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ABSTRACT
Ecological data often violate common assumptions of traditional parametric statistics
(e.g., that residuals are Normally distributed, have constant variance, and cases are
independent). Modern statistical methods are well equipped to handle these
complications, but they can be challenging for non-statisticians to understand and
implement. Rather than default to increasingly complex statistical methods,
resampling-based methods can sometimes provide an alternative method for
performing statistical inference, while also facilitating a deeper understanding of
foundational concepts in frequentist statistics (e.g., sampling distributions,
confidence intervals, p-values). Using simple examples and case studies, we
demonstrate how resampling-based methods can help elucidate core statistical
concepts and provide alternative methods for tackling challenging problems across a
broad range of ecological applications.

Subjects Computational Biology, Ecology, Statistics, Computational Science, Data Science
Keywords Bootstrap, Model uncertainty, Permutation, Randomization, Replication, Resampling,
Statistical inference

INTRODUCTION
Falsifiable hypotheses and replication are two cornerstones of science (Johnson, 2002;
Popper, 2005). Replication is also critical for understanding key statistical concepts in
frequentist statistics (Box 1). Yet, as researchers, we typically encounter and analyze one
data set at a time, making it difficult to understand the concept of a sampling distribution
(i.e., the distribution of a sample statistic across repeated samples from the same
population). Fully appreciating sampling distributions requires conceptualizing the
process of repeatedly collecting new data sets, of the same size and using the same methods
of data collection, and analyzing these data in the same way as in the original analysis.
Similarly, null distributions, used to test statistical hypotheses and calculate p-values,
require that we consider the distribution of our statistics (means, regression coefficients,
etc.) across repeated hypothetical data collection and analysis efforts, while adding a
further constraint that the null hypothesis is true.

Rather than serving as a unifying concept, the importance of variability across different
replicate samples is often lost upon students when they take their first statistics course.
The traditional formula-based approach to teaching gives the impression that statistics is
little more than a set of recipes, each one suited to a different table setting of data. Most of
these recipes rely on large-sample assumptions that allow us to derive an appropriate
(albeit approximate) sampling distribution. For example, the sampling distribution of
many statistics will be well approximated by a Normal distribution for large samples.
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This result makes it possible to derive analytical formulas for calculating confidence
intervals and p-values for simple one-sample problems (e.g., involving means or
proportions) and two-sample problems (e.g., differences between group means or
proportions). Additionally, sampling distributions of coefficients in linear regression
models follow t-distributions when observations are independent and residuals are
Normally distributed with constant variance. Introductory courses may also introduce χ2

and F distributions, and mostly rely on analytical formulas for performing statistical
inference.

Most problems facing ecologists are more complicated than the univariate problems
explored in introductory statistics courses; further, assumptions of linear regression are
often untenable. Each new challenge requires a new recipe, chosen from a more specialized
and difficult-to-follow cookbook. Modern statistical methods, such as generalized
linear models and random-effects models, allow one to relax assumptions that the
residuals are Normally distributed, have constant variance, and that cases are independent.
These methods are powerful, but to understand them fully requires a background in
mathematical statistics, which most biologists lack. Consider, for example, generalized
linear mixed models (GLMMs). These methods are widely available in modern statistical
software, and biologists are routinely encouraged to analyze their data using these
methods. Yet, we frequently encounter biologists who have fit GLMMs but do not know
how to determine if the models are appropriate for their data. They struggle to describe
fitted models using equations or text. And they frequently do not know how to create
effect plots to visualize how the mean response changes with changes in predictor values,
which for models with a non-linear link function requires integrating over the distribution
of the random effects (Fieberg et al., 2009). Simply put, few biologists have taken the
requisite coursework in calculus and mathematical statistics to understand these methods,
and many are unfamiliar with common statistical terminology (e.g., expected value) or
probability distributions other than the Normal distribution.

Box 1 Key concepts in frequentist statistics.

� A sampling distribution is the distribution of sample statistics computed using different samples of the same size from the same population.

� A bootstrap distribution is a distribution of statistics computed using different samples of the same size from the same estimated population formed
by merging many copies of the original sample data. Alternatively, the sample data may be used to estimate parameters of a statistical distribution,
and then this distribution can be used to generate new samples. This alternative is termed the parametric bootstrap.

� A null or randomization distribution is a collection of statistics from samples simulated assuming the null hypothesis is true.

� The standard error of a statistic is the standard deviation of the sampling distribution. When forming confidence intervals, we can estimate the
standard error using the standard deviation of a bootstrap distribution. When calculating p-values, we can estimate the standard error using the
standard deviation of the randomization distribution.

� 2 SE rule: when statistics have bell-shaped (i.e., approximately Normal) sampling distributions, we expect roughly 95% of sample statistics to be
within 2 standard deviations of the mean of the sampling distribution.

� A confidence interval for a parameter is an interval computed from data using a method that will include the parameter value for a specified
proportion of all samples (e.g., 95% of the time for a 95% confidence interval).

� The p-value is the chance of obtaining a sample statistic as extreme as (or more extreme than) the observed sample statistic, if the null hypothesis is
true.
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Resampling methods, including permutation procedures, often offer an attractive
alternative to Normal-based inferential methods; they are adaptable and require fewer
assumptions. Historically, the main limitations in applying these methods were that they
were computationally intensive and often required custom-written computer code
(Cobb, 2007). These limitations are no longer a significant concern except for extremely
large data sets, given the availability of personal computers and open-source statistical
software with packages for implementing resampling-based methods (e.g., Davison &
Hinkley, 1997; Pruim, Kaplan & Horton, 2017; Canty & Ripley, 2019; Simpson, 2019;
Oksanen et al., 2019; R Core Team, 2019).

Our objectives of this paper are to:

1. Illustrate how resampling-based approaches can facilitate a deeper understanding of
core concepts in frequentist statistics (e.g., standard errors, confidence intervals,
p-values).

2. Demonstrate through simple examples and case studies how resampling-based methods
can provide solutions to a range of statistical inference problems.

For resampling-based methods to work appropriately, researchers need to be able to
generate data sets that preserve the structure of the original data set (e.g., any clustering or
other forms of correlation). This requirement can easily be meet with relatively simple
computer code when addressing most univariate problems encountered in a first semester
statistics course. The benefits of using resampling-based methods are often greatest,
however, when analyzing complex, messy data. Determining appropriate solutions in these
situations can be more challenging. Nonetheless, solutions are often available in
open-source software and rely on the same set of core principles. Our case studies provide
a few examples of the types of problems that can be addressed using resampling-based
methods, but in truth they barely scratch the surface of what is possible. For a more
in-depth treatment of bootstrapping and permutation tests, we refer the reader to
Davison & Hinkley (1997) and Manly (2006).

This article is written primarily for the applied biologist with a rudimentary
understanding of introductory statistics, but we also expect it will be of interest to
instructors of introductory statistics courses. In particular, our first objective can be seen as
an argument for replacing traditional approaches to teaching introductory statistics
with an approach that relies heavily on computational methods, an argument that is
increasingly supported by data (Tintle et al., 2011, 2012, 2015; Chance, Wong & Tintle,
2016; VanderStoep, Couch & Lenderink, 2018). To that end, several educators have
developed applets for explaining and understanding key concepts in frequentist statistics
(e.g., http://www.rossmanchance.com/ISIapplets.html and http://www.lock5stat.com/
StatKey/index.html). Here, we provide a tutorial review emphasizing the mosaic package
in R, which was developed specifically to facilitate teaching resampling-based methods in
introductory statistics courses (Pruim, Kaplan & Horton, 2017). We have chosen this
approach because R has become a sort of lingua franca among ecologists. We begin by
introducing key foundational concepts (sampling distributions, confidence intervals, null
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distributions and p-values) using simple examples that can be analyzed with a few lines of
code. We then consider a series of increasingly complex case studies that demonstrate
how these concepts apply more broadly. To facilitate learning, we have archived all data
and R code needed to re-create our examples at https://bootstrapping4biologists.netlify.
com. In addition, the data and code have been curated and included in the Data Repository
of the University of Minnesota (Fieberg, Vitense & Johnson, 2020).

Understanding foundational concepts using simulation-based
methods

Sampling distributions
The sampling distribution of a statistic tells us about the values we might expect for the
statistic if we were to repeatedly collect data sets of the same size from the same population
and using the same sampling protocols. Again, this is a difficult concept to grasp
because we usually only get to collect one data set. However, it is easy to use a computer to
generate multiple samples from a population, and hence calculate multiple statistics to
approximate the sampling distribution. To illustrate, we explore here the sampling
distribution of a sample mean using a data set containing the count of the number of polar
bears within each of 164 roughly 3 � 3 km quadrats on Rowley Island in northern Foxe
Basin, Nunavut (Fig. 1A; Stapleton et al., 2014). First, we read in the data set which
contains two variables, an id for each quadrat (Quadrat) and a count of the number of
bears in each quadrat (Num.Bears), making use of the here package to make it easy to
read in data from a subdirectory (Müller, 2017). We use <- to assign the data to an object
called bdat. We then use the head function to look at the first five rows of the data set
(here and throughout the paper, we provide R code followed by its associated output).

bdat <- read.csv(here("data", "bears.csv"))
head(bdat, n=5)

A) Population Distribution
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Figure 1 Histograms depicting (A) the number of bears in each of 164 roughly 3 × 3 km quadrats on
Rowley Island in northern Foxe Basin, Nunavut (Stapleton et al., 2014), (B) the sampling distribution
of the mean number of bears in 10,000 simple random samples of size 10 plots, and (C) the sampling
distribution of the mean number of bears in 10,000 simple random samples of size 75 plots.
The vertical line gives the population mean and the smooth curves depict Normal approximations to
the distributions in each panel. Full-size DOI: 10.7717/peerj.9089/fig-1
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Quadrat Num.Bears

1 1 2

2 2 1

3 3 0

4 4 0

5 5 1

We use the mean function to calculate the mean number of bears counted per quadrat in
the population (i.e., the set of 164 quadrats). This function, like most in the mosaic
package, follows a common syntax, which for statistical summaries of a single variable is:
goal(∼variable name, data=Mydata) (Pruim, Kaplan & Horton, 2017).

mean(∼Num.Bears, data=bdat)

[1] 0.561

In this situation, we can calculate the population mean, m ¼ 0:561, exactly because we
have polar bear counts for all sample units. Nonetheless, we will use these data to
illustrate the concept of the sampling distribution. Specifically, we consider a hypothetical
situation in which we have access to the counts of bears in each of 164 quadrats (i.e., the
population), to look at what could have happened if we had only sampled a random
subset of 75 quadrats. Our sample statistic, the sample mean (�x), provides an estimate of
the population mean (m) bear count per quadrat. Below, we repeatedly take simple random
samples of 75 quadrats using the sample function and calculate the sample mean for
each of the resulting data sets. We store the resulting sample means in an object named
samp.mean. This feat can be accomplished with essentially one line of code using the do
function in the mosaic package, where its argument (10,000 in this case) tells R how
many times to repeatedly execute the code within the { } (To reproduce our results exactly,
readers should set the seed of the random number generator using set.seed(03222007)):

samp.mean<-do(10000)�{
mean(∼Num.Bears, data=sample(bdat, size= 75))

}
The do function captures the 10,000 sample means and stores them in a variable named

result within the samp.mean object. We can look at the first five sample means using the
head function in R:

head(samp.mean, n=5)
result

1 0.507

2 0.600

3 0.453

4 0.480

5 0.520

We can easily visualize the sampling distribution using a histogram or density plot
(Fig. 1C), and we can calculate the standard error using the sd function in the mosaic
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library (the standard error is just the standard deviation of the sampling distribution;
Box 1):
(se.mean<-sd(∼result, data=samp.mean))

[1] 0.0772

When statistics have bell-shaped (i.e., approximately Normal) sampling distributions,
we expect 95% of sample statistics to be within roughly 2 standard deviations of the mean
of the sampling distribution (1.96 standard deviations to be more exact); we will refer
to this result as the 2 SE rule (Box 1). We can use the above simulation results (i.e., the
10,000 sample means contained in samp.mean), to verify this claim. First, we find this
interval by taking the mean of the sampling distribution ± 2 times the SE of the mean
(we stored this SE in an object called se.mean and use the c operator to create a vector
containing the values −2 and 2).

(rule.2SE<-mean(∼result, data=samp.mean)+c(-2, 2)�se.mean)

[1] 0.407 0.715

We then determine the proportion of sample means that fall in this interval (i.e., the
proportion of sample means that are greater than the lower threshold and less than the upper
threshold) using the tally function. We use I(result>= 0.407 & result <=0.715) to
create an indicator variable that is 1 when result is in the interval and zero otherwise.

tally(∼I(result >= 0.407 & result <=0.715),
data=samp.mean, format="proportion")

I(result >= 0.407 & result <= 0.715)

TRUE FALSE

0.9548 0.0452

We see that roughly 95% of the sample means fall within 2 standard errors of the mean.

Central limit theorem
The sampling distribution of means (or sums) approaches that of a Normal distribution as
the sample size increases. This result, given by the Central Limit Theorem, forms the basis
of many formula-based methods of statistical inference and can be illustrated through
simulation (Kwak & Kim, 2017). For example, the sampling distribution in our bear
example is right-skewed for small sample sizes (e.g., n = 10; Fig. 1B); however, for samples
of size 75, the sampling distribution is bell-shaped and well-approximated by a Normal
distribution. Thus, rather than blindly trusting that the Central Limit Theorem applies,
we can demonstrate it first hand by sampling repeatedly using different sample sizes.
Additionally, the Central Limit Theorem guarantees for sufficiently large samples that the
sampling distribution of �x will be approximately Normal with 95% of the sample means
falling within 2 standard errors of m in the polar bear example. This result holds even
though the population distribution is right-skewed and highly discrete, with individual
bear counts taking on only integer values. Further, many estimators (including all
maximum likelihood estimators) are calculated via a sum of independent measurements,
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which ensures that their sampling distributions are asymptotically Normal. Understanding
this powerful result helps uncover why many back-of-the-envelope calculations use
estimate ± 2SE to form approximate 95% confidence intervals.

Bootstrap confidence intervals
In real applications, we do not have access to data from the full population. Instead, we
have but a single sample. When making inference to the population, via traditional
parametric methods or with resampling-based methods, we must assume our sample data
are representative of the population, as is assumed when a large number of observations
are selected by simple random sampling. Then, we can use the distribution of values
in our sample to approximate the distribution of values in the population. For example,
we can make many, many copies of our sample data and use the resulting data set as an
estimate of the whole population. With this estimated population in place, we could
repeatedly sample from it, forming many data sets that are the same size as our original data
set, and calculate statistics for each sample to approximate sampling distributions (Fig. 2).
In practice, we do not actually need to make multiple copies of our sample data to estimate
the population; instead, we form new data sets that are the same size as our original data set
by sampling our original data with replacement, which effectively does the same thing.
Sampling with replacement means that we select cases one at a time, and after each selection,
we put the selected case back in the population so it can be chosen again. Thus, each
observation in the original data set can occur zero, one, two, or more times in the generated
data set, whereas it occurred exactly once in the original data set.

Figure 2 A sampling distribution is the distribution of sample statistics computed using different
samples of the same size from the same population. We can estimate characteristics of the sampling
distribution (e.g., its standard deviation) using bootstrapping, in which we repeatedly sample from an
estimated population. Each bootstrap sample should be the same size as the original sample, and
bootstrap samples should be formed in such a way that they preserve the structure of the original data set
(e.g., any clustering or other forms of correlation). Full-size DOI: 10.7717/peerj.9089/fig-2
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This process allows us to create a bootstrap sampling distribution to determine how
much our estimates vary among repeated samples. We quantify this variability using the
standard deviation of our estimates across repeated samples and refer to this standard
deviation as our bootstrap standard error (BSE; Fig. 2). If the bootstrap sampling
distribution is bell-shaped and centered on our sample statistic (indicating there is no
sampling bias), then we can use this estimated standard error and the 2 SE rule for
Normally distributed data to calculate a 95% confidence interval for our parameter of
interest: estimate ± 2BSE. We can also think about repeating this process many times
(i.e., collect data, estimate a parameter, use the bootstrap to calculate a SE and confidence
interval), in which case we expect 95% of our confidence intervals to include the true
population parameter of interest. That is, the bootstrap method for calculating a 95%
confidence interval is what statisticians call well calibrated. In practice, we only have one
data set, leading to a single confidence interval that either does or does not contain the true
value of the population parameter, but knowing the method is well calibrated allows us
to state that we are 95% confident that our interval contains the population parameter.

We illustrate this approach by considering data collected by the Minnesota Department
of Natural Resources (MN DNR) to explore the potential impact of changing fishing
regulations on the size distribution of northern pike (Esox lucius) in Medicine Lake,
an approximately 460-acre lake in Beltrami County, MN. In 1989, the MN DNR
instituted a slot limit of 22–30 inches in this lake (i.e., all caught fish within this size
interval had to be released). We consider length data from 73 and 81 fish collected in trap
nets in 1988 and 1993, respectively (before and after the fishing regulation was put in
place). Importantly, these data come from only one lake, and many other factors may have
changed between 1988 and 1993. Therefore, we must be cautious when interpreting
any changes in the distribution of fish sizes (i.e., attributing the cause of length changes to
the management regulation or generalizing results to other lakes). Nonetheless, we can
ask, “How much did fish length, on average, change between 1988 and 1993 in Medicine
Lake?” To address this question, we estimate the difference in the mean length of fish in the
two samples. We also quantify our uncertainty in this estimated difference in means,
recognizing that we would get a different estimate if we could go back and collect other
samples of fish in those 2 years.

We begin by calculating the sample size, mean length in the 2 years, and the difference
in sample means using the tally, mean, and diffmean functions in the mosaic library.
Again, note that the functions in the mosaic library have a common syntax for data
summaries involving two variables: goal(y∼x, data=Mydata). For example, mean(y∼x,
data=Mydata) will calculate the mean of y for each level of a categorical variable x, and
diffmean(y∼x, data=MyData) will calculate the difference in sample means when x is a
categorical variable taking on only two levels. Here, we store the difference in means in an
object named effect_size:

pikedat<-read.csv(here("data", "Pikedata.csv"))
tally(∼year, data=pikedat)
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year

1988 1993

73 81

mean(length.inches∼year, data=pikedat)

1988 1993

18.6 21.2

(effect_size <- diffmean(length.inches∼year, data=pikedat))

diffmean

2.58

We estimate that the mean size of pike increased by roughly 2.6 inches between 1988
and 1993. To evaluate uncertainty in our estimated effect size, we explore the variability in
the difference in means across bootstrapped samples. Here, we use the sample data
from 1988 and 1993 as our estimate of the distribution of lengths in the population in
1988 and 1993, respectively. We repeatedly sample (10,000 times) from these estimated
populations and calculate our sample statistic (the difference in means) for each of these
bootstrapped data sets, making use of the do and resample functions in the mosaic
library. Whereas the sample function, by default, samples without replacement, the
resample function samples with replacement; the group argument is used to ensure that
bootstrapping is conducted separately for each year.

bootdist<-do(10000)�{
diffmean(length.inches∼year, data=resample(pikedat, group=year))
}

Above, we stored the 10,000 differences in means as a variable named diffmean

contained in the bootdist object that we created. We can look at the first five differences
in means using the head function.

head(bootdist, n=5)

diffmean

1 3.27

2 1.19

3 2.32

4 3.11

5 2.92

Because the bootstrap distribution is bell-shaped and centered on our sample statistic
(Fig. 3), we can estimate a confidence interval for the difference in mean length in 1993
relative to 1988 using the 2 SE rule (i.e., based on an unstated Normal distributional
assumption):

(SE<-sd(∼diffmean, data=bootdist))

[1] 0.673
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(CIa<-effect_size + c(−2, 2)�SE)

[1] 1.24 3.93

Alternatively, we could use quantiles of the bootstrap distribution, which does not
require Normality (Fig. 2). The 0.025 quantile (or, equivalently, 2.5th percentile) refers to
the value of x, such that 2.5% of the distribution falls below x. Here, we use the qdata
function in the mosaic library to determine the 0.025 and 0.975 quantiles. These quantiles
capture the middle 95% of the bootstrap distribution for the difference in means:

(CIb<-qdata(∼diffmean, data=bootdist, p=c(0.025, 0.975)))

quantile p

2.5% 1.26 0.025

97.5% 3.90 0.975

For bell-shaped bootstrap distributions, Normal-based and percentile-based bootstrap
confidence intervals work well and will usually give similar results. For small samples or
skewed distributions, better methods exist (Davison & Hinkley, 1997; Hesterberg, 2015;
Puth, Neuhäuser & Ruxton, 2015). Nonetheless, simple examples like this can facilitate
understanding confidence intervals and other measures of uncertainty.

Null distributions and p-values
Although null hypothesis testing has largely fallen out of favor in many disciplines,
including ecology (Johnson, 1999; Hobbs & Hilborn, 2006), p-values, when fully
understood, can play an important role in assessing the plausibility of statistical hypotheses
(De Valpine, 2014; Murtaugh, 2014; Dushoff, Kain & Bolker, 2019). Further, it is critically
important for biologists to be able to interpret the p-values they see in papers and in
output generated by statistical software. To understand p-values, we must consider the
sampling distribution of our statistic across repeated samples in the case where the null
hypothesis is true. Simulation-based methods are also useful for understanding this
concept, provided we can generate data sets consistent with the null hypothesis.
To illustrate, we will consider data from an experiment used to test various hypotheses
about the mating preferences of female sagebrush crickets (Cyphoderris strepitans)
(Johnson, Ivy & Sakaluk, 1999). Males of this species will often allow a female to eat part
of their hind wings when mating, which decreases the male’s attractiveness to future
potential mates. To explore how diet might influence mating behaviors of females, Johnson,
Ivy & Sakaluk (1999) randomly assigned 24 female crickets to either a low-nutrient
(starved) or high-nutrient (fed) diet before putting them in a cage with a male cricket to
mate. They then measured the waiting time before mating occurred. These data are
contained in the abd package and were used byWhitlock & Schluter (2009) to introduce the
Mann–Whitney U-test.

We can access the data using the data function after first loading the abd package:

library(abd)

data("SagebrushCrickets")
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We then use the str function to explore the structure of the data set, finding that there
are two variables: treatment, a factor variable with values fed or starved, and time.

to.mating, a numerical variable containing the mating times for each cricket.

str(SagebrushCrickets)

‘data.frame’: 24 obs. of 2 variables:

$ treatment : Factor w/ 2 levels "fed", "starved": 2 2 2 2 2 2 2 2 2 2 ...

$ time.to.mating: num 1.9 2.1 3.8 9 9.6 13 14.7 17.9 21.7 29 ...

Our objective is to test whether the mean waiting times depend on the diet of the female:
H0 : mfed ¼ mstarved versus HA : mfed 6¼ mstarved where H0 and HA stand for the null and
alternative hypotheses, and mfed and mstarved represent the mean waiting times of crickets
fed the high- and low-nutrient diets, respectively. It is natural to consider using the
difference in sample means, �xfed � �xstarved to conduct our hypothesis test. Given the
small sample sizes (we have 13 and 11 cases in the fed and starved treatment groups,
respectively), we cannot safely assume the Central Limit Theorem ensures that the
sampling distribution of �xfed � �xstarved is Normal. Further, the distribution of waiting times
within each treatment group is far from Normal, and the measurements do not appear to

Bootstrap distribution
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Figure 3 Bootstrap distribution of the difference in mean length of fish (year 1993 relative to year
1988). Outermost vertical lines indicate the 95% confidence interval using the percentile-based method,
and the smooth curve illustrates the best-fit Normal distribution. Full-size DOI: 10.7717/peerj.9089/fig-3
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be equally variable within each treatment group (Fig. 4). Thus, the assumptions of a
parametric t-test are likely not met.

Although we could use a rank-based non-parametric test, such as the Mann–Whitney
U-test (Whitlock & Schluter, 2009), we can gain additional insights into key statistical
concepts (null distributions and p-values) if we construct our own randomization test,
which also allows us to relax the Normality assumption.

We begin by estimating the mean waiting times for the two treatment groups (fed and
starved) as well as the difference in sample means.

mean(time.to.mating∼treatment, data=SagebrushCrickets)
fed starved

36.0 17.7

(effect_size2<-diffmean(time.to.mating∼treatment,
data=SagebrushCrickets))

diffmean

-18.3

We see that the mean time to waiting is 18.3 h longer for the crickets in the fed
treatment group. A skeptic might point out that each time you repeat this experiment you
will get a different value for this statistic (i.e., the difference in sample means). Perhaps
the longer mean waiting time was just a fluke. Could that be the case? To find out,
we need to determine what values we might expect to see for the difference in means when
the null hypothesis is true. If the null hypothesis is true, then the labels (fed and
starved) should not matter. So, to simulate a sample statistic (difference in means) that
we might get if the null hypothesis were true, we can: (1) randomly shuffle the treatment
variable among cases to form a new data set, and (2) calculate the difference in sample
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Figure 4 Distribution of waiting times to mating for female sagebrush (Cyphoderris strepitans)
crickets randomly assigned to either a low-nutrient (starved) or high-nutrient (fed) diet.

Full-size DOI: 10.7717/peerj.9089/fig-4
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means. Using the do, diffmean, and shuffle functions in the mosaic library, we can
repeat this process many times:

randomization_dist<-do(10000)�{
diffmean(time.to.mating∼shuffle(treatment), data=SagebrushCrickets)

}

Here, the shuffle function permutes the treatment variable, ensuring that, on
average, the difference in sample means between the two treatment groups is equal to
zero. Again, the do function stores the 10,000 differences in means in a variable
named diffmean in the randomization_dist object that we created. Plotting this
randomization distribution (Fig. 5), we find the range of statistics (difference in sample
means) that we would expect to see if the null hypothesis were true. We can then use
this information to determine the probability of observing an absolute difference in sample
means as large or larger than we saw in our experiment, j�xstarved � �xfedj ¼ 18:3, if the
null hypothesis is true. This probability is our two-sided p-value. We can approximate it
using our randomization distribution by counting the number of times the difference in
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Figure 5 Randomization distribution for the difference in mean waiting time until mating formed
by shuffling treatment assignments (fed versus starved) among cases. This distribution informs us of
the types of statistics (difference in means) that we would expect to see if the null hypothesis were true.
Our observed sample statistic (�xstarved − �xfed = −18.3, is indicated by the leftmost vertical line. When the
null hypothesis is true, we would expect to get a difference in sample means ≤ −18.3 or ≥ 18.3 13% of the
time (i.e., the p-value is 0.13). Full-size DOI: 10.7717/peerj.9089/fig-5
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sample means was ≤−18.3 or ≥18.3 (equivalent to the number of times the absolute value
of the difference was ≥ 18.3).

(p.value<- tally(∼abs(diffmean)>=18.3, data=randomization_dist,
format="proportion"))

abs(diffmean) >= 18.3

TRUE FALSE

0.126 0.874

Given a p-value of 0.126, we expect that roughly 13% of the time we would get an
absolute difference in mean waiting times as large or larger than 18.3 if the null hypothesis
were true. Thus, our result is perhaps not all that surprising. Still, our sample sizes were
small, leading to differences in sample means that were highly variable from sample to
sample. It would behoove us to also report a confidence interval to go with our result, so
the reader has an understanding of the range of effect sizes that are plausibly supported by
the data. Using a bootstrap, we find that we are 95% confident that the difference in
population means is between −38.9 and 3.6.

boot_dist<-do(10000)�{
diffmean(time.to.mating∼treatment, data=resample(SagebrushCrickets))

}
qdata(∼diffmean, data=boot_dist, p=c(0.025, 0.975))

quantile p

2.5% −38.91 0.025

97.5% 3.61 0.975

Generalizations to other sample statistics
The methods illustrated here easily generalize to other statistics and data sets, provided
cases can be assumed to be independent (e.g., there are no repeated measures on the same
sample unit). For example, we could calculate a bootstrap distribution, and hence
confidence interval, for a correlation coefficient using:

do(10000)�{cor(y∼x, data=resample(Mydata))}

We could determine an appropriate null distribution for testing whether a set of
regression coefficients are all zero versus an alternative hypothesis that at least one is
non-zero by shuffling the response variable:

do(10000)�{lm(shuffle(y)∼x1 + x2 + x3, data=Mydata)}

Shuffling the response variable breaks any association between y and the predictor
variables, thus meeting the assumption of the null hypothesis. It is tempting to think that
we could also determine an appropriate null distribution for testing whether a regression
coefficient for x2 is zero, while adjusting for two other variables (x1 and x3) using:

do(10000)�{lm(y∼x1 + shuffle(x2) + x3, data=Mydata)}

Fieberg et al. (2020), PeerJ, DOI 10.7717/peerj.9089 14/28

http://dx.doi.org/10.7717/peerj.9089
https://peerj.com/


Although shuffling the values of x2 for each case will break any relationship between x2
and y, this process also breaks any association between x2 and the other two predictor
variables, x1 and x3. Thus, shuffling x2 imposes additional unintended restrictions on
the data beyond those required to ensure the null hypothesis is true. Alternative solutions
have been proposed, which involve permuting residuals, either residuals of the response
(Freedman & Lane, 1983; Anderson & Robinson, 2001), or the predictor at stake
(Collins, 1987; Dekker, Krackhardt & Snijders, 2007). The latter approach is perhaps
simplest, has good statistical properties, and is described below (see Appendix A for a
simple coded example):

1. Fit a linear regression model relating x2 to the other predictor variables in the
model: lm(x2∼x1+x3, data=Mydata). The residuals from this model, which we label
x2r, capture the part of x2 that is not explained by the linear effect of other variables in
the model (here, x1 and x3). If we replace x2 in our original model with x2r, fitting
the following model: lm(y∼x1+x2r+x3, data=Mydata), the coefficient, standard
error, t-statistic, and p-value for x2r will be identical to the coefficient for x2 in our
original model.

2. Create an appropriate null distribution of t-statistics associated with the coefficient
for x2r by shuffling x2r: do(10000)�{lm(y∼x1 + shuffle(x2r) + x3,

data=Mydata)}. The test is based on the t-statistic from the above randomization
distribution rather than the coefficient for x2r itself because the t-statistic ensures the
permutation distribution does not depend on additional unknown parameters, whereas
the regression coefficient does not have this property.

As the above example illustrates, solutions to more complex applications may require
custom-written code (and additional care), but the underlying concepts remain the
same. For confidence intervals, we need to generate bootstrapped data sets that mimic how
we obtained the original sample data, calculate our sample statistic for each of these
data sets, and then use the variability in those statistics to form our confidence interval.
For testing null hypotheses, we need to generate data sets for which we have assured
compliance with the null hypothesis and then compare our observed statistic with those
simulated under that null hypothesis. In the words of Cobb (2007), “I like to think of
(the core logic of statistical inference) as three Rs: randomize, repeat, reject. Randomize
data production; repeat by simulation to see what’s typical and what’s not; reject any model
that puts your data in its tail.”

For computationally intensive applications, it may not be possible to generate as many
as 10,000 random data sets as in our examples. In such cases, it is customary and important
to include the original sample statistic in the permutation or bootstrap distribution
(Davison & Hinkley, 1997; Phipson & Smyth, 2010). Doing so ensures statistical hypothesis
tests are exact even for small numbers of permutations (Phipson & Smyth, 2010),
that is, across repeated tests with a significance level of a ¼ 0:05, we will reject at most
5% of the time when the null hypothesis is true.
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Bootstrapping versus permutations
Our simple examples above demonstrate how to form confidence intervals by
bootstrapping and how to test statistical hypotheses using permutations. In truth, one can
use bootstrapping to perform hypothesis tests and permutations to form confidence
intervals (e.g., by “inverting” a hypothesis test so that the confidence interval includes only
parameter values for which we would fail to reject the null hypothesis). Ideally, the chosen
approach (resampling or permutation) should reflect the original study design.
For randomized experiments, it makes sense to use permutations that reflect alternative
outcomes of the randomization procedure. By contrast, bootstrap resampling may be
more appropriate for observational data where the “randomness” is reflected by the
sampling procedure (Lock et al., 2013).

Consider again the fish length example used to demonstrate bootstrap confidence
intervals. If we wanted to conduct a statistical hypothesis test that mean fish length was the
same in both years, we could make the null hypothesis true (by adding the difference
between the two sample means to the length of fish in the first sample), then bootstrap.
This approach is illustrated below. We begin by creating a new variable, length.null, by
adding the difference in sample means to all fish lengths collected in 1988. We can
accomplish this task using the mutate function in the dplyr library (Wickham et al.,
2019). The ifelse function evaluates the first expression (year=="1988") and executes
the next argument when true and the last argument when false. The difference in the mean
of this new variable is zero (reflecting our null hypothesis).

delta<-diffmean(length.inches∼year, data=pikedat)
pikedat<-mutate(pikedat,

length.null=ifelse(year=="1988", length.inches+delta,
length.inches))

diffmean(length.null∼year, data=pikedat)

diffmean

0

We can then use the bootstrap to quantify variability in difference in sample means
when the null hypothesis is true, from which we can calculate the p-value for our hypothesis
test.

randfish<-do(10000)�{
diffmean(length.null∼year, data=resample(pikedat, group=year))

}
(p.value2<-tally(∼abs(diffmean)>=delta, data=randfish,
format="proportion"))

abs(diffmean) >= delta

TRUE FALSE

0 1

None of the bootstrap differences in sample means was as large or larger than the
difference we observed using our original data, resulting in a p-value � 0.
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This example raises another important point of consideration when choosing an
appropriate method for testing null hypotheses, namely differences between bootstrap-
and permutation-based null distributions. In the sagebrush cricket example, we permuted
treatment labels to create our null distribution for the difference in sample means.
By permuting treatment labels, we ensure the distribution of the response variable, y, is
the same for both treatment groups. Thus, means, variances, and higher-order moments
will all, on average, be the same for the two groups. By contrast, the bootstrap-based
test ensures only that the sample means of the two groups are, on average, the same
under the null hypothesis. Both methods should reject the null hypothesis in cases where
the population means differ, provided our sample size is large enough. However, the
permutation-based test may also reject the null hypothesis (with probability > a) if the
population means are the same in the two groups, but the population variances differ.
Thus, the bootstrap-based test may be preferred if the goal is to detect only differences in
population means, allowing for the possibility that the population variances differ.

CASE STUDIES
We next consider a series of three case studies that demonstrate how the bootstrap can be
used to calculate confidence intervals when faced with more challenging data-analytic
problems. Specifically we show how to use the bootstrap for more robust inference in
the face of assumption violations (Case Study 1), to estimate complex quantities that
combine results from multiple analyses (Case Study 2), and to quantify model-selection
uncertainty (Case Study 3). The data and R code needed to reproduce these examples are
available at https://bootstrapping4biologists.netlify.com. In addition, we use the site to
host the output that results from running all of the coded examples.

Case Study I: relaxing the assumptions of linear regression
Zuur et al. (2009) lead off their popular book, Mixed Effects Models and Extensions in
Ecology with R, with the statement (p. 19), “In Ecology, the data are seldom modeled
adequately by linear regression models. If they are, you are lucky.” Here, we consider one
of the data sets from their book, containing measurements of species richness at 45
sampling stations in the Netherlands (five stations located within each of nine beaches,
Janssen & Mulder, 2004, 2005). When plotting species richness against an index of
exposure of each beach to waves and surf, we see that mean species richness decreases
linearly with exposure level (Fig. 6A), but the distribution of residuals is right skewed
and, thus, non-Normal (Fig. 6B). In addition, observations were clustered in space
so we might expect two observations from the same beach to be more alike than two
observations from two different beaches.

The rest of Zuur et al.’s book is devoted to describing regression methods that allow one
to relax these assumptions; for example, using random effects to account for correlation
and different statistical distributions to relax the Normality and constant variance
assumptions. Without knowledge of these tools, however, is there a way to estimate
uncertainty in the regression line as a summary of the relationship between species
richness and exposure (over the observed range of the data)? Yes! We just need to adapt
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the bootstrap to mimic the way data were collected (i.e., cluster sampling, with multiple
observations from each of several beaches). In this case, we need to sample beaches
with replacement, keeping all observations from a beach when selected (we will refer to this
approach as a cluster-level bootstrap). Doing so allows us to evaluate how much our
estimates of regression parameters would change if we were to collect another sample of
observations from a different set of nine beaches. Our estimate of uncertainty would
not require assumptions of Normality or constant variance. Further, we would only need
to assume that data from different beaches are independent (not that observations
from the same beach are independent). Although it would be nice to have a larger
sample of beaches to represent the population, alternative analysis methods (e.g., models
appropriate for clustered data) would face a similar challenge of having to estimate
among-beach variability from nine beaches.

Conceptually, this example is no more difficult to understand than the fisheries slot
limit example. We are trying to determine how much our regression parameter estimates
would vary if we were able to collect another sample of observations using the same
sampling effort (nine beaches, each with five stations). Implementation becomes slightly
more challenging than the previous examples because we can no longer rely on the
resample function in the mosaic package (it does not accommodate cluster-level
bootstrapping, but seeDeen&De Rooij, 2019, for an alternative using the ClusterBootstrap
package). The bootstrap distributions of the regression coefficients in this example are
not symmetric, so it is beneficial to consider alternative bootstrap confidence interval
procedures. It is important to note that not all confidence intervals perform equally well.
Normal- and percentile-based intervals are simple but less accurate on average than
intervals that attempt to account for bias and skewness of the sampling distribution
(e.g., the “BCa” interval illustrated in Appendix B); accuracy is measured in terms of an
interval estimator’s coverage rate, defined as the frequency with which the interval
estimator includes the true population parameter. We include, as Supplemental Material,
code necessary to implement the cluster-level bootstrap, demonstrating a range of
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Figure 6 Regression line with observed data (A) and histogram of residuals (B) for linear model
relating species richness to the level of exposure of the beach measured at 45 stations in the
Netherlands. Full-size DOI: 10.7717/peerj.9089/fig-6
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confidence interval procedures implemented using the boot package (Canty & Ripley,
2019; Appendix B).

Case Study II: combining data sources: estimating uncertainty when
the sampling distribution is unknown
As mentioned above, the Central Limit Theorem guarantees that the sampling distribution
of many estimators, including all maximum likelihood estimators, will be Normally
distributed as sample sizes become large (Casella & Berger, 2002). In practice, however,
it may be difficult to derive an analytical expression for the standard error to use in
conjunction with a Normal approximation. This is particularly true for estimation
problems that require fitting multiple models to different response variables collected
from the same or different sets of sample units. As an illustrative example, we consider
data from Zicus, Rave & Fieberg (2006), used to evaluate the relative cost-effectiveness of
single- and double-cylinder nesting structures for mallard (Anas platyrhynchos) ducks.
To measure duckling productivity, Zicus, Rave & Fieberg (2006) fit a linear regression
model to duckling counts collected from 110 nesting structures over an 8-year period.
To estimate costs, they fit an additional discrete-time survival model to quantify the
probability that a structure would fall over and hence require a visit (with associated
maintenance costs) for continued use. Both models included predictors capturing cylinder
type (single or double) and size of the wetland holding the structure. Zicus, Rave &
Fieberg (2006) combined the output from the two models and estimated, for a range of
wetland sizes and for both cylinder types, the expected cost of maintaining the structure
divided by the expected number of ducklings produced as a measure of cost-effectiveness.
Estimating the standard error of this cost-effectiveness measure was complicated for
several reasons: (1) the quantity of interest was a ratio and therefore not a linear function
of model parameters, (2) there was a complex dependence structure resulting from
repeated measures on the same set of structures, which were also shared across the two
models; and (3) the residuals from the duckling model were not Normally distributed.

Fortunately, using a bootstrap to estimate a confidence interval for cost-effectiveness
was relatively straightforward. We just generated new bootstrapped data sets, mimicking
the original sampling design, and repeated the analysis using these new data sets.
As illustrated in Appendix C, we: (1) resampled nest structures with replacement;
(2) fit both models to the bootstrapped data sets; and (3) used the fitted models to estimate
the expected number of ducklings, expected structure survival (and hence cost), and the
ratio of expected cost to the expected number of ducklings for each cylinder type at
different wetland sizes. This process allowed us to calculate confidence intervals for the
cost effectiveness of both types of nest structures across a range of wetland sizes
(Appendix C). We have used this same general approach elsewhere to quantify uncertainty
in estimated growth rates from population models when parameters are estimated
from multiple data sources (e.g., Ellner & Fieberg, 2003; Fieberg et al., 2010; Lenarz et al.,
2010).

One important consideration in this example is that our estimator of cost-effectiveness,
a ratio of expected means, may be biased. We can also use the bootstrap to estimate
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Bias = E½û� � u, where E½û� refers to the mean of the sampling distribution of û, our
estimator of the unknown parameter u. To understand how this works, consider that
we use the bootstrap to mimic sampling from our population: the bootstrap samples relate
to the original sample in much the same way as the original sample relates to the
population (Hall, 1988; Fig. 2). Thus, to estimate bias, we can compare the mean of
our bootstrap statistics, u�b, to the same statistic calculated using our original sample, û, as
though the sample were the true population. In Appendix C, we estimate the bias of our
cost-effectiveness measure for both deployment types and across a range of wetland sizes,
showing that the bias is small relative to the standard error.

Case Study III: evaluating model-selection uncertainty
The bootstrap can be used to quantify model uncertainty in addition to sampling variation
(Buckland, Burnham & Augustin, 1997; Fieberg & Johnson, 2015; Harrell, 2016).
Consider, for example, the common situation in which a researcher desires to develop a
predictive model by selecting a limited number of explanatory variables from some larger
set (e.g., using AIC statistics associated with various sub-models). Several models may
provide nearly equally good fits to the data, in which case we might expect a different
model to come out as “best” each time we collect a new data set (where “best” is
determined via backwards stepwise selection using AIC). We can explore whether this is
the case by fitting the same set of candidate models to each of several bootstrapped
data sets.

In this case study, we explore model-selection uncertainty arising from backwards
stepwise selection using AIC (Appendix D). We begin by fitting a linear regression
model to abundance data of longnose dace (Rhinichthys cataractae) collected from the
Maryland Biological Stream Survey (downloaded from http://www.biostathandbook.com/
multipleregression.html). Starting with six predictors (measurements of various stream
attributes), we use the stepAIC function in the MASS package in R (Venables & Ripley,
2013) to sequentially eliminate predictors until we can no longer reduce AIC further
by dropping any of the remaining predictors. Implementing this process resulted in a
reduced model containing three variables: acreage drained by the stream, maximum
depth, and NO3. We can then use functions in the rms (regression modeling strategies)
package in R (Harrell, 2019) to explore variability in the best model as determined by
backwards stepwise selection. First, we refit the full model using ols (this function is
equivalent to lm, but it stores additional information with the model fit). We then use the
validate function to choose a best model by applying backwards selection to each of
100 bootstrapped data sets (i.e., validate fits a series of models, using backwards
selection to choose the best model for each bootstrapped data set). Applying this process
resulted in 31 different best models. The most frequently chosen model, selected in 24
of the 100 cases, included only acreage and NO3. The model originally chosen using
stepAIC rose to the top in only nine of the 100 bootstrapped data sets. One bootstrap
sample resulted in a model with all six predictors, and five bootstrap samples led to a model
with a single predictor (maximum depth in four instances and NO3 in one instance).
In addition to demonstrating the high degree of uncertainty associated with choosing a
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best model, these bootstrap results could be used to calculate model-averaged predictions
(using the frequency with which a model was selected to determine model weights;
Buckland, Burnham & Augustin, 1997).

DISCUSSION
Biologists need to understand, quantify, and communicate measures of effect sizes and
their uncertainty. With frequentist statistics, we conceptualize and measure uncertainty by
considering how statistics (e.g., means, proportions, regression coefficients) vary from
sample to sample; yet, in reality, we typically have only one sample at our disposal.
Resampling-based methods provide a natural way to understand foundational concepts
related to uncertainty, including sampling distributions, standard errors, confidence
intervals, and p-values. This understanding, in turn, makes it possible to develop custom
analyses for a range of messy data scenarios using the same set of core concepts.

Consistent with the general call to provide estimates of effect sizes and their uncertainty
(e.g., Johnson, 1999), our case studies emphasized applications of the bootstrap in this
vein rather than resampling-based methods for conducting hypothesis tests. The bootstrap
can be viewed as a Swiss-army knife of statistical tools, providing estimates of uncertainty
for a wide range of problems; we just need to: (1) use our sample data to estimate the
distribution of variable values in the population; (2) generate new data sets by repeatedly
sampling from this approximated population; and (3) analyze each set of data in a
consistent manner. To some readers, it may feel like bootstrapping is cheating because it
seems to make up data. In the fisheries example, we had a total of 154 observations of
fish length, but with a couple of lines of R code and a computer, we produced 10,000
such data sets. Something definitely seems fishy. In fact, the name bootstrapping derives
from the phrase “to pull oneself up by one’s bootstraps,” a physical impossibility. Are we
really getting something for nothing? No, we are not generating any new data. What
bootstrapping does is explore the internal variability of a single data set. Formula-based
estimates of uncertainty operate in a very similar manner but are available in only a few
select cases where we can derive the sampling distribution from our underlying model
assumptions or via the Central Limit Theorem. For example, the formula for the
standard error of a sample mean, SE ¼ s=

ffiffiffi

n
p

also uses a measure of internal variability
(the sample standard deviation, s) to quantify variability among repeated samples.
A mathematical justification for the bootstrap procedure was provided by its developer,
Efron (1979), extending work on the jackknife, a linear approximation to the bootstrap
(Quenouille, 1949).

Important to note is that bootstrapping can be only as good as the original data.
This means that the sample data must be representative of the population from which they
were drawn, preferably randomly, and that the sample size should be adequate to capture
the variation in the population. When generating new data sets, it is also important to
mimic the way the original data were collected and to identify independent sample units
for resampling. In our first case study, we resampled beaches rather than individual
observations because we expected observations from the same beach to be correlated.
Similarly, one can create “blocks” of observations close in time or space and treat these as
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independent sample units when data are spatially or temporally correlated (Chernick &
LaBudde, 2011). Although we focused on methods that rely on case resampling, which
approximates the distribution of values in the population by making many copies of
the sample data, parametric bootstrapping is also possible. In the latter case, we must
assume the population values follow a particular parametric distribution (e.g., gamma,
beta, etc.), use the sample data to estimate parameters of this distribution, and then use this
parameterized distribution to simulate new data sets.

In addition to the examples presented in conjunction with our case studies, bootstrapping
can be used to provide accurate estimates of model fit (e.g., R2) and calibrate models (Harrell,
2016; Appendix D), to reduce prediction variance when using “greedy analysis methods”
with many unknown parameters (e.g., random forests as a solution to the instability of
regression trees; Breiman, 2001), and to quantify uncertainty across a diverse set of
applications (Davison & Hinkley, 1997; Manly, 2006). We find the bootstrap particularly
attractive for decision analysis because it can provide a distribution of possible outcomes
across a set of potential management actions while accounting for model and parameter
uncertainty (e.g., Ellner & Fieberg, 2003). Ecologists have a long history of using
resampling-based methods to analyze multivariate response data using ordination methods
(ter Braak, 1990; Vendrig, Hemerik & ter Braak, 2017; Van den Brink & ter Braak, 1999;
ter Braak & Smilauer, 2018). The vegan and permute packages provide methods for
restricted permutations (e.g., permuting observations within blocks for randomized
complete block designs) that can be used with multivariate data (e.g., Anderson & ter Braak,
2003; Oksanen et al., 2019; Simpson, 2019); the mvabund package also provides methods for
bootstrapping generalized linear models fit to multivariate response data (Wang et al., 2019;
Wang et al., 2012). Another interesting example in biology is the use of the bootstrap to
quantify the level of confidence associated with different clades on a phylogenetic tree
(Felsenstein, 1985; Efron, Halloran & Holmes, 1996).

We acknowledge that fully model-based alternatives exist for addressing many of the
challenges encountered in our case studies. For example, random effects could be used to
account for potential correlation among observations from the same beach, and an
appropriate count distribution (e.g., Poisson or negative binomial) could be used to model
the counts rather than a Normal distribution. Hierarchical models with random effects
“feel good” because they match the underlying structure of many ecological data sets.
Further, mixed effect models offer significant advantages for modeling hierarchical data as
these approaches allow one to consider both within- and between-cluster variability.
For example, we could have allowed each beach to have its own intercept drawn from
a Normal distribution. Rather than relax assumptions, however, this hierarchical
approach would add even more assumptions (Murtaugh, 2007). Before trusting inference
from the model, we would need to evaluate whether the Normal distribution was
appropriate for describing variability among beaches. Adding random effects also implies
that observations from the sample cluster (in this case beach) are positively correlated
(Fieberg et al., 2009). Although this assumption is reasonable for these data, it may not be
appropriate in other situations. For example, the lead author recently collaborated
on a survival analysis of moose calves that included data from several twins
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(Severud et al., 2019). The fate of twins may be positively correlated due to genetics,
mother’s health, and environmental effects, but it is also possible that losing a calf might
increase maternal investment for, and the survival probability of, its twin. Using a
cluster-level bootstrap allowed the fates of these individuals to be positively or negatively
correlated, whereas using random effects would not (Smith & Murray, 1984).

A simple cluster-level bootstrap provided a reasonable solution to non-independence
and non-Normal data in our first case study because we had balanced data (i.e., equal
numbers of observations for each cluster). Similar to Generalized Estimating Equations
that use a working-independence assumption, this approach may be sub-optimal
when applied to unbalanced data and potentially problematic depending on the
mechanisms causing variability in sample sizes among clusters (e.g., if the size of the cluster
is in some way related to the response of interest;Williamson, 2014). Also of note, we were
interested in the effect of a predictor variable, exposure, which did not vary within a
cluster (i.e., exposure was constant across all measurements at a beach). Models that
use random effects to model correlation offer substantial advantages when interest lies
in predictors that vary both within and among clusters (Muff, Held & Keller, 2016).
A parametric bootstrap (i.e., simulating from a fitted model) is always possible with
random-effects models (e.g., using the bootMer function in the lme4 package; Bates et al.,
2015). This approach does not allow one to relax model assumptions, but could prove
useful for estimating confidence intervals for functions of model parameters in situations
where one is uncomfortable assuming the sampling distribution is Normal or where it is
impossible to derive an appropriate standard error. Alternatively, Warton, Thibaut &
Wang (2017) proposed bootstrapping probability integral transform (PIT-) residuals as a
general method appropriate for non-Normal, and possibly clustered or multivariate,
data. Model-based and resampling-based solutions to regression problems, particularly
those involving dependent data (e.g., repeated measures, time series, spatial data), tend
to be fairly complex. Therefore, it is important to consult with someone who has expertise
in these areas and to recognize that statisticians may not agree on a best solution.

We occasionally hear from colleagues that it is hopeless to try to teach frequentist
statistics to biologists—for example, it is impossible for non-statisticians to truly
understand and interpret confidence intervals—and therefore, we should just teach
Bayesian methods. Although replication plays a much lesser role in Bayesian statistics,
we note that Bayesian p-values are frequently used to perform goodness-of-fit tests
(Kery, 2010), and understanding the properties of estimators across repeated samples
remains critically important for evaluating Bayesian estimators (Rubin, 1984; Little, 2006).
In particular, demonstrating that Bayesian procedures are well calibrated (e.g., 95%
credible intervals contain parameter values used to simulate data roughly 95% of the time)
can help overcome the criticism that Bayesian methods rely on a subjective form of
probability, with results dependent on one’s chosen priors. This point cannot be
overstated, particularly in today’s highly polarized world in which individuals have
strongly held prior beliefs that differ among groups.

In our own work, we take a pragmatic approach to data analysis and use a
variety of tools, including frequentist and Bayesian model-based inference as well as
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resampling-based methods. Yet, we find that resampling-based methods often provide an
easier entry point to appropriate statistical analyses when consulting with less experienced
and less-mathematically savvy users. We have also found resampling-based methods
helpful for teaching foundational concepts in frequentist statistics and that undergraduate
biology majors are able to adapt resampling-based methods to new problems. Thus, we see
great opportunity in initiatives to use resampling-based methods to improve statistical
thinking in the biological sciences (e.g., www.causeweb.org/STUB). In summary, we
believe resampling-based methods should be used more frequently, both in practice and in
the classroom.
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