drug 
KSS19, a combination of NSAID refecoxib and 
cis-stilbene, has been found to be a potent COX-2 
inhibitor, which inhibits colon cancer cell growth 
effectively [100]. 

Although COX-2 inhibitors are promising 
candidates for treatment of colorectal cancer, some 
concerns for treatment of colorectal cancer by COX 
inhibitors have been raised. For example, an elevated 
risk of myocardial infarction may be linked to its 
usage [101]. In addition, the extended use of 
nonselective NSAID is also associated with a number 
of pathological symptoms, for example, abdominal 
pain, dyspepsia, gastritis, gastrointestinal bleeding 
nausea, and perforation of gastroduodenal ulcers 
[102]. Therefore, no major clinical trials of those 
inhibitors were successfully completed due to 
concerns of their adverse effect. Anyway, NSAID are 
effective in certain degrees for prevention and 
treatment of colorectal cancer. For example, a 
randomized trial demonstrates that NSAID are 
preventive for colorectal cancer on the patients with 
polyps [103, 104]. According to the results of 
large-scale trials, including the Adenomatous Polyp 
Prevention on Vioxx trial [105], the Adenoma 
Prevention with Celecoxib trial [104], the Prevention 
of Colorectal Sporadic Adenomatous Polyps trial 
[106] and colon polyp prevention trial [107], COXIB 
are effective for prevention of recurrence from 
sporadic colon cancer. Regular consumption of 
NSAID is also helpful for lowing the risk of colorectal, 
breast, lung and prostate cancer [108]. In all, it is still 
unknown how to prevent the potential risk when 
COX inhibitors are used for treatment of colorectal 
cancer.  

To decrease the risk from COX inhibitors, many 
researchers have used low dose of COX inhibitors 
with other NSAID drugs that target other critical 
pathways in carcinogenesis. For example, 
combination of celecoxib with erlotinib (an EGFR 
tyrosine kinase inhibitor) is more effective to control 
polyp formation using an ApcMin/+ mice model and 
to inhibit cancer growth in a xenograft model [109]. 
Celecoxib with erlotinib treatment is more effective 
for treatment of the advanced non-small cell lung 
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cancer [110]. A 5-lipoxygenase inhibitor may inhibit 
resistant tumor cells to SC-236 (COX inhibitor) and 
tumor growth in a breast cancer animal model [111]. 
Combined treatment of celecoxib with peroxisome 
proliferators-activated receptor-γ agonist is better 
than either alone in a mouse breast cancer model 
[112]. Combination of aromatase inhibitors with 
celecoxib is better for patients suffering from 
metastatic breast cancer than either alone [113]. 
Therefore, we should reconsider the prospect of COX 
inhibitors for treatment of colon cancer. 

Perspective  
From previous work on certain types of cancer, 

COX‐2 may be is a key indicator to predict cancer 
prognosis. Along with the product PGE2, COX-2 is a 
major stimulator for progression of colorectal cancer. 
Up to now, the reports from basic and clinical 
investigations have shown that inhibition of PGE2 
synthesis by specific COX-2 inhibitors, for example, 
nonsteroidal anti-inflammatory drugs (NSAIDs) may 
decrease the risk and improve prognosis of 
carcinogenesis of various types of cancer including 
colorectal cancer [64, 114-120]. Therefore, we need to 
strive forward to work out a protocol for successful 
use of COX-2 inhibitors in clinical applications to 
colorectal cancers and other types of cancer as well. 

Summary  
To summarize, the scientific basis for the current 

proposal, outlined above, is as follows: fibroblasts 
from mesenchymal (stromal) layer are the major 
target of cytokines such as IL1β and TNFα; fibroblasts 
are the predominant mesenchymal cells; fibroblasts 
from nonneoplastic colorectal tissue are a potent 
source of COX-2 expression, which is firmly 
established as an important factor in colorectal 
carcinogenesis. We believe that the investigation of 
COX-2 gene regulation is vital for control of this 
disease. 

Abbreviation 
CAF: cancer-associated fibroblast; COX: 

Cyclooxygenase; CRC: colorectal cancer; DCA: 
deoxycholic acid; EGF: epithelial growth factor; EP, 
FP, IP, TP and DP: prostanoid receptors; IL-1β: 
Interleukin 1β; iNOS: inducible nitric oxide synthase; 
LPS: lipopolysaccharide; NF: normal fibroblast; NO: 
nitric oxide; NSAID: nonsteroidal anti-inflammatory 
drug; p53: tumor protein p53; PG: prostaglandin; 
PKA: cAMP-dependent protein kinase; PKC: protein 
kinase C; TNF: tumor necrosis factor. 
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