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Summary
Background In pancreatic ductal adenocarcinoma (PDAC), the chemokine (C-C motif) ligand 2 (CCL2)/chemokine (C-C motif)
receptor 2 (CCR2) axis plays a key role in immunosuppressive properties of the tumor microenvironment, patient prognosis, and
chemoresistance. This phase Ib study assessed the effects of the orally administered CCR2 inhibitor PF-04136309 in combination
with nab-paclitaxel and gemcitabine in patients with previously untreated metastatic PDAC. Methods Patients received PF-
04136309 twice daily (BID) continuously plus nab-paclitaxel (125 mg/m2) and gemcitabine (1000 mg/m2) administered on days
1, 8, and 15 of each 28-day cycle. The primary objectives were to evaluate safety and tolerability, characterize dose-limiting
toxicities (DLTs), and determine the recommended phase II dose (RP2D) of PF-04136309. Results In all, 21 patients received PF-
04136309 at a starting dose of 500 mg or 750 mg BID. The RP2D was identified to be 500 mg BID. Of 17 patients treated at the
500 mg BID starting dose, three (17.6%) experienced a total of four DLTs, including grade 3 dysesthesia, diarrhea, and
hypokalemia and one event of grade 4 hypoxia. Relative to the small number of patients (n = 21), a high incidence (24%) of
pulmonary toxicity was observed in this study. The objective response rate for 21 patients was 23.8% (95% confidence interval:
8.2–47.2%). Levels of CD14 + CCR2+ inflammatory monocytes (IM) decreased in the peripheral blood, but did not accumulate
in the bone marrow. Conclusions PF-04136309 in combination with nab-paclitaxel plus gemcitabine had a safety profile that
raises concern for synergistic pulmonary toxicity and did not show an efficacy signal above nab-paclitaxel and gemcitabine.
ClinicalTrials.gov identifier: NCT02732938.
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Introduction

Metastatic pancreatic ductal adenocarcinoma (mPDAC) is a
lethal disease with a median survival duration of less than
1 year [1–4]. While two combinat ion regimens,
FOLFIRINOX (folinic acid, fluorouracil, irinotecan, and
oxaliplatin) and nab-paclitaxel/gemcitabine are used as stan-
dard therapies, the median survival associated with these reg-
imens is less than a year, hence the need to seek other novel
therapeutic approaches [5]. Progress in basic and translational
immunology has confirmed the importance of controlling the
immune system in cancer progression and in its treatment, and
has renewed an interest in immune-based therapy for various
cancers, including PDAC.

The main cellular components contributing to the immuno-
suppressive microenvironment include myeloid-derived sup-
pressor cells (MDSCs), tumor associated macrophages
(TAMs), mast cells, and T-regulatory cells (Tregs) [6, 7].
MDSCs comprise a heterogeneous population of immature
cells of myeloid lineage that are considered to be key in or-
chestrating the suppressive tumor microenvironment. MDSC
prevalence is increased in the peripheral blood and in the
tumor microenvironment of patients with solid tumors, includ-
ing PDAC [8]. In solid tumors, the number of circulating
MDSCs significantly correlates with clinical state and meta-
static tumor burden [9] and, in mice, reduction of MDSCs by
inhibition [10] or deletion [11, 12] of factors that promote
MDSC expansion has been shown to improve antitumor im-
mune response [10], reduce primary and metastatic tumor
progression [11], and abolish the tumor-promoting activity
of MDSCs [11]. The pharmacologic modulation of MDSCs
and prevention of their appearance or infiltration in solid tu-
mors represent potential novel and innovative therapeutic
strategies in cancer [10, 13–18].

In murine models of pancreatic cancer, it has been shown
that MDSCs are upregulated in the tumor-bearing host, pro-
mote tumor growth, and suppress antitumor immunity [8].
The chemokine (C-C motif) ligand 2 (CCL2)/chemokine (C-
C motif) receptor 2 (CCR2) signaling axis contributes to tu-
mor progression through CCR2-mediated MDSC recruitment
and/or accumulation [19–21]. PF-04136309, an orally admin-
istered CCR2 inhibitor, could block CCR2-mediated signal
transduction, chemotaxis, and CCL2 binding in human mono-
cytes and human whole blood. In addition, tumor-bearing
wild-type mice treated with a CCR2 inhibitor demonstrated
a significant decrease in liver metastasis compared with vehi-
cle or gemcitabine-only treated mice [8]. These results suggest
that CCR2 is a promising therapeutic target in PDAC, a con-
dition associated with a marked upregulation ofMDSCs in the
tumor microenvironment in both mouse models and patients.

Previously, a phase Ib study demonstrated the CCR2
i n h i b i t o r PF - 0 4 136309 i n c omb i n a t i o n w i t h
FOLFIRINOX significantly increased the proportion of
patients achieving partial response (PR) compared to that
anticipated with FOLFIRINOX alone [22]. The study also
demonstrated the clinical activity of PF-04136309 corre-
lated with an accumulation of CCR2+ inflammatory
monocytes (IM) in the bone marrow, reduced levels of
IM in peripheral blood, and decreased TAM in tumors.
These encouraging results prompted the current study,
which assessed the efficacy, safety, and tolerability, as
well as the pharmacokinetics (PK) and pharmacodynam-
ics, of PF-04136309 combined with nab-paclitaxel/
gemcitabine in patients with mPDAC.

Methods

Study design

This was a multicenter phase Ib dose-finding study in the first-
line treatment of patients with mPDAC. The study was open
label and patients received prespecified doses of PF-04136309
in combination with nab-paclitaxel/gemcitabine. PF-
04136309 was supplied as a formulated 125-mg tablet and
given orally twice daily (BID) in 28-day cycles. Nab-
paclitaxel (125 mg/m2) plus gemcitabine (1000 mg/m2) was
administered in 28-day cycles by intravenous infusion over
30–40 min on days 1, 8, and 15 of each cycle, followed by
1 week off treatment.

In the dose-finding phase, a cohort of four patients was
initially enrolled to receive the PF-04136309 starting dose
of 750 mg BID in combination with nab-paclitaxel/
gemcitabine in 28-day cycles. Observed toxicities in those
patients led to a PF-04136309 dose reduction to 500 mg
BID. Following the established safety observed in these
four patients treated through the first cycle at 500 mg
BID, the cohort was expanded with an additional 12 pa-
tients treated at this dose level to establish 500 mg BID as
the recommended phase II dose (RP2D) of PF-04136309
in combination with nab-paclitaxel/gemcitabine. Although
the phase II portion of the protocol was terminated by the
sponsor, the development pathway for PF-04136309 is
still under review.

The hypothetical mechanisms of action of PF-04136309
were explored by analysis of biopsies, bone marrow aspirates,
and peripheral blood (pre- and post-treatment during the
study). Serial blood samples were collected from patients to
determine the multiple-dose PK of PF-04136309 given in
combination with nab-paclitaxel/gemcitabine.
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Patient selection

Eligible patients were males and females ≥18 years of
age, with histologically or cytologically proven diagnosis
of mPDAC who had provided a baseline tumor sample at
registration. Patients had not received previous radiother-
apy, surgery, chemotherapy, or investigational therapy for
the treatment of metastatic disease and had a life expec-
tancy ≥12 weeks. Patients with Eastern Cooperative
Oncology Group performance status (ECOG PS) 0 or 1
and adequate bone marrow, renal, and liver function were
included. Patients with known symptomatic brain metas-
tases requiring steroids or who had prior therapy with
modulators of monocyte or TAM function in metastatic
setting were ineligible to participate.

Objectives

The primary objectives were to evaluate the safety and toler-
ability of PF-04136309 in combination with nab-paclitaxel/
gemcitabine, to characterize the dose-limiting toxicities
(DLTs), and determine the RP2D of PF-04136309.
Secondary objectives included assessment of PF-04136309
PK analysis and ex vivo inhibition of CCL2-induced extracel-
lular signal-regulated kinase phosphorylation (pERK) as a
measure of target engagement. Exploratory objectives includ-
ed evaluation of CCL2 levels in peripheral blood and the
prevalence of IM, TAM, and other relevant immune cells in
the peripheral blood, bone marrow, and core needle biopsy of
metastases or fine-needle aspirate primary tumor tissue.

Statistical methods

Themodified intent-to-treat (mITT) populationwas defined as
all patients who had received at least one dose of study med-
ication and had measurable disease at baseline assessment
(within 28 days prior to study entry). The mITT population
was assessed for antitumor response.

Safety

Safety assessments included collection of adverse events
(AEs), serious AEs (SAEs), vital signs and physical ex-
amination, electrocardiogram (12-lead), laboratory assess-
ments, including pregnancy test, and verification of con-
comitant treatments.

A patient was considered as DLT-evaluable if the patient
experienced a DLT or if otherwise, in the absence of a DLT,
the patient received at least 85% of the planned doses of each
study drug in the first 28-day cycle. DLTs were defined as any
of the following events occurring in the first cycle of treatment
(days 1 through 28) and attributed (i.e., judged to be at least
possibly related) to the combination of PF-04136309 plus

nab-paclitaxel/gemcitabine, where relationship with the com-
bination could not be ruled out. DLTs were hematologic
events of grade 4 neutropenia lasting >5 days; febrile neutro-
penia; grade ≥ 3 neutropenic infection; grade ≥ 3 thrombocy-
topenia with grade ≥ 2 bleeding; grade 4 thrombocytopenia;
and nonhematologic events of grade 3 toxicities. Exceptions
included nausea and vomiting responding to prophylaxis and/
or treatment and lasting <7 days from each chemotherapy
infusion period; diarrhea responding to treatment and lasting
<7 days; grade 3 fatigue lasting <7 days; grade 3 QT interval
corrected for heart rate prolongation (>500 msec) persisting
after correction of any reversible causes; and/or grade 3 aspar-
tate aminotransferase (AST) and/or alanine aminotransferase
(ALT) increase lasting ≤7 days. All grade 4 toxicities and a
delay of >2 weeks in receiving the next scheduled cycle due to
persistent treatment-related toxicities were considered DLTs.
AEs meeting DLTcriteria in the dose-expansion phase includ-
ed grade 3 events of diarrhea, hypokalemia, and dysesthesia
and grade 4 hypoxia. Treatment for these events followed the
DLT defined by guidelines used during the dose-finding phase
and did not change the identification of the RP2D in the study.

AEs were graded according to the National Cancer
Institute Common Terminology Criteria for Adverse
Events, version 4.03.

Efficacy

Objective response rate (ORR) was defined as the proportion
of patients with confirmed complete response (CR) or con-
firmed PR according to Response Evaluation Criteria In
Solid Tumors, version 1.1, relative to all enrolled patients
who had baseline measurable disease. Confirmed responses
were those that persisted on repeat imaging ≥4 weeks after
initial documentation of response. Indeterminate responses
were those with no documented progression and absence of
proper assessment of target lesions.

Patients without on-study radiographic tumor re-evaluation
and those who died, progressed, or dropped out for any reason
prior to reaching a CR or PR were counted as nonresponders
in the assessment of ORR. The ORR, CR, and PR point esti-
mates for each treatment arm were provided along with the
corresponding two-sided 95% confidence intervals (CIs)
using an exact method.

Imaging for tumor assessments included computed tomog-
raphy (CT) or MRI scans of the chest, abdomen, and pelvis;
brain CT or MRI scan for patients with known or suspected
brain metastases; and bone scan and/or bone X-rays for pa-
tients with known or suspected bone metastases.

Pharmacokinetic and pharmacodynamic assessment

Blood samples sufficient to provide ≥1 mL of plasma were
collected for measurement of PF-04136309 concentrations.
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Plasma PF-04136309 concentrations were quantified with
a validated liquid chromatography–mass spectrometry
method. PF-04136309 concentration–time data from cycle
1 day 15 were analyzed using noncompartmental methods
to estimate PK parameters.

The levels of CD14 + CCR2+ IM or other immune-cell
phenotypes in the samples from the core needle biopsy,
fine-needle aspirate from primary tumor tissue, bone mar-
row, and peripheral blood were assessed by flow cytome-
try. CCL2 levels were determined using whole blood plas-
ma by immunoassay using a luminex-based method. The
ex vivo inhibition of CCL2-induced pERK by PF-
04136309 was measured in whole blood using flow cy-
tometry. Percentages of CD4+, CD8+, and CD4 + FoxP3+
T cells within CD45+ populations were evaluated by flow
cytometry in paired fresh biopsy samples from three pa-
tients. Two patients provided both baseline and on-study
biopsies, and one patient provided a baseline biopsy only.

Results

Patient characteristics

Twenty-one patients (nab-paclitaxel/gemcitabine plus: PF-
04136309 750 mg BID [n = 4] or 500 mg BID [n = 17])
were treated and included in the PK and safety analyses
(Table 1). All 21 patients discontinued from both the treat-
ment phase and study phase. Patients had ECOG PS 0 or 1,
except for one patient in the 500-mg BID group who had
baseline ECOG PS 2 – this patient had ECOG PS 1 during
the screening period.

Safety

Previous clinical studies demonstrated that PF-04136309 was
generally safe and well tolerated after a single oral dose of up
to 1000 mg, and after repeated oral administration up to
500 mg BID as a single agent or in combination with
FOLFIRINOX [22]. Repeated dosing with >500 mg BID
was previously untested. In this study, repeated PF-
04136309 dosing of 750 mg BID was evaluated for the first
time, in combination with nab-paclitaxel/gemcitabine.

In the 750-mg BID group (n = 4), the most frequently re-
ported (≥75%) all-causality treatment-emergent AEs (TEAEs)
were nausea and fatigue (n = 4 each [100.0%]) and leukope-
nia, neutropenia, constipation, vomiting, ALT increase, alope-
cia, and rash (n = 3 each [75.0%]) (Table 2). Each of the four
(100.0%) patients had at least one grade 3 TEAE: the most
frequently reported (≥50%) events were leukopenia and neu-
tropenia (n = 3 each [75.0%]) (Supplementary Table S1). No
patient experienced grade 4 TEAE or treatment-related death.

The most frequently reported PF-04136309-related TEAE
(≥30%) was rash (n = 3 [75.0%]).

Of the four treated patients in the 750-mg BID group, one
(25.0%) experienced a DLT of grade 3 cognitive disorder that
occurred on cycle 1 day 7 and resolved on the same day; the
patient was disorientated, had loss of memory, and presented
with an acute onset of speech difficulties, which lasted several
hours and required a visit to the emergency department. An
ischemic stroke was ruled out for this patient and there was no
previous neurologic history of stroke. This DLT was consid-
ered to be related to treatment with PF-04136309 and resulted
in a dose reduction to 250 mg BID, which continued until
discontinuation from treatment phase. The remaining three
patients did not experience DLTs, but all experienced AEs
(grade 1–2 events of peripheral sensory neuropathy, rash, rash
maculopapular, or cellulitis) that resulted in dose reduction of
PF-04136309. To allow better tolerability, the PF-04136309
dose was reduced to 500 mg BID in combination with nab-
paclitaxel/gemcitabine for the subsequent cohort of patients.

In the 500-mg BID group (n = 17), the most frequently
reported (≥60%) all-causality TEAEs were nausea (n = 14
[82.4%]), fatigue (n = 13 [76.5%]), pyrexia (n = 12
[70.6%]), and anemia (n = 11 [64.7%]) (Table 2). Twelve
(70.6%) patients had at least one grade 3 TEAE; the most
frequently reported (≥20%) events were lymphopenia, fa-
tigue, and increased AST (n = 5 each [29.4%]) and anemia
(n = 4 [23.5%]) (Table 2). Three patients (17.6%) had at
least one grade 4 TEAE, including increased ALT
(Table 2), decreased neutrophil count and white blood cell
count, and hypoxia (n = 1 each [5.9%]) (data not shown).
The most frequently reported PF-04136309-related TEAE
(≥30%) was rash (n = 6 [35.3%]).

Of the 17 treated patients in the 500-mg BID group,
three (17.6%) experienced a total of four DLTs: one pa-
tient with two DLTs of grade 3 diarrhea and hypokalemia,
one patient with one DLT of grade 3 dysesthesia, and one
patient with one DLT of grade 4 hypoxia. Grade 3 pneu-
monitis was reported as a late-onset DLT. Additionally,
one patient experienced grade 5 SAE of pneumonia
(Supplementary Table S2), which was considered unrelat-
ed to PF-04136309, but determined by the sponsor to be
possibly related to gemcitabine and nab-paclitaxel.

Eleven deaths occurred in total, all in the PF-04136309
500-mg BID group. The main cause of death (10 out of 11)
was disease under study, all of which occurred after the SAE
reporting period (i.e., after 28 days following the last dose of
study treatment). The one death that occurred during the SAE
reporting periodwas due to study treatment toxicity (the afore-
mentioned grade 5 pneumonia). The patient was admitted to
an intensive care unit due to hypoxic respiratory failure. A
right-sided central line was placed for administration of med-
ications, which resulted in a right-sided pneumothorax.
Although diagnosed as pneumonia, pathogens were not
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cultured. Despite the fact that the patient was provided with
antibiotics, supplemental oxygen, and supportive care, the pa-
tient continued to desaturate and required higher ventilation
setting and respiratory care, and subsequently developed acute
renal failure with rising levels of creatinine. The patient died
approximately 7 days following hospital admission.

Overall, 14 (66.7%) of the 21 treated patients experienced
SAEs (Supplementary Table S2) and seven (33.3%) patients
experienced treatment-related SAEs (attributed to at least one

of the three exposure drugs [PF-04136309, nab-paclitaxel, or
gemcitabine]) (Supplementary Table S3). Most of the SAEs
were in one patient each. Four patients had SAEs that led to
permanent discontinuations of study treatment. Of note, three
patients experienced SAEs of pneumonitis, all of which were
considered treatment-related and resulted in permanent dis-
continuations of study treatment (Supplementary Table S3).
Two patients who were permanently discontinued from treat-
ment experienced a grade 4 SAE of hypoxia and a grade 2

Table 1 Patient characteristics
PF-04136309 BID + nab-P/Gem (N = 21)a

750 mg

n = 4

500 mg

n = 17a
Total

n = 21

Age, mean (range) 61.3 (50–73) 61.9 (46–79) 61.8 (46–79)

Males / Females, n 0 / 4 11 / 6 11 / 10

Race, n (%)

White 4 (100.0) 15 (88.2) 19 (90.5)

Black 0 1 (5.9) 1 (4.8)

Asian 0 1 (5.9) 1 (4.8)

ECOG PS

0 3 (75.0) 8 (47.1) 11 (52.4)

1 1 (25.0) 8 (47.1) 9 (42.9)

2 0 1 (5.9) 1 (4.8)

Site of metastatic disease, n (%)

Liver 2 (50.0) 14 (82.4) 16 (76.2)

Lung 1 (25.0) 6 (35.3) 7 (33.3)

Lymph node–Other 1 (25.0) 4 (23.5) 5 (23.8)

Lymph node–Supraclavicular 0 1 (5.9) 1 (4.8)

Peritoneum 0 2 (11.8) 1 (4.8)

Other 4 (100.0) 14 (82.4) 18 (85.7)

CA19.9 (U/mL) at baseline

n 3 16 19

Mean 30197.33 15544.02 17857.70

Range 25.0–87160.0 0.5–112193.0 0.5–112193.0

Assigned to treatment, n

Treated 4 (100) 17 (100) 21 (100)

Discontinued 4 (100) 17 (100) 21 (100)

DLT, n (%)b 1 (25) 3 (17.6) 4 (19.0)c

First subject–first visit: May 4, 2016; Last subject–first visit: September 15, 2017
a Twenty-two patients (n = 4 and 18 in the PF-04136309 750 mg BID + nab-paclitaxel/gemcitabine and PF-
04136309 500 mg BID + nab-paclitaxel/gemcitabine groups, respectively) were assigned to study treatment,
but one patient from the 500-mg BID group withdrew consent and did not receive study treatment
b DLT observation periods that occur in the first cycle of treatment (days 1 through 28) and are attributed (i.e.,
judged to be at least possibly related) to the combination of PF-04136309 plus nab-paclitaxel/gemcitabine where
relationship with the combination cannot be ruled out. DLTs are classified according to CTCAE version 4.03. A
patient is classified as DLT evaluable if he/she experiences a DLT or a DLT is absent but patient receives 85% of
the planned doses of each study drug in the first 28-day cycle
c 5 DLTs were reported in four patients

Abbreviations: CA-19.9 cancer antigen 19.9, CTCAE Common Terminology Criteria for Adverse Events, DLT
dose-limiting toxicities, ECOG PS Eastern Cooperative Oncology Group performance status, nab-P/Gem nab-
paclitaxel/gemcitabine
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non-SAE of ALT increase, respectively, both of which were
considered treatment-related. Five patients were identified
with an acute pulmonary AE that may have been attributable
to the combination of nab-paclitaxel, gemcitabine, and PF-
04136309 (Supplementary Table S3). The grade 4 AEs of
decreased neutrophil counts, decreased white blood cell
counts, and increased ALT, observed in one patient each in
the 500-mg BID group, were all considered unrelated to study
treatment. There were no clinically significant changes in lab-
oratory tests consistent with a relationship to study drug.

There were no clinically significant changes in vital signs data
consistent with a relationship to study drug and no consistent
pattern in findings on physical examinations. The RP2D for
PF-04136309 in combination with nab-paclitaxel/gemcitabine
was determined to be 500 mg BID.

Efficacy

All 21 treated patients had measurable disease at baseline
assessment and were included in the mITT population. None

Table 2 Summary of TEAEsa in
>25% patients in any treatment
group (all-causality, all cycles) –
safety analysis set

Grade 1

n (%)

Grade 2

n (%)

Grade 3

n (%)

Grade 4

n (%)

Grade 5

n (%)

Total

N (%)

PF-04136309 750 mg BID + nab-P/Gem (n = 4)
Any AE 0 0 4 (100.0) 0 0 4 (100.0)
Anemia 0 2 (50.0) 0 0 0 2 (50.0)
Leukopenia 0 0 3 (75.0) 0 0 3 (75.0)
Neutropenia 0 0 3 (75.0) 0 0 3 (75.0)
Thrombocytopenia 1 (25.0) 1 (25.0) 0 0 0 2 (50.0)
Constipation 2 (50.0) 1 (25.0) 0 0 0 3 (75.0)
Nausea 3 (75.0) 0 1 (25.0) 0 0 4 (100.0)
Vomiting 2 (50.0) 1 (25.0) 0 0 0 3 (75.0)
Chills 2 (50.0) 0 0 0 0 2 (50.0)
Fatigue 3 (75.0) 1 (25.0) 0 0 0 4 (100.0)
Malaise 2 (50.0) 0 0 0 0 2 (50.0)
Pyrexia 1 (25.0) 1 (25.0) 0 0 0 2 (50.0)
Cellulitis 0 1 (25.0) 1 (25.0) 0 0 2 (50.0)
ALT increase 0 2 (50.0) 1 (25.0) 0 0 3 (75.0)
Appetite decrease 1 (25.0) 0 1 (25.0) 0 0 2 (50.0)
Pain in extremity 1 (25.0) 1 (25.0) 0 0 0 2 (50.0)
Insomnia 1 (25.0) 1 (25.0) 0 0 0 2 (50.0)
Alopecia 2 (50.0) 1 (25.0) 0 0 0 3 (75.0)
Rash 2 (50.0) 1 (25.0) 0 0 0 3 (75.0)

PF-04136309 500 mg BID + nab-P/Gem (n = 17)
Any AE 0 1 (5.9) 12 (70.6) 3 (17.6) 1 (5.9) 17 (100.0)
Anemia 2 (11.8) 5 (29.4) 4 (23.5) 0 0 11 (64.7)
Lymphopenia 0 0 5 (29.4) 0 0 5 (29.4)
Abdominal pain 0 3 (17.6) 3 (17.6) 0 0 6 (35.3)
Constipation 5 (29.4) 2 (11.8) 0 0 0 7 (41.2)
Diarrhea 4 (23.5) 2 (11.8) 1 (5.9) 0 0 7 (41.2)
Nausea 12 (70.6) 2 (11.8) 0 0 0 14 (82.4)
Vomiting 6 (35.3) 1 (5.9) 0 0 0 7 (41.2)
Fatigue 4 (23.5) 4 (23.5) 5 (29.4) 0 0 13 (76.5)
Edema, peripheral 7 (41.2) 1 (5.9) 0 0 0 8 (47.1)
Pyrexia 7 (41.2) 5 (29.4) 0 0 0 12 (70.6)
ALT increase 1 (5.9) 2 (11.8) 3 (17.6) 1 (5.9) 0 7 (41.2)
AST increase 0 1 (5.9) 5 (29.4) 0 0 6 (35.3)
Blood alkaline phosphatase 1 (5.9) 4 (23.5) 2 (11.8) 0 0 7 (41.2)
Weight decreased 5 (29.4) 4 (23.5) 0 0 0 9 (52.9)
Appetite decrease 5 (29.4) 0 1 (5.9) 0 0 6 (35.3)
Hyperglycemia 2 (11.8) 3 (17.6) 3 (17.6) 0 0 8 (47.1)
Headache 4 (23.5) 1 (5.9) 0 0 0 5 (29.4)
Neuropathy peripheral 8 (47.1) 1 (5.9) 0 0 0 9 (52.9)
Insomnia 7 (41.2) 1 (5.9) 0 0 0 8 (47.1)
Alopecia 7 (41.2) 3 (17.6) 0 0 0 10 (58.8)
Rash 7 (41.2) 1 (5.9) 0 0 0 8 (47.1)

aMaximum grade per Common Terminology Criteria for Adverse Events [CTCAE]

Abbreviations: AE adverse event, ALT alanine aminotransferase, ASTaspartate aminotransferase, BID twice daily,
N number of evaluable patients, n number of patients in the category, nab-P/Gem nab-paclitaxel/gemcitabine,
TEAE treatment-emergent adverse event
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of the 21 treated patients achieved CR (Fig. 1a and
Supplementary Table S4). Five patients (all in the 500-mg
BID group) showed a best overall response of PR. Of the four
treated patients in the 750-mg BID group, the best overall
response observed was unconfirmed PR in one (25.0%) pa-
tient, stable disease in one (25.0%) patient, and was indeter-
minate in two (50.0%) patients (Fig. 1 and Supplementary
Table S4). Of the 17 treated patients in the 500-mgBID group,
the best overall response observed was PR in five (29.4%)
patients, unconfirmed PR in one (5.9%) patient, stable disease
in two (11.8%) patients, objective progression in three
(17.6%) patients, early death in one (5.9%) patient, and was
indeterminate in five (29.4%) patients (Fig. 1a and
Supplementary Table S4). For all 21 patients who received
treatment, the ORR was 23.8% (95% exact CI, 8.2–47.2%).
In the 500 mg BID group (n = 17) the ORR was 29.4% (95%
exact CI, 10.3–56.0%) (Supplementary Table S4). Overall
survival was not evaluated in this study. Due to the study
being terminated prematurely, only 2 of the 17 patients in

the 500 mg group and 1 of the 4 patients in the 750 mg group
had progression events and the rest were censored. The medi-
an progression-free survival (mPFS) for the 500 mg group
was 5.3 months, but due to the censoring and the small num-
ber of patients with progression events, mPFS is not an appro-
priate estimate in this regard.

PK assessment

PF-04136309 was quickly absorbed following oral administra-
tion, with a median time to maximum plasma concentration
(Tmax) of 1.42 h at the 500-mg BID dosage. The observed values
ofareaunder theplasmaconcentration–time (AUC)profilewithin
the dose interval tau (AUCtau; 10,600 and 15,700 ng·hr/mL) and
maximum plasma concentration (Cmax; 2950 and 3390 ng/mL)
values were higher in the 750-mg BID group (n = 2) compared
with themeanAUCtau (5873ng·hr/mL) andmeanCmax (1276ng/
mL) in the 500-mg BID group. At 500-mg BID dosing (n= 13),
steady-state PK parameters for PF-04136309 were associated
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with a moderate interpatient variability, with a coefficient of var-
iation of 44%, 57%, and 30% forCmax,Cmin, andAUCtau, respec-
tively. There was no apparent correlation between cycle 1 steady-
state plasma exposure and ORR or the occurrence of DLTs.

Pharmacodynamic assessment

An increase in CCL2 levels (Fig. 2a, b) and drop in pERK
(Fig. 2c, d)was observed inmost patients over the course of study
at both the 500mg (n = 17) and 750mg (n= 4) BID doses of PF-
04136309. Nearly all patients exhibited a drop in absolute counts
of CD14 +CCR2+ IM in peripheral blood from baseline (study
day1pre-dose) to studyday2 and the levelwas sustained through
studyday15 (Fig. 3a, b). Patients in the 500-mgBIDgroupwith a
best responseof stablediseaseorPRexhibitedadrop inmonocyte
counts between day 1 pre-dose and day 2 (Fig. 3a). A similar, but
less consistent pattern was observed in patients with progressive

disease, SAEs, or in thosewhowithdrew from the study (Fig. 3b).
An accumulation ofCCR2 +CD14+monocytes in the bonemar-
rowwas not observed atweek 6 post dosing comparedwith base-
line in patients treated with PF-04136309 500 mg BID (Fig. 3c).
Two patients in the 500-mg BID group exhibited an increase in
CD4+ and CD8+ cells within CD45+ populations measured in
freshbiopsy tumorsamples (Fig.3d).CCR2+TAMlevelsalso fell
in the aforementioned two patients in the 500-mg BID group
(~6% to ~1% and ~4% to 3%, respectively; data not shown). It
should be noted that on-treatment biopsies were not mandatory
and very few patients provided consent for this procedure.

Discussion

mPDAC is a lethal disease with poor 5-year survival and is
projected to be the second leading cause of cancer death by
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Fig. 2 Effect of PF-04136309 in combination with nab-paclitaxel/
gemcitabine on the CCL2 pathway. a and b Plasma CCL2 levels of
individuals were examined by an immunoassay using a luminex-based
method. c and d Individual plots of CCL2-induced pERK by treatment
group. Target engagement was measured by an ex vivo CCL2-induced
pERK assay. a and c treatment group: 750 mg BID PF-04136309 + nab-
paclitaxel/gemcitabine. b and d treatment group: 500 mg BID PF-

04136309 + nab-paclitaxel/gemcitabine. Each symbol represents
individual patient. Abbreviations: BID twice daily, C cycle, CCL2 the
chemokine (C-C motif) ligand 2, D day, EOT end of treatment, Fl
fluorescence intensity, F-U follow-up, H hour, nab-P/gem nab-
paclitaxel/gemcitabine, pERK phosphorylated extracellular signal
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2020 in the United States [23, 24]. Although both
FOLFIRINOX and gemcitabine combined with nab-
paclitaxel improve patient survival and disease response com-
pared with single-agent gemcitabine, there is an immunosup-
pressive tumor microenvironment directed in part by the
CCL2/CCR2 axis. Since the degree of therapeutic resistance
with metastatic spread affects the lethality of aggressive
cancers, understanding and targeting the mechanisms that
are responsible for chemoresistance is critical to improv-
ing therapeutic outcomes. Immunologic targeting, in par-
ticular, is considered a key to effective treatment of this
refractory disease [25, 26].

In a prior phase II study, patients with previously un-
treated advanced pancreatic cancer dosed with 125 mg/m2

nab-paclitaxel plus 1000 mg/m2 gemcitabine on days 1, 8,
and 15 every 28 days reported grade ≥ 3 TEAEs of neu-
tropenia, leukopenia, thrombocytopenia, and anemia [27],
with a median progression-free survival and overall sur-
vival of 7.9 months and 12.2 months, respectively. In the
current study, we observed similar grade ≥ 3 hematologic
TEAEs (except thrombocytopenia) with PF-04136309
500 mg BID in combination with nab-paclitaxel/
gemcitabine and following the same dosing and treatment
schedule as the previously reported phase II study [27].

In addition to those hematologic TEAEs, we observed
three patients with grade 3 pneumonitis, one patient with
grade 4 hypoxia, and one patient with grade 5 pneumonia
among the 21 patients in the current study. The patient with
grade 5 pneumonia received PF-04136309 500 mg BID in
cycle 1 through day 16, and was hospitalized due to pneumo-
nia 6 days later. It is important to note that both nab-paclitaxel
and gemcitabine have a known association with pulmonary
toxicity, mainly pneumonitis, both alone and in combination
(synergistically). An observed rate of pneumonitis in patients
treated with gemcitabine was approximately 1% and was ele-
vated up to 4% when combined with nab-paclitaxel [3], lead-
ing to a high level of morbidity. Furthermore, advanced-stage
disease, smoking, and alcohol consumption, and possibly un-
derlying lung disease, can be potential risk factors of
gemcitabine-related pneumonitis [28]. Infections, in particu-
lar, are frequent complications in patients with malignancies.
Although relevant laboratory information was not available,
bone-marrow suppression, as a predisposing factor for infec-
tion as well as dyspnea and pneumonitis, is a common side
effect of nab-paclitaxel and gemcitabine. The patient with
grade 5 pneumonia was a smoker and thus had an additional
predisposing factor for respiratory tract infections.
Nevertheless, we observed a relatively high incidence (24%)
of pulmonary toxicity in this study, whereas no pulmonary
events have been reported in patients administered PF-
04136309 as a single agent in non-oncology studies (N =
178: 76 healthy volunteers and 102 patients) and in 39 patients
with advanced PDAC treated with PF-04136309 in

combination with FOLFIRINOX [22]. Some of the pulmo-
nary toxicity observed in this study may have been caused
by the combination between PF-04136309 and gemcitabine
with nab-paclitaxel.

Multiple measures may need to be undertaken in order to
further understand these pulmonary events. The clinical out-
come would likely depend on the particular macrophage pop-
ulations involved (immune regulatory vs. pro-immune) and
characteristics of the local tissue environment, since the mech-
anism of action of PF-04136309 is the inhibition of the traf-
ficking of IMs from the bonemarrow to the tumor, resulting in
the depletion of TAMs from tumor microenvironment, en-
hancing antitumor immunity [22]. On the other hand, deple-
tion of macrophages from healthy tissues could theoretically
increase the probability of autoimmune-mediated inflamma-
tion or, alternatively, the probability of infection, potentially
elevating the risk of gemcitabine-related pneumonitis. Further
validation by a larger study is necessary to clarify mechanisms
of pulmonary toxicity, which may be caused by the combina-
tion of nab-paclitaxel, gemcitabine, and PF-04136309.

Previous phase II and III studies in patients with PDAC
demonstrated that a regimen of nab-paclitaxel plus
gemcitabine had tolerable adverse effects with antitumor ac-
tivity [27] and improved patients’ survival and response rate
[3] compared with gemcitabine alone. PF-04136398 in com-
bination with FOLFIRINOX was shown to be well-tolerated
and demonstrated clinical activity in patients with borderline
resectable and locally advanced pancreatic cancer [22]. In the
present study, although the efficacy of PF-04136309 in com-
bination with nab-paclitaxel/gemcitabine could not be evalu-
ated adequately in a small patient population, based on all 21
patients, an ORR of 23.8% was observed; the ORR for the
500 mg BID treatment group (n = 17) was 29.4%.

The hypothesized mechanism of action of PF-04136309
is the inhibition of CCL2-induced trafficking of IM from
the bone marrow to the tumor. Three components of this
proof of mechanism are the depletion of TAM from the
tumor, a decrease of CD14 + CCR2+ IM in the peripheral
blood, and the accumulation of CD14 + CCR2+ IM in bone
marrow. Although we observed a drop of CD14 + CCR2+
IM in peripheral blood, a decrease of CCR2+ TAM in the
tumor was only observed for two patients and is inadequate
to support a definitive conclusion about this component of
the mechanism of action. Further, an accumulation of
CCR2 + CD14+ IM in the bone marrow did not take place
at week 6 post dose compared with baseline, unlike a pre-
vious study examining the combination of PF-04136309
with FOLFIRINOX [22]. The lack of accumulation of IM
in the bone marrow can be explained in part by the previ-
ous observation that gemcitabine treatment resulted in per-
sistence of IM in the peripheral blood of patients [8], thus
possibly counterbalancing the effect of PF-04136309 with
regard to IM maintenance in the bone marrow.
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A recent study that analyzed patient samples and mice with
established orthotopic tumors demonstrated that patients with

non-metastatic PDAC administered a CCR2 inhibitor showed
a compensatory influx of C-X-C motif chemokine receptor 2
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[CXCR2] + tumor-associated neutrophils (TAN), an increase
that correlates with poor prognosis in PDAC [29]. Targeting
CCR2+ TAM and CXCR2+ TAN in combination caused in-
flux of both CD8+ and CD4+ T cells in the tumor microenvi-
ronment, improving antitumor immunity and reducing tumor
burden [29]. In the present study, one patient who received
PF-04136309 had an increase in programmed cell death pro-
tein 1 (PD-1) + CD4+ and PD-1 + CD8+ cells in the tumor
biopsy sample (data not shown), suggesting PF-04136309
also modulated PD-1 immune checkpoint in mPDAC. These
results imply CCR2 inhibition reprogrammed the immuno-
suppressive tumor microenvironment and that tumor-
induced immune plasticity in response to treatment with
CCR inhibitors may be responsible for therapeutic resistance.

Although our data are limited by the nonrandomized
design and small sample size, some clinical activity was
observed with the combination of PF-04136309 and nab-
paclitaxel/gemcitabine; nonetheless the combination had a
safety profile that raises concern for synergistic pulmo-
nary toxicity in patients with mPDAC. Inhibition of
CCR2 by treatment with PF-04136309 in the presence
of nab-paclitaxel/gemcitabine resulted in a drop of IM in
peripheral blood and tumor, but unexpectedly did not ac-
cumulate IM in the bone marrow, possibly due to com-
pensatory activity by gemcitabine.
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