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Recent clinical trials have shown that adaptive drug therapies can be more effi-
cient than a standard cancer treatment based on a continuous use of maximum
tolerated doses (MTD). The adaptive therapy paradigm is not based on a preset
schedule; instead, the doses are administered based on the current state of
tumour. But the adaptive treatment policies examined so far have been largely
ad hoc. We propose a method for systematically optimizing adaptive policies
based on an evolutionary game theory model of cancer dynamics. Given a set
of treatment objectives, we use the framework of dynamic programming to
find the optimal treatment strategies. In particular, we optimize the total drug
usage and time to recovery by solving a Hamilton–Jacobi–Bellman equation.
We compare MTD-based treatment strategy with optimal adaptive treatment
policies and show that the latter can significantly decrease the total amount of
drugs prescribed while also increasing the fraction of initial tumour states
fromwhich the recovery is possible.We conclude that the use of optimal control
theory to improve adaptive policies is a promising concept in cancer treatment
and should be integrated into clinical trial design.
1. Background
Intratumoural heterogeneity is increasingly recognized as a cause of metastasis,
progression and resistance to therapy [1]. While genetic instability, a hallmark
of malignancy [2], can result in this heterogeneity, it is being increasingly under-
stood that eco-evolutionary factors, like selection and clonal interference, can
also drive and maintain it [3,4].

While sequencing technologies have enabled increasingly in-depth quanti-
tative understanding of the genetic heterogeneity, relatively little experimental
work has sought to directly quantify the eco-evolutionary interactions involved.
As more studies come to light showing the efficacy of treatments based on
eco-evolutionary trial designs, this lack of quantification is coming into focus.

In line with standard, cell-autonomous growth-based theories, conventional
chemotherapy is given to patients at themaximum tolerated doses (MTD): the high-
est doses that most patients can safely tolerate. Although the MTD-based therapy
offers advantages in survival compared to no therapy, cures remain elusive, and
side effects can be severe. In addition to the toxicity, it is known that relapse is
nearly inevitable due to the emergence of therapeutic resistance: a process
driven by Darwinian evolutionary dynamics in which the MTD-based che-
motherapy kills off the chemotherapy-sensitive cells, and chemo-refractory cells
eventually dominate in the tumour. While it is unknown whether these resistant
cells are present before therapy or acquire resistance mutations during therapy, it
is the process of variation and selection under standard therapy that drives the
inevitable failure in the patient.

Metronomic chemotherapy has been proposed as a possible alternative to the
MTD strategy [5–7]. Metronomic chemotherapy is given in an on/off fashion at
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frequent time intervals according to a set periodic schedule.
The idea is to give less overall medication, allowing therapy-
sensitive cells to regrow, keeping the tumour sensitive to the
therapy, while at the same time mitigating toxicity. This
decrease in toxicity has further been postulated to prevent
tumour angiogenesis and stimulate resensitization of anticancer
immune protection. Frustratingly, the results of clinical trials of
metronomic chemotherapy have been ‘variable’ [8] and some of
them have not demonstrated significant efficacy [9–11] com-
pared with standard therapy. In recent clinical trials, drug
dosage intensitywas optimized for a preset schedule, with a posi-
tive effect on toxicity [12]. However, the problem of finding an
appropriate schedule has not been addressed, even though
models suggest that timing is equally important [13,14].

Based on the hypothesis that disease dynamics depend on
the evolution of tumour heterogeneity as modulated by com-
petition between subtypes, the idea of using adaptive therapy
(AT) has been proposed [15]. AT is much like metronomic
therapy, with an important difference: the doses of therapy
are administered according to the current state of tumour
growth and its anticipated evolutionary changes (trajectory).
These can be estimated using direct (e.g. taking biopsies) or
indirect (e.g. antigen testing, mathematical modelling)
methods. Therefore, unlike the MTD-based or metronomic
protocols, AT does not have a preset schedule. The adaptive adjust-
ment of doses and timing also prolongs the period until a
tumour becomes chemotherapy-resistant. Recently, the adap-
tive strategies have shown promise in pre-clinical trials of
breast cancer [16] and a phase 2 clinical trial in metastatic
castrate-resistant prostate cancer [17].

These two recent successes [16,17] in AT have been based
onmathematicalmodelling of tumour evolution under therapy
using a dynamical systems approach based on evolutionary
game theory (EGT) [18,19]. This formalism explicitly considers
interactions between sub-populations and models their fitness
in frequency-dependent terms.1 EGT has been used
to theoretically consider many scenarios in cancer before,
including therapy scheduling and timing in prostate cancer
[13,17,22–24]; the use of tumour microenvironment targeting
therapy in glioblastoma [25]; the trade-off between healthy
tissue and cancer in multiple myeloma [26,27]; and drug resist-
ance in general [28–31]. These theoretical studies, combined
with the recent empiric realizations, suggest significant oppor-
tunities to improve therapy by using this evolutionarily
enlightened approach. Nevertheless, therapeutic decisions in
general practice are currently not based on this knowledge
and continue to use the MTD paradigm.

Even if we make very strong assumptions that an oncolo-
gist has perfect information about the current state of a
tumour and a faithful mathematical model that can predict
its trajectory, it is not clear how he/she should adjust the
schedule and doses. Based on a stage of the disease and
patient’s needs, the therapy can have different final goals:
maximization of patient’s life duration, ensuring the best
possible quality of life, decreasing probability of new metas-
tases appearing, decreasing time/cost of the treatment, etc.
Unfortunately, an oncologist can usually only focus on one
or two of these goals, having some reasonable constraints
on the secondary parameters. Thus, an important step
toward optimizing AT is to define an objective of the therapy
and ‘translate’ it into mathematical language. The next step is
to quantify how good each particular strategy is with respect
to that chosen objective. Optimizing this objective is a
mathematical goal which can be addressed by the tools of
optimal control theory.

Optimal control theory, a branch of mathematics typically
used in engineering, can be also applied to a wide class of pro-
blems arising in oncology [32]. The first such application was
due to Swan & Vincent [33], who found the optimal treatment
strategy for multiple myeloma with the objective to minimize
the total amount of drugs by using the Pontryagin minimum
principle (PMP) [34]. Since then, others have used the PMP in
different cancer treatment problems: a chemotherapy optimiz-
ation under evolving drug resistance [35–36], optimal
scheduling of a vessel disruptive agent [38], MAPK inhibitors
[39] input in cancer treatment, minimizing the amount of
drugs prescribed in tumour-immune model [40], finding a
compromise between drug toxicity and tumour repression
for the myeloma bone disease [41], and many others.

While these approaches have offered benefits in their ability
to formally optimize problems written as dynamical systems,
the PMP method has several limitations. First, PMP yields
only a necessary condition for an optimum, and any locally
optimal trajectory of the control system satisfies PMP. Local
optimality means that the trajectory is optimal when compar-
ing it with its small perturbations, but there may well be a
different trajectory that is even better (globally optimal, com-
pared with all possible trajectories). Secondly, PMP provides
a time-dependent (open-loop) control: given an initial state,
the method provides an optimal treatment strategy as a func-
tion of time—therefore a treating oncologist has to follow it
regardless of the changing state of the tumour. However, if
the underlying model has been perturbed or includes some
noise (like a tumour acquiring mutations, say), the control
cannot adapt to these unexpected changes.

A significantly different perspective on control theory is
based on the notion of feedback (closed-loop) controls.
Using the Hamilton–Jacobi–Bellman (HJB) equations, one
can obtain controls that depend on the current state of the
dynamical system (current distribution of sub-populations
of cancer cells) rather than only the current time [42].
In this case, the treating oncologist’s decisions can be
adjusted if something unexpected has happened with the
trajectory. Moreover, the HJB equations guarantee that the
resulting treatment feedback strategies are globally optimal.
Despite these advantages of the HJB, there are only a
few treatment optimization studies [43,44] which use this
feedback control paradigm.

Here, we apply the HJB approach to compute optimal
treatment strategies for a model of lung cancer proposed by
Kaznatcheev et al. [20]. In that paper, the authors introduce
an evolutionary game (system of replicator-type equations)
that models the dynamics of three sub-populations of
tumour cells. The article highlights the importance of a
good scheduling in the polyclonal regime, when the game
has cyclic dynamics. The article has an example of two
different scheduling strategies with the same set of initial par-
ameters that lead the system to opposite outcomes: putative
recovery, versus putative death of a patient. While several
qualitatively different treatment schedules are presented,
optimal therapy is not discussed. Given the growing interest
in EGT in clinical applications [17] and recent work connect-
ing these models using direct in vitro parametrization [45], we
believe the optimization of therapies based on such models
will become increasingly important and the HJB-based
approach will be used far more often in the future.



Box 1. Mathematical model of cancer sub-population evolution from Kaznatcheev et al. [20].

Transformation/reduction to a 2D system: Subpopulation proportions:
(xG, xD, xV) for GLY, DEF and VOP, respectively.

Note: xG þ xD þ xV ¼ 1:

q ¼ xV
xVþxD

,
p ¼ xG,

�
or

xD ¼ (1� q)(1� p),
xG ¼ p,
xV ¼ (1� p)q:

8<
: (2:1)

Evolution dynamics in reduced coordinates
with control on therapy intensity: _q(t) ¼ q(t)

�
1� q(t)

��
bv
nþ1

Pn
k¼0 p

k(t)� c
�
,

_p(t) ¼ p(t)
�
1� p(t)

��
ba
nþ1 � (bv � c)q(t)� d(t)

�
;

q(0) ¼ q0, p(0) ¼ p0:

8>>><
>>>: (2:2)

Control and parameters:

— d :Rþ ! [0, dmax], time-dependent intensity of GLY-targeting therapy;

— ba, the benefit per unit of acidification;

— bv , the benefit from the oxygen per unit of vascularization;

— c, the cost of production VEGF;

— n, the number of cells in the interaction group.

Conditions for homogeneous regime:
ba

nþ 1
, bv � c , cn: (2:3)

Process terminates as soon as either Terminal set:

p(t) , rb, if therapy succeeds;

p(t) . 1� fb, if therapy fails:

�
D ¼

n
(q, p) [ [0, 1]� [0, 1] : p , rb or p . 1� fb

o
: (2:4)
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2. Methods
We illustrate our approach on a model of cancer evolution that
has been proposed in Kaznatcheev et al. [20] and summarized
in box 1 with the key steps of derivation included in electronic
supplementary material, Section 1S. This model considers inter-
actions between three different sub-populations of cancer cells
playing a modified version of the public goods social dilemma:
glycoltyic cells (GLY), vascular overproducers (VOP) and cells
called defectors (DEF) which use both strategies to ‘cheat’ on
the others. While this model is highly simplified, the qualitative
aspects of these cell types have been well documented in
tumours. GLY cells are anaerobic and produce lactic acid, these
are classic ‘Warburg shifted’ cells, and have been implicated in
the acid-mediated invasion hypothesis [46]. These cells are lar-
gely responsible for local progression and metastasis, and
while it has been suggested they can be treated with buffer
therapy [47], this has yet to be shown to be clinically actionable;
therefore, adaptive dynamics remain a viable approach to control
this population. VOP cells spend extra energy to produce HIF-1α,
a signalling molecule which drives further production of Vascular
Endothelial Growth Factor (VEGF—a protein that works to
improve the vasculature), which ultimately benefits both VOP
and DEF cells since they require oxygen for aerobic respiration.
For this reason, the VOP cells could be targeted by drugs like bev-
acizumab, which is an anti-body against VEGF. DEF cells, the
‘cheaters’, have analogues inmany cancers, and have no cell-auton-
omous advantages, but instead depend on the ecological
interactions with other types for survival. These cells are best
targeted by modifying the ecology; e.g. via AT.

Based on the replicator model from EGT [18,19], transformed
into equation (2.2) in box 1, the evolution of the tumour is
described by tracking the changing proportions of GLY, VOP
and DEF cells in the full population. The patient is viewed as
recovered when the GLY proportion falls below some low
threshold rb. (Below this recovery barrier, the validity of replica-
tor-based model is harder to justify and we assume that the
GLY cells are essentially extinct.) Conversely, we assume that
GLY cells suppress other tumour cells and a patient dies if the
total proportion of aerobic cells (VOP and DEF sub-populations
combined) falls below some low threshold (a failure barrier) fb.

For a range of parameter values (2.3), this model predicts a
heterogeneous regime2 in cancer evolution with coexistent and
oscillating proportions of GLY, VOP and DEF. Without any treat-
ment, these sub-populations follow cyclic dynamics and a
patient never recovers (figure 1a).

Following section 4.1. in [20], we consider a cell-type-target-
ing therapy that preferentially penalizes the fitness of GLY cells;
see formula (2.2) in box 1. But we emphasize that the same
approach can be used to target any cell-type and optimize
therapy for any chosen end-condition. During the treatment, a
doctor defines the timing of therapy and its intensity. This
time-dependent intensity d(t) can vary between 0 (no therapy)
and dmax . 0 (the MTD). Two extreme cases (d(t) = 0 versus
d(t) ¼ dmax for all times t) are illustrated in figure 1a,b, respect-
ively.3 In the latter case, GLY cells become extinct and the
patient recovers quickly; however, it is natural to ask whether
this treatment strategy is optimal in some sense (e.g. would the
recovery be much delayed if the patient received therapy less
often or at a lower intensity?). In the following section, we will
show that the MTD-based treatment can result in an avoidably
high cumulative amount of drugs (figure 2c) or might even fail
to achieve a recovery in situations where AT-based treatment
would have succeeded (figure 4), much like the early results
from Zhang et al. in metastatic prostate cancer [17].

For the Kaznatcheev et al. tumour model (2.2), a natural
objective function to minimize is the total amount of therapy
administered over the course of treatment (which in this case
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Figure 1. A comparison of two possible constant treatment scenarios starting from an initial state (xD, xG , xV ) ¼ (0:04, 0:9, 0:06): (a) without any therapy; (b)
with the MTD-based therapy. Top row: phase portraits of corresponding vector fields (shown by grey arrows) on a GLY–VOP–DEF triangle with illustrative trajectories.
Blue background and green reference trajectory—no therapy at all. Yellow background and red reference trajectory—MTD-based therapy at all times. Dash light blue
and grey lines separate the recovery zone (bottom) and the failure zone (top), respectively. Black cross—termination due to crossing the recovery barrier. Bottom
row: evolution of sub-populations with respect to time based on the reference trajectories above. Green time range—no therapy. Pink time range—MTD-based
therapy. Note the different scaling of the time axis. (Online version in colour.)
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Box 2. Objective function.

Total treatment (terminal) time: Tðq0; p0; dð�ÞÞ ¼ minft [ RþjðqðtÞ; pðtÞÞ [ D; qð0Þ ¼ q0; pð0Þ ¼ p0g: (3:1)

If the system never gets to the terminal set, we assume that T(q0, p0, d(�)) ¼ þ1:

Terminal cost function is g(q, p): D ! f0;þ1g such that gðq; pÞ ¼ þ1; if p . 1� fb;
0; otherwise:

�
(3:2)

Treatment cost (objective) function: J(q0; p0; dð�ÞÞ ¼
Ð T
0 (d(s)þ sÞdsþ g(q(T); p(T)); (3:3)

where T :¼ T(q0, p0, d(�)) is the terminal time. J is finite if the system (2.2) terminates at the recovery barrier.

Value function u(q0; p0) ¼ inf
dð�Þ

Jðq0; p0; dð�ÞÞ can be found by solving HJB PDE:

min
d[[0,dmax]

ru(q, p) � _q(q, p, d)
_p(q, p, d)

� �
þ dþ s

� �
¼ 0, (q, p) [ ([0, 1]� [0, 1]) nD: (3:4)

The boundary conditions of HJB equation:
uðq; pÞ ¼ 0; if p , rb;
uðq; pÞ ¼ þ1; if p . 1� fb:

�
(3:5)

Once u and ru are computed, they can be used to obtain the optimal control in feedback form: d* = d(q, p).
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could be a surrogate for both toxicity and cost). This can be quan-
tified as D ¼ Ð T

0 d(t) dt, where the total time of treatment T is
dependent on the initial cancer subpopulation fractions and on
our chosen therapy policy d( · ). However, this objective is proble-
matic for two reasons. First, the minimum of D is clearly attained
without any therapy (taking d(t)≡ 0 implies D = 0 and T = +∞),
even though the dynamics become cyclic and the recovery is
never achieved. Second, if we constrain our minimization to
only those d( · ) that lead to recovery, an optimal treatment
policy does not exist. Instead, there is a sequence of treatment
policies that lead to successively smaller d-values but with an
unbounded increase in corresponding treatment times T. The
idea of such policies is simple: travel along the therapy-free tra-
jectories of figure 1a for most of the time, but use short bursts
of therapy only when the drugs are most effective. To approach
the optimally small d, one would need to use shorter and shorter
bursts, resulting in policies that are hard to implement in practice
and would require unrealistically long treatment times T, but
would yield a situation like a chronic disease, where while the
tumour is never cured, it is always controlled.

In order to get a meaningful optimal policy wewill penalize the
treatment timebya timepenaltyσ> 0.The total timespenton the treat-
ment, including time between the doses, is an important factor by
itself. Much longer treatment time results in additional costs and
lower quality of life for a patient. Therefore, our objective is to mini-
mize the sum of a therapy cost D and a treatment time cost σT, while
guaranteeing eventual recovery. For every choice of σ> 0, the result-
ing treatment policies are thus Pareto-optimalwith respect toD and T.

Ourmethodcomputes thevalue function,u,which isdefined for
every starting tumour state as the minimum of ðÐ T0 d(t) dtþ sTÞ
over the set of treatment policies that lead to recovery. (If recovery
is not possible then u = +∞.) Any policy d( · ) that realizes this mini-
mum is called optimal. Due to the structure of this optimization
problem, one can show that optimal treatment policies are bang–
bang: at any given time t, they either administer drugs at MTD-rate
(d(t) ¼ dmax) or administer no drugs at all (d(t) = 0); see electronic
supplementary material, §2S. For such policies, the objective func-
tion becomes a weighted sum of the total therapy time eT (when
d(t) ; dmax) and the total treatment time T, with dmax and σ as the
corresponding weights. Moreover, this allows for a simple visual
representation of any such policy: splitting the full state space into
two parts (MTD dynamics versus no-therapy dynamics, shown in
yellow and blue, respectively, in all of our figures) and simplifies
application of therapy into something familiar to clinicians: onoroff.

3. Results
(a) Quantifying the benefits of optimal treatment

strategies
We now focus on an optimal control problem summarized in
box 2 and based on the example considered in the therapeutic
implications section of Kaznatcheev et al. [20]. All model
parameter values (dmax = 3, ba = 2.5, bv = 2, c = 1, n = 4) corre-
spond to those in [20], except for the recovery and failure
barriers4 rb ¼ fb ¼ 10�1:5: We also use σ = 0.01 to incorporate
the time-penalty absent in the original model. In figure 2,
we compare the treatment cost (3.3) and treatment time (3.1)
of trajectories corresponding to four different treatment
strategies starting from the same initial configuration
ðxD, xG, xVÞ ¼ ð0:04, 0:9, 0:06Þ. The first two strategies are simi-
lar to thosemodelled inKaznatcheev et al. [20]: (a) is an example
of a bad policy that may cause a failure by stopping the therapy
prematurely, while (b) is a good policy based on ad-hoc adjust-
ment of the start time for the therapy. We also illustrate the
standard of care ‘MTD-based’ policy (c). Even though both
(b) and (c) lead to recovery, neither of these is optimal (with
the MTD-based approach resulting in an excessive amount of
drugs, captured by the higher cost). The policy minimizing
our objective function is found by solving the HJB equation
and illustrated in (d).

The corresponding therapy on/off regions and the result-
ing vector field are shown in figure 3a. The zoomed version
shows that trajectories can be prevented from crossing the
failure barrier by using the MTDs just before crossing.
In fact, a chattering control (with intermittent and sufficiently
frequent use of MTDs) would be sufficient to guarantee this.
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The level sets of u in figure 3b show that value functions
need not be smooth. Since the gradient of u is used to deter-
mine the optimal course of action (therapy on or off ), there
can actually be more than one optimal policy for initial
states on a shockline (where the gradient is undefined). We
show an example of such trajectories (solid green and red
lines in figure 3b, both yielding the same cost of 2.764) for an
initial point denoted by (*). Non-smoothness of the value func-
tion often poses a challenge for methods based on PMP [34]
even if the initial state is not on a shockline. For example, per-
turbing the initial state to a nearby one, denoted by a cross (×)
in figure 3c, one sees two locally optimal trajectories and PMP
might yield either of these depending on the initial guess.
The green one is, however, inferior to the globally optimal red
trajectory, which can be always recovered by solving the HJB
equation.

The trade-offs between our two optimization objectives
(the total administered drugs versus the time to recovery) are
further examined in electronic supplementary material, §S5.
(b) ‘Incurable’ states and periodic trajectories under
MTD treatment

One might think that, despite being sub-optimal, an aggres-
sive MTD-based strategy is at least always fully reliable
and the resulting trajectories are guaranteed to reach the
recovery zone from every initial configuration, as shown in
figure 2c. Indeed, if ba=(nþ 1) � dmax, the MDT-based
policy (d(t) ; dmax) guarantees that _p is always negative; see
equation (2.2). But with ba=(nþ 1) . dmax the recovery
might not be attained with the constant use of MTDs (even
if some other treatment policies are successful!).

Consider, for example, the following set of parameters:
ba ¼ 4, bv ¼ 2, c = 1, n = 4; rb ¼ fb ¼ 10�1:5; dmax ¼ 0:3, σ = 0.03
and an initial state (xD, xG, xV) ¼ (0:02, 0:8, 0:18) denoted by
(*) in figure 4. Under these parameters, the MTD-based
therapy has a periodic trajectory5 (figure 4b). Since the treat-
ment time is infinite, the cost (3.3) of such a policy is +∞. (In
reality, this would lead to the emergence of drug resistance
and eventual failure, but this biological situation is not
modelled in Kaznatcheev et al. [20].)
We can see that neither of two extreme strategies (‘no-
drugs-at-all’ in figure 4a and the MTD-based ‘drugs-all-the-
time’ in figure 4b) can bring the trajectory to the recovery
zone. However, their adaptive combination can still achieve
the objective. We show a trajectory corresponding to the opti-
mal policy in figure 4c. With a larger failure zone (e.g.
rb ¼ fb ¼ 10�1), a previously successful MTD-based treatment
might even result in death (figure 4d ), while the adaptive
strategy still leads to recovery (figure 4e).

For a fixed treatment policy, we define its corresponding
‘incurable’ area to be a set of states starting from which it is
impossible to cross the recovery barrier. For example in figure
4, the incurable area of the MTD-based policy includes the
state denoted by (*) (when rb ¼ fb ¼ 10�1:5 or rb ¼ fb ¼ 10�1).
However, this state is not in the (dramatically smaller) incurable
area of the adaptive/optimal policy (figure 5). Of course, the
‘incurable areas’ are also highly dependent on model par-
ameters. In electronic supplementary material, §S6, we show
that they can grow due to an increase in the MTD rate dmax or
a decrease in vascularization benefits bv.

Starting from any incurable configuration, one could simi-
larly pose a different control problem of maximizing the time
until crossing the failure barrier. While we do not address it
here, we note that the HJB approach would be quite suitable
to find optimal treatment policies for this problem as well.
4. Discussion
By now, it is widely accepted that cancer is an evolutionary pro-
cess, and that variation and selection drive the emergence of
drug resistance. While this new knowledge is driving cancer
research forward, it has largely not yet affected the practice,
with the majority of clinical protocols relying on MTD-based
approaches, which invariably fail in the setting of most
metastatic disease. This is changing with the advent of AT—
therapeutic strategies specifically designed with a changing
regimen prescribed: one that adapts to an evolving tumour [48].

To optimally design AT protocols, the underling
dynamics of the tumour growth and treatment response
must be known. While the methods of learning these
dynamics are still in their infancy, the last decade has seen
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a flurry of activity using EGT and other evolutionary models
for a range of prescribed dynamics. These works have shown
qualitative changes in tumour behaviour in a range of treat-
ment scenarios, and importantly, demonstrated that the
sequence [20,49–51] and timing [13,20] of therapy can drasti-
cally change the outcomes. As we come closer to the reality of
evolutionarily designed therapeutic trials in the mainstream,
it is important to develop methods that do not just improve
outcomes but aim to formally optimize them.

However, before using any optimization tools, one needs
to choose a specific quantifiable criterion for comparing the
outcomes. Once that criterion is selected and the underlying
mathematical model is sufficiently accurate, the best treat-
ment strategy can be found by the techniques of optimal
control theory. In this paper, we show how this can be
done for one particular heterogeneous cancer model
previously described in Kaznatcheev et al. [20]. We show
that the optimal treatment policy can have multiple regimes:
always on d�(�) ; dmax, always off d*( · )≡ 0, and involving
several contiguous treatment periods. For the latter, the chal-
lenge is to accurately approximate the on/off ‘switching
curves’ in the state space. We show that the definition of opti-
mal treatment policy is heavily dependent on a parameter σ
describing the relative importance of minimizing the total
amount of drugs versus the total time to recovery. We further
show that, for some parameter regimes, there are ‘incurable
regions’ in the state space—the starting configurations that
will not lead to a recovery regardless of the chosen treatment
strategy—suggesting an alternative therapy (or goal) should
be considered. Moreover, for some starting configurations,
the ‘always on’ treatment might not lead to a recovery even
if it is achievable with some on/off hybrid strategies.
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Just like any other model, the approach in Kaznatcheev
et al. [20] is based on simplifying assumptions (e.g. only the
subpopulation fractions are important, and no novel types
can arise), which limit its practical applicability. But our
message is broader, and we use this specific model primarily
to illustrate the general optimization approach applicable to
more detailed cancer evolution equations or even in
data-driven/equation-free framework.

Of the two main approaches of optimal control theory, the
PMP has been much more widely used in cancer treatment
research up until now. By contrast, our approach here is
based on dynamic programming and the numerical methods
for HJB equations. The higher computational cost of these
methods is balanced by several important practical consider-
ations. First, they yield a policy in feedback-form and are
thus more robust to modelling/measurement errors. Second,
they always return the globally optimal treatment strategies
and avoid some of the pitfalls well-known for the PMP-
based methods (e.g. figure 3b). With the advent of efficient
numerical methods, we posit that the HJB equations will be
soon playing a larger role in treatment optimization.

There are several obvious directions for extending our
approach. First, the ability to optimize outcomes for a range of
criteria will open new avenues to quantify physician/patient
discussions (on trade-offs and personalized therapy) that have
previously been only qualitative. The computation of optimal
policies for different values of σ (covered in the electronic sup-
plementary material) can be viewed as a small step in this
direction. But there are also many other possible optimization
criteria of practical interest. Methods for approximating all
Pareto-optimal policies are available [52] but are usually more
computationally challenging. For probabilistic cancer evolution
models, one can also choose between optimizing different
characteristics of the same random quantity (e.g. minimize the
average time-to-recovery versus maximizing the probability of
recovery in the next year). Finally, one can also use the choice
of criterion to promote robustness by systematically treating
possible measurement/modelling errors as perturbations
chosen by some adversarial player. Such ‘games-against-
nature’, as described recently by Stanková et al. [48], can be
similarly treated by solving Hamilton–Jacobi–Isaacs equations.

While we believe that our optimization approach will
have a major role in design of future clinical trials of AT,
the presented version is not yet sufficiently practical. One
important limitation is our assumed full knowledge of the
system state: the exact subpopulation fractions are needed
at every point in time to decide whether to administer the
drugs. In practice, one can periodically obtain an approxi-
mation of these quantities (e.g. based on a repeat biopsy),
but most of the time the decisions must be made based on
some less invasive measurements (e.g. based on PSA-levels
[17] or on circulating cell-free DNA [53]). A rigorous treat-
ment of such partially observable controlled processes [54]
would require a much more detailed model of ‘tumour
state’ uncertainties. As an intermediate step, we would rec-
ommend validation of such methods in vitro and in vivo,
using measured, instead of prescribed games. This is a
topic of active interest to our group [45,55], and would be
prudent to address before any clinical trials.
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Endnotes
1Using frequency dependence only (not strictly tumour size) is a
strong assumption in cancers which typically are growing. But
while the assumption of ‘constant population’ is standard in EGT, a
mapping to exponential growth has been also considered without
loss of generality [20,21].
2Other tumour regimes (fully angiogenic and glycolyctic) also exist
outside of this parameter range. They are less interesting from the
point of view of treatment strategies, but we still consider them for
the sake of completeness in electronic supplementary material, §S7.
3Model parameter values and initial states of trajectories are specified
for all figures in electronic supplementary material, §S4.
4This change inparameter values ismeant todecrease the computational
cost of our numerical approach (see electronic supplementary material,
§S3). The original rb ¼ fb ¼ 10�4 from Kaznatcheev et al. [20] would
require computations on a much finer mesh.
5This is easy to prove by redefining the parameter
ba :¼ ba � (nþ 1) dmax . 0 and reducing theMTD-based case to the per-
iodic behaviour of the uncontrolled system in the heterogeneous
parameter regime; i.e. equation (2.2) with d(t)≡ 0.
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