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Here, we use 30 long-term, high-resolution palaeoecological records from
Mexico, Central and South America to address two hypotheses regarding
possible drivers of resilience in tropical forests as measured in terms of
recovery rates from previous disturbances. First, we hypothesize that
faster recovery rates are associated with regions of higher biodiversity, as
suggested by the insurance hypothesis. And second, that resilience is due
to intrinsic abiotic factors that are location specific, thus regions presently
displaying resilience in terms of persistence to current climatic disturbances
should also show higher recovery rates in the past. To test these hypotheses,
we applied a threshold approach to identify past disturbances to forests
within each sequence. We then compared the recovery rates to these
events with pollen richness before the event. We also compared recovery
rates of each site with a measure of present resilience in the region as demon-
strated by measuring global vegetation persistence to climatic perturbations
using satellite imagery. Preliminary results indeed show a positive relation-
ship between pre-disturbance taxonomic richness and faster recovery rates.
However, there is less evidence to support the concept that resilience is
intrinsic to a region; patterns of resilience apparent in ecosystems presently
are not necessarily conservative through time.
1. Background
In the present context of global change, where ecosystems are likely to be exposed
to an increase in disturbances [1], a knowledge of the factors that make ecosystems
resilient has become increasingly important. Such knowledge is critical for
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Figure 1. Distribution of study sites (black stars) in Mexico, Central and South America. Sites are displayed on top of a map with the current vegetation sensitivity
index (VSI) as identified by Seddon et al. [12].
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determining landscapes that may be better able to withstand
climate change and other environmental disturbances,
especially in forested systems, which provide many important
ecosystem services [2]. There are two forms of resilience to con-
sider: the first known as ecological resilience [3,4], measured by
recovery rates from a disturbance event and calculated in this
manuscript, and the second being engineering resilience or per-
sistence [5], referring to how long an ecosystem canwithstand a
disturbance before changing to an alternative state.

To date, several palaeoecological studies have addressed
ecological resilience [6–9], but these have tended to only look
at one individual system, and few have attempted regional
syntheses to address specific hypotheses regarding the nature
and underlying drivers of resilience [6]. In this study,we exam-
ined records from 30 high-resolution palaeoecological datasets
across Neotropical forest ecosystems. The sites showed evi-
dence of one or more past forest disturbance events, such as
fire, hurricanes or anthropogenic impacts, aswell as displaying
spatial variation in recovery rates to these events. Using these
records, we address two hypotheses related to resilience [3].
First, the insurance hypothesis [10], which states that more
diverse ecosystemshave greater resilience. Second, the hypoth-
esis that resilience is due to a combination of location-specific
abiotic factors [11], and thus some locations demonstrate a con-
stancy of resilience through time due to these abiotic features.
2. Methods
(a) Identifying disturbance events
We selected high resolution, well-dated palaeoecological datasets
from the Neotropics ([12] figure 1 and table 1) covering the time
period from theLateGlacial to thepresent (i.e. from13000 calibrated
years before present (cal yr BP)) and spanning a large gradient in
vegetation persistence as measured by the vegetation sensitivity
index (VSI, [13]). The different forest types under analysis include
pine, tropical dry deciduous, tropical semi-deciduous, Andean,
Subpáramo, montane, gallery, cloud and rain forests (table 1). To
objectively identify disturbance events for each sequence, we
applied a threshold method based on the percentage of the sum of
pollen from forest taxa per pollen assemblage zone (PAZ). To
achieve this, first, the counts of pollen grains per sample belonging
to all terrestrial taxa were square-root transformed [39] and hier-
archically clustered through time to determine statistically
significant PAZs [40] of the pollen sequences. These analyses were
done by using the Rioja package [41] in the R software [42]. For
each sequence, percentages of the pollen taxa from the main forest
type present within the sequence were summed together. Within
each PAZ,mean and standard deviation for the sum of percentages
of the forest taxa were calculated. Disturbance events within
the sequences were defined as: (1) having a forest percentage sum
of less than the mean minus one standard deviation per PAZ (i.e.
<μ− 1σ, where μ is the mean and σ is the standard deviation),
making this our threshold value to identify disturbances,
(2) displaying more than one sample within a disturbance event,
(3) recording a clear start and end of the disturbance event within
the sequence and (4) having a mean temporal resolution below 100
years (see details in electronic supplementary material, S1 and S2).
Thesecondcriterionwasadded to reduce theprobabilityof counting
stochastic variations in pollen percentage sums as a disturbance
event, while clear starting and ending points in criterion 3 refer to
local maxima in the arboreal sum before and after disturbance [6].

In a previous study from the tropics that used recovery rates
following disturbance in fossil pollen records to measure resilience
[6], the recovery rates were defined as a percentage increase of
arboreal pollen abundance per year relative to the pre-disturbance
level. We applied this previously published equation [6] (equation
(2.1); electronic supplementary material, S2),

RR ¼ ððFmax � FminÞ=ðFpre � FminÞÞ � 100
Trec

, ð2:1Þ

which uses the following identifiable points within the sequences:
the lowest forest percentage within a disturbance (Fmin), the high-
est forest percentage after recovery (Fmax), the percentage sum
prior to the disturbance start (Fpre) and the time of recovery
(Trec, i.e. from Fmin to Fmax) in calibrated years before present
(cal yr BP). We calculated recovery rates per disturbance and
mean recovery rates per study site. In addition, in order to
assess whether forests recovered to a similar community assem-
blage as their pre-disturbance state or to a different assemblage,
we calculated squared chord distance coefficients [43] between
pre- and post-disturbance samples following the approach of
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Bennion et al. [44]. Samples with a coefficient of 0 indicate commu-
nities that are identical to each other, while those with a coefficient
of 2 are completely different. As in [44], we chose the 5th percentile
cut-off value of 0.48, below which there is insignificant assemblage
change between samples. For more details about dataset selection,
chronology, statistics, overall methodology and raw data, please
refer to electronic supplementary material, S3 and S4 and [45].

(b) Extracting pollen richness and vegetation sensitivity
index for each location and disturbance event

To test the insurance hypothesis, i.e. that more diverse ecosys-
tems have greater resilience, pollen richness, a proxy for
vegetation richness [46–49] before each disturbance event was
estimated using the counts of pollen belonging to terrestrial
taxa and this was compared to recovery rates. We hypothesized
that those sites with higher pre-disturbance pollen richness
would have faster recovery rates. To reduce the sampling bias
that affects richness estimations, which occurs when analysts
count different amounts of pollen grains per sample, we per-
formed rarefaction analysis [50] on all sequences by using a
minimum pollen sum of 100 grains. We used a generalized
linear model with variance weighting by study site to test the
relationship between pollen richness and log10(x+1)-transformed
recovery rates. The log transformation was chosen to reduce the
effect of outliers [51]. The following variables: richness, latitude,
altitude and sample resolution, were included in the initial
model and tested for significance and influence on model
performance following the Akaike information criterion [52].

To test the abiotic hypothesis, i.e. that resilience is due to a
combination of location-specific abiotic factors, we used a
linear regression model to test the relationship between spatial
patterns in present-day vegetation persistence, as measured by
the VSI [13] to recovery rates from the past at the same locations.
The VSI quantifies vegetation sensitivity over 14 years (2000–
2013) in terms of productivity to solely abiotic factors (i.e. cli-
matic factors such as water availability, air temperature and
cloudiness) on a 5 km resolution at the global scale, whereby a
high sensitivity value indicates low persistence and vice versa.
To link this measure up with longer-term vegetation dynamics
as obtained from the fossil pollen sequences extracted from the
lake sediments [53], we extracted the VSI value from the point
location of the fossil study site from the shapefile version of
the VSI by using ArcGIS (v. 10.6), software. We hypothesized
that those sites with faster recovery rates in the past also show
greater persistence to climatic perturbations from 2000 to 2013.
All model calculations were done in the nlme package available
in R software [41,54].
3. Results
We analysed 30 sedimentary records from the Neotropics
(figure 1) and a total of 59 disturbance events. Three
sequences were excluded from further analyses for not meet-
ing the disturbance identification criteria (electronic
supplementary material, S1). During the extracted disturb-
ance events, all of these records were sampled at a high
temporal resolution, with a mean sample resolution across
sequences of one sample every ca 40 years (37.7 ± 27.5
years, electronic supplementary material, S1). This high tem-
poral sample resolution is crucial to ensure that the
generational change of trees in these forested environments
is captured and to reduce the possibility of missing conse-
quent disturbance events. For example, previous studies
have identified that it takes between 30 to over a 1000 years
for tropical forests to recover following disturbance [6].
The range of recovery rates (in percentage of forest pollen
abundance increase per year relative to the levels prior to disturb-
ance) varied from 0.1 to 24.6 (or 0.04 to 1.41 after log10(x+1)
transformation, electronic supplementary material, S5), while
pre-disturbance palynological richness values (RichnessPre)
ranged between 3.7 to 25.3 different pollen taxa per sample,
being highest close to the equator. The range of VSI included in
our study went from 8.1, indicating highest persistence to cli-
matic factors to 55.7, displaying lowest persistence to climatic
perturbations (electronic supplementary material S1, table 1).

Taking all disturbances together, the variables RichnessPre
and the mean temporal resolution of samples within a disturb-
ance (TResolDist) were significant in explaining recovery rates
(p-value<0.001, figure 2a and table 2; electronic supplemen-
tary material, S6). This indicates that a high sampling
resolution may enable a more accurate detection of forest
recovery, while a potential earlier recovery might be missed
in records that have a longer time interval between samples.
Despite this effect of sampling resolution on the calculated
recovery rates, RichnessPre still has a significant positive
effect on the calculated recovery rates.

Regarding our second hypothesis, there is a slightly nega-
tive relationship between mean recovery rates per study site
(log10(x+1)-transformed) and VSI at the corresponding sites
(figure 2b), which would be in agreement with our second
hypothesis. However, VSI was not a significant variable
within the linear regression model (table 3).

Ourdissimilarityanalyses showed that only six of 59 assem-
blages showed significant change pre- and post-disturbance
(figure 2c; electronic supplementary material, S1 and
table 1). This indicates that forests seemed to recover to a
similar composition as found before the disturbance.
4. Discussion
Our study indicates that within our analysed temporal scale
of several thousands of years, resilience properties of a
system are generally not location specific and seem not to
be associated with the unique set of abiotic factors present.
Rather, other factors related to the vegetation assemblage
itself, such as biodiversity, appear to be more important.

Previous research has already found a positive effect of
biodiversity on the resilience of plant communities, however,
most of this research has focused on ecosystems with short
generation times (i.e. grasslands, agricultural systems) and
on recent timescales [55,56]. To our knowledge, this is the
first time this relationship has been demonstrated across the
Neotropics through time.

Even though the records chosen in this study have not been
sampled continuously, the mean resolution of samples within
disturbances (ca 40 years) roughly corresponds to rates of dis-
turbance i.e. from fire in highly fire prone ecosystems (e.g. fire
return intervals of 30 years in Mediterranean ecosystems [57]).
In our study of tropical forests, the insurance hypothesis [10],
stating that more complex systems recover faster from disturb-
ance, is supported by our results, showing the importance of
biodiversity to enable forests to recover from disturbances.
Our findings are also in agreement with dynamic simulation
modelling results of temperate forest ecosystems, which have
previouslydemonstrated that tree diversity positively influences
stable forest productivity over time [58]. Possible explanations as
to why biodiversity increases ecosystem’s resilience include the



1.0

0
5

0 1000 2000
altitude (m)

3000 4000

25 10 504030202015
palynological richness prior to disturbance vegetation sensitivity index

forest type
Andean forest
cloud forest
dry deciduous forest
gallery forest
montane forest
pine forest
rain forest
subpáramo forest
transitional pine forest
tropical forest with mangroves
tropical semi-deciduous forest

10

2.0

sq
ua

re
d 

ch
or

d 
di

st
an

ce
 c

oe
ff

ic
ie

nt
pr

e-
 a

nd
 p

os
t-

di
st

ur
ba

nc
e 

sa
m

pl
es

lo
g 

re
co

ve
ry

 r
at

e

lo
g 

m
ea

n 
re

co
ve

ry
 r

at
e 

pe
r 

si
te

0

0.5

1.0

1.5

0.5

1.0

0

0.5

(a)

(c)

(b)
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Table 2. Results of generalized least-squares model to test Hypothesis 1. Model equation: log10(RR + 1)∼ RichnessPre + TResolDist, variance weighted by site
(i.e. weights = varIdent(form =∼1 | site) as used in package ‘nlme’ [54] in the R software); n= 59. RR, recovery rates; RichnesPre, palynological richness per
sample prior to disturbance; TResolDist, mean temporal resolution of samples within a disturbance.

variables coefficient standard error t-value p-value

intercept 0.3467423 1.261944 × 10−5 27476.85 <0.001

RichnessPre 0.0067004 5.372250 × 10−7 12472.26 <0.001

TResolDist −0.0038703 8.149000 × 10−8 −47493.63 <0.001

Table 3. Results of linear regression model to test Hypothesis 2. Model
equation: log10(mRR + 1)∼ VSI. mRR, mean recovery rates per site; VSI,
vegetation sensitivity index.

variables coefficient
standard
error t-value p-value

intercept 0.475075 0.132312 3.591 0.00135

VSI −0.004270 0.005505 −0.776 0.44494
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positive effect of different responses of species to fluctuations,
also taking into account different response speeds [58,59] and
the fact that there will be a number of species with similar func-
tions thus able to replace the functions of the species lost [10].
Using long-term data from palaeoecological records, as has
been done in this study, could provide important further ave-
nues of research into these relationships by looking, for
example, at individual taxon traits in those records that demon-
strate faster recovery rates.
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The lack of a strong relationship between current
vegetation persistence patterns at sites and faster recovery
rates in the past, may possibly be explained by shifting eco-
tone boundaries and baselines. Thus, under different
climatic conditions in the past, these boundaries have
shifted, as can be seen in changing treeline altitudes through
time [60], displacing the physical location at which an eco-
system is more sensitive to change. However, we also need
to consider the differences in the temporal scale that affect
our analyses. We have compared a VSI based on 14 years
of data, which in most cases, will not record a single gener-
ation of trees, to recovery rates issuing from forest dynamics
covering thousands of years and representing multiple gen-
erations. Additionally, differences in the pollen source area
from large to small lakes and the pixel size of 5 km2 of the
VSI data will not always be comparable and smaller-scale
abiotic features such as soil type or slope and aspect
cannot be reflected on such large pixels. Nevertheless, a
result emerging from our study is that the persistence appar-
ent in these ecosystems presently is not necessarily
conservative through time. Thus abiotic factors cannot
alone be used to explain patterns of resilience; rather our
results indicate that pre-disturbance taxonomic diversity is
a better indicator of resilience of the system (as measured
by recovery rates). This result suggests that conservation
management efforts which aim to create resilient ecosystems
by maintaining and enhancing biodiversity are a good
approach.
5. Conclusion
We have identified biodiversity of forests to be important for
their resilience, highlighting the necessity of promoting
diverse ecosystems to ensure their provision of ecosystem ser-
vices in a changing environment. Additionally, further
research into which vegetation traits are associated with
resilient ecosystems would be an important step towards
managing resilient ecosystems for the future, as well as
further insights into ecosystem stability.
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