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Kirchhoff polynomials are central for deriving symbolic steady-state
expressions of models whose dynamics are governed by linear diffusion on
graphs. In biology, such models have been unified under a common linear
framework subsuming studies across areas such as enzyme kinetics, G-protein
coupled receptors, ion channels and gene regulation. Due to ‘history depen-
dence’ away from thermodynamic equilibrium, these models suffer from a
(super) exponential growth in the size of their symbolic steady-state
expressions and, respectively, Kirchhoff polynomials. This algebraic explosion
has limited applications of the linear framework. However, recent results on
the graph-based prime factorization of Kirchhoff polynomials may help
subdue the combinatorial complexity. By prime decomposing the graphs con-
tained in an expression of Kirchhoff polynomials and identifying the graphs
giving rise to equal polynomials, we formulate a coarse-grained variant of
the expression suitable for symbolic simplification. We devise criteria to effi-
ciently test the equality of Kirchhoff polynomials and propose two heuristic
algorithms to explicitly generate individual Kirchhoff polynomials in a com-
pressed form; they are inspired by algebraic simplifications but operate on
the corresponding graphs. We illustrate the practicality of the developed
theory and algorithms for a diverse set of graphs of different sizes and for
non-equilibrium gene regulation analyses.
1. Introduction
Linear diffusion (of information, probabilities, concentrations) on graphs [1–3],
and the mathematically equivalent linear non-negative and compartmental sys-
tems [4,5] are abundantly used in science to model linear dynamical processes.
The great significance of Kirchhoff polynomials [6] stems from their role in link-
ing the graph topologies to the symbolic steady-state expressions of such
processes. In biology, analyses of linear diffusion processes on graphs, originat-
ing from areas as diverse as enzyme kinetics, G-protein-coupled receptors and
gene regulation, have recently been unified under a common mathematical
linear framework [7]. The linear framework represents a biological system as
a labelled directed graph (graph, for short) having molecular states as vertices,
state transitions as edges, and transition rate constants as edge labels. The
dynamics on the graph have deterministic (linear ODEs) and stochastic
(Markov process master equation) interpretations, and define how states (con-
centrations, respectively, probabilities) evolve over time [8]. Closed-form
steady states of such linear framework models (LFMs) always exist and can
be symbolically derived from initial conditions and the basis of the kernel of
a matrix representation of LFMs, namely the graph Laplacian matrix [7]. For
systems at thermodynamic equilibrium, the principle of detailed balance dic-
tates ‘history-independent’ equilibrium steady states, for which the basis
elements of the kernel can be derived from products of equilibrium constants
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along any path in the model graph [7]. However, a break-
down of detailed balance occurs when systems expend
energy, leading to ‘history-dependent’ non-equilibrium
steady states of substantially higher algebraic complexity
[9]. Namely, away from equilibrium a basis element of the
kernel of the graph Laplacian matrix becomes a homo-
geneous multivariate polynomial called the Kirchhoff
polynomial, which according to Tutte’s Matrix-Tree Theorem
[10] can be equivalently obtained by (i) symbolically deriving
all ( j, j )-minors of the graph Laplacian matrix and summing
them up, and by (ii) enumerating all spanning trees in the
model graph, multiplying the symbolic labels in each tree,
and adding the resulting monomials of all spanning trees.

Departure from equilibrium and the ensuing ‘history
dependence’ pose a fundamental challenge—the number of
spanning trees and, correspondingly, the size of Kirchhoff
polynomials and symbolic steady-state expressions frequently
grows super-exponentially with the size of the graph models
[11]. Symbolic derivations bring great benefits in understand-
ing non-equilibrium biological phenomena despite this
seemingly unmanageable combinatorial explosion. In conse-
quence, there has been a prolific development of software
(reviewed in [12]) and of methods to derive steady states
and rate equations of biological models that can be classified
as falling within the linear framework using, among others,
graph theoretical methods [13,14], systematic determinant
expansion [15] and Wang algebra [16]. In computer science,
advances have also been made to enumerate the set of all
spanning trees fromwhich Kirchhoff polynomials are obtained
[17,18]. However, all existing exact methods and algorithms
suffer from the aforementioned combinatorial explosion and
they only offer limited and ad hoc manipulation of steady-
state expressions. This hinders the in-depth understanding of
the role of energy expenditure in biological systems, the extrac-
tion of general principles of eukaryotic gene regulation [9] and
differential signalling [19], and the analysis of more detailed
models that follow from advanced experimental techniques,
such as phosphoproteomics [20].

An important step towards taming the combinatorial
complexity is the realization that a model graph G can be effi-
ciently decomposed into smaller graphs whose Kirchhoff
polynomials are prime factors of the Kirchhoff polynomial
of G [21]. This graph-based polynomial factorization provides
a natural, compact representation that does not directly
depend on the number of spanning trees but rather on
directed graph connectivity. Here, we exploit the factoriz-
ation to further develop theory and algorithms for
dissecting and mitigating the seemingly intractable combina-
torial complexity. Our approach aims to simplify expressions
of Kirchhoff polynomials, bypassing the customary expensive
symbolic generation and manipulation by computer algebra
systems. Specifically, we consider the prime factors of all
Kirchhoff polynomials in an expression as symbolic variables.
The resulting coarse-grained expressions allow for symbolic
simplification without explicit generation of the polynomials.
To explicitly generate the Kirchhoff polynomials, e.g. as is
needed for their repeated evaluation, we propose a recursive
and an iterative heuristic algorithm inspired by algebraic sim-
plification, but operating on the graphs alone. Applied to a
collection of graphs, in particular, graph connectivity aware
heuristics prove to be useful in practice, with large com-
pressions and short running times. Furthermore, we extend
the sharpness analysis of gene expression in development
from [9] and show that away from equilibrium, four binding
sites allow for previously unknown qualitative shapes of
gene regulation functions (GRFs). The methods and algor-
ithms are implemented in the Python package KirchPy
available at https://gitlab.com/csb.ethz/KirchPy.
2. Background
2.1. Linear framework models
Let us consider the model of Ca2+-dependent nuclear trans-
location of the nuclear factor of activated T cells (NFAT) from
[22], which can be expressed in the linear framework. NFAT
can be in one of three states—cytoplasmic phosphorylated
(N�

c ), cytoplasmic dephosphorylated (Nc), or nuclear (Nn),
and undergo four reactions—dephosphorylation, phosphoryl-
ation, nuclear import and nuclear export with respective rate
constants r1, r2, r3 and r4. This system functions away from
equilibrium because it contains multiple irreversible, and
thus energy expending reactions.

The reaction schemeofNFAT can formally be represented as
a simple labelleddirected graphG = (V, E) (figure 1a). The graph
G is composed of a set of vertices V(G) ¼ {vN�

c
, vNc , vNn} corre-

sponding to NFAT states (correspondence marked in
subscript), and a set of edges (ordered pairs of distinct vertices;
no multiple parallel edges allowed) E(G) ¼ {vN�

c
vNc , vNcvN�

c
,

vNcvNn , vNcvN�
c
} corresponding to reactions. We associate a

label ‘(uv), standing for a mathematical expression, to each
edge uv∈ E(G). For example, with ‘(vN�

c
vNc ) ¼ r1, we mark

that the label associated with vN�
c
vNc is the rate constant r1.

Additionally, by ‘(G), we define the set of all edge labels of G.
Here, we are primarily interested in LFMs that corre-

spond to strongly connected graphs. Namely, graphs G in
which there exists a directed path from u to v and from v to
u for any two vertices u, v∈V(G) (as in figure 1a); figure 1d
shows an example for which this property does not hold.
However, this does not limit the generality of the developed
algorithms and theory.

LFMs are frequently obtained from more complicated
models after applying the technique of timescale separation,
stating that a part of a biochemical system operating much
faster than the rest of the system can be assumed to have
reached a steady state [7]. This model reduction could
result in edge labels involving (nonlinear) algebraic
expressions of kinetic parameters and species concentration
terms. To retain the linearity of LFMs, concentration terms
in labels must correspond to species not contained in V(G).
These could be species acting on the slow timescale or
other entities as in the case of NFAT, where r1 is assumed
to be modulated by Ca2+ oscillations. We circumvent expli-
citly dealing with the arbitrary, though biologically
significant, algebraic structure of the label expressions by
regarding them as uninterpreted symbols ‘(uv) that denote
unique edge names.

We concentrate on the deterministic interpretation of LFM
dynamics (also called Laplacian dynamics) and associate
each vertex vi∈V(G) in G to a non-negative species concen-
tration xi and each edge to a mass-action reaction. In the
resulting dynamical system, species concentrations associated
with vertices flow in the direction of the edges at rates pro-
portional to the concentrations on the edges’ source
vertices, where proportionality is set by the edge label ‘(uv).
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Figure 1. Example model for nuclear translocation of the nuclear factor of activated T cells (NFAT) [22]. (a) Graph G, (b) all its spanning trees, and (c) the corre-
sponding Kirchhoff polynomial. (d ) The graph obtained by rooting G at vNn , (e) the edge deleted graph GnvNc vN�c , and ( f ) the edge contracted graph G=vNc vN�c .
Vertex labels mark the states that they represent and W denotes a vertex obtained after edge contraction. Highlighted vertices are, respectively, roots of the cor-
responding spanning tree and of all spanning trees when rooting a graph.
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The example model from figure 1a is closed, it does not
exchange matter with the environment. The dynamics of
closed LFMs can be expressed in the form

dx
dt

¼ L(G)x, (2:1)

where x = (x1,…, xn)
T is the vector of species’ concentrations

corresponding to each vertex v1,…, vn∈V(G) and L(G) is
the graph Laplacian matrix of G defined as

L(G)ij ¼ ‘(vjvi) if i = j,
�P

r=j ‘(vjvr) if i ¼ j,

�
(2:2)

and ‘(vjvi) = 0 when vjvi � E(G). For the example model, this
means

x ¼
xN�

c

xNc

xNn

0
B@

1
CA and L(G) ¼

�r1 r2 r4
r1 �(r2 þ r3) 0

0 r3 �r4

0
B@

1
CA:

(2:3)

In closed systems, the total amount of material xt is conserved
according to a single conservation law x1 þ � � � þ xn ¼ xt.
The system has a unique stable steady state that can be
derived symbolically from initial conditions and the kernel
of L(G) [8].

Graphs G for open LFMs with synthesis and degradation
reactions are obtained by adding a vertex v� representing
the environment to a core graph G (akin to closed systems,
the core graph is composed of all non-synthesis and non-
degradation reactions), and by introducing directed edges
from v� to the synthesized species in G with labels si and
edges labelled δi from the degraded species to v�. The
dynamics of open LFMs are defined in general form as

dx
dt

¼ L(G)x� Dxþ S,

where L(G) is the graph Laplacian matrix of the core graph,
Δ is a diagonal matrix with Δii = δi the degradation rate con-
stants of species i, and S is a vector Si = si comprising the
synthesis rate constants. In open systems, the total amount
of matter is not conserved, but synthesis and degradation at
steady state are balanced: δ1x1 +⋯ + δnxn = s1 +⋯ + sn. Simi-
larly to closed systems, but assuring that the steady-state
concentration at v� is always 1, the unique stable steady
state for vertex vi (vi = v�) can be derived symbolically.
For more details on LFMs, see [7,8,23].

2.2. Spanning trees
A class of subgraphs, so-called spanning trees, connect non-
equilibrium steady states of LFMs to model graph structure.

A graph H is a subgraph of a graph G if V(H )⊆V(G) and
E(H ) ⊆ E(G), such that every edge in G between vertices in H
is also an edge in H. For V0 ⊆V(G), G[V0] denotes the induced
subgraph of G by the set of vertices V0. A strongly connected
component (SCC) of G is any largest (w.r.t. vertex inclusion)
strongly connected induced subgraph of G. The definition
implies that no two distinct SCCs share a vertex, that is, the
SCCs G1,…, Gk of a graph G induce a unique partition
V(G1),…, V(Gk) of V(G). Furthermore, two distinct SCCs Gi

and Gj can be connected by either a directed path from Gi

to Gj, or from Gj to Gi, but not by both. The existence of
such unidirectional paths induces a unique partial order on
the SCCs G1,…, Gk.

A rooted directed spanning tree (spanning tree, for short) A
is a subgraph of G that spans its vertex set such that there is a
unique directed path from any vertex to a root vertex. We
denote the set of all spanning trees of G by spt(G), and the
set of all spanning trees rooted at a vertex v by sptv(G) (see
figure 1b for all spanning trees of the example graph).
To obtain a graph containing only spanning trees rooted at
a vertex v, we define the graph rooting operation rt, so that
rtv(G) is the graph constructed from G by removing all
edges outgoing from v (figure 1d ). Likewise, we call a
graph G rooted at a vertex v if v has no outgoing edges
and v is reachable from every other vertex in G. Observe
that sptv(G) ¼ spt(rtv(G)). Graph G contains a spanning
tree iff the partial order of the SCCs has exactly one
maximal element, i.e. no other SCC is reachable from a
maximal SCC. Such a maximal SCC is also called a
terminal SCC.

2.3. Kirchhoff polynomials and steady states
A spanning tree A of a graph G with n vertices is a subgraph
with n− 1 edges e1,…, en−1 ∈ E(G) (we denote edges by e
when not interested in the pairs of vertices defining them).
In a uniquely labelled graph G, i.e. when no two edge labels
in G are the same, A can also be represented as a monomial
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Figure 2. Algebraically equivalent representations of a Kirchhoff polynomial, their expression trees, and sizes for an example graph G (see electronic supplementary
material, figure S1) in (a) the fully expanded representation, (b) a simplified representation, e.g. obtained by algorithm CR and (c) a change of variables form (forest
of expression trees), e.g. obtained by algorithm CI. The size of a representation is the sum of the numbers of branch vertices and of leaves in the expression tree.
With change of variables, each expression tree from the forest is assigned a pointer counting as 1 to the size of the representation and pointing to the leaves of
other expression trees where it should be substituted to obtain the expression tree of the complete Kirchhoff polynomial. The pointer S denotes the ‘starting’ tree.
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‘(e1)‘(e2) · · · ‘(en−1) in the edge labels of G. Furthermore, the
set of all spanning trees of G can be represented by a homo-
geneous multivariate polynomial over the variables ‘(ei), ei∈
E(G). This polynomial is called the Kirchhoff polynomial κ(G)
(figure 1c)

k(G) ¼
X

A[spt(G)

Y
ei[EðAÞ

‘(ei): (2:4)

Note that κ(G) = 0 when no spanning trees exist in G and
κ(G) = 1 when G consists of a single vertex. We also denote
the Kirchhoff polynomial of all spanning trees rooted at
vertex v by kv(G) ¼

P
A[sptv(G)

Q
ei[E(A) ‘(ei) (a shorter notation

for k(rtv(G))).
A Kirchhoff polynomial κ(G) can have multiple algebraically

equivalent representations Γi(κ(G)) (i indexes all such represen-
tations) corresponding to different expression trees (figure 2).
We consider expression trees in which the branch vertices rep-
resent the operations of n-ary addition or multiplication, and
leaf vertices are the unique edge labels ‘(G), the variables of
κ(G). We define the size of a representation of κ(G),|Γ(κ(G))|,
as the size of its corresponding expression tree. However, a
change of variables requires an extended definition because it
produces a forest of expression trees, and not a single tree
(figure 2c). We define the size of a Kirchhoff polynomial in
such a representation as the total number of branch vertices
and leaves in the forest plus the number of expression trees in
the forest. We need to account for the number of expression
trees since each of them has a unique pointer indicating its
location within the other expression trees.
The unique steady state of LFMs can be symbolically
obtained from initial conditions and the kernel of the graph
Laplacian matrix by employing Tutte’s Matrix-Tree Theorem [10].

Theorem 2.1 (Tutte’s Matrix-Tree Theorem). Let G be a
graph with n vertices then the minors L(G)(i,j) of its
Laplacian matrix can be expressed, up to a sign, by the Kirchhoff
polynomial rooted at the vertex vj corresponding to the j-th
column of L(G) as

L(G)(i,j) ¼ (�1)nþiþj�1
X

A[sptvj (G)

Y
e[EðAÞ

‘(e) ¼ kvj (G):
As a result, the non-equilibrium steady-state concen-
tration xSSi of species i associated with vertex vi in a closed
LFM with a strongly connected graph G is a fraction of
Kirchhoff polynomials

xSSi ¼ kvi (G)
k(G)

xt: (2:5)

Correspondingly, for open systems and a vertex vi = v�

xSSi ¼ kvi (G)
kv� (G)

:

Note that the Kirchhoff polynomial κ(G) in the denominator
of the steady-state expression for closed systems acts as a
non-equilibrium partition function [9]. For more details on
LFMs, derivations, equilibrium steady states and steady
states in non-strongly connected graphs see [7,8,23].
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2.4. Deletion, contraction and prime factorization
By G n e, we denote the graph obtained from G by deleting
edge e∈ E(G) (figure 1e). Additionally, for a graph G and an
edge e = vivj∈ E(G), G/e is the edge contracted graph con-
structed from G by (i) removing the edge vjvi, if it exists, and
all outgoing edges from vi, i.e. viu∈ E(G) and (ii) fusing
vertices vi and vj into a new vertex w (figure 1f). Edge con-
tractions may give rise to graphs with multiple parallel
edges between two vertices. To correct this, we replace m
multiple parallel edges e1, e2,…, em from u to v with a single
edge e = uv so that ‘(e) = ‘(e1) + ‘(e2) +⋯ + ‘(em).

The defined graph operations can be used to decompose
κ(G), given an edge e∈ E(G), into a sum of Kirchhoff
polynomials according to the classic deletion–contraction
identity [24]

k(G) ¼ k(G n e)þ ‘(e)k G=eð Þ: (2:6)

A Kirchhoff polynomial P is a factor of another Kirchhoff
polynomial Q, if there exists a Kirchhoff polynomial R such
that Q = P ·R. A Kirchhoff polynomial P that cannot be factor-
ized into non-trivial factors is called prime. Correspondingly,
for graphs, G0 is a component (a prime component) of G if κ(G0)
is a factor (a prime factor) of κ(G). Mihalák et al. [21] introduce
graph decomposition rules that correspond to factorization
steps of the Kirchhoff polynomial. In particular, the method
yields in linear time graphs whose Kirchhoff polynomials are
prime factors of the Kirchhoff polynomial of the original G

k(G) ¼
Yn
i¼1

k(Pi),

where Pi are the prime components of G. A prime component
Pi can be either (i) strongly connected or (ii) rooted at v such
that Pi n v (here n denotes vertex deletion) is strongly connected
and Pi does not have any non-trivial vertex dominators
(a vertex u dominates a vertex w if every path from w to v
goes through u). We call graphs with prime Kirchhoff
polynomials also prime graphs. Importantly, the prime factoriz-
ation is conditional on label uniqueness—when different edges
have equal labels or there are variables shared across labels, the
factorization is not guaranteed to be prime.
3. Efficient manipulation of Kirchhoff
polynomials

Non-equilibrium steady states of LFMs are ratios (or more gen-
erally: expressions) of Kirchhoff polynomials. Similarly, any
symbolic expression derived from steady-state LFMs through
arithmetic and calculus will also comprise expressions of
Kirchhoff polynomials. Examples are ratios of steady states,
steady-state rate equations, EC50 values for steady-state dose–
response curves, differential responses [19], and steady-state
parameter sensitivities (expressions differentiated with respect
to a reaction constant). Correspondingly, algebraic manipu-
lation of expressions of Kirchhoff polynomials is important to
understand when expressions can be simplified. For example,
the steady state of a LFM can be simplified if the numerator
and denominator share common factors. After all common fac-
tors are crossed out, numerator and denominator become
relatively prime and further simplification is not possible.

To circumvent tedious symbolic manipulation of
combinatorially complex algebraic expressions, we exploit
properties of Kirchhoff polynomials that allow their implicit
manipulation, that is, without explicitly generating poly-
nomials in expanded form but working with the
corresponding graphs. More precisely, we (i) find the prime
components corresponding to prime factors of all Kirchhoff
polynomials in the expression, (ii) determine which prime
components generate identical Kirchhoff polynomials, and
(iii) form a coarse-grained representation of the original
expression by substituting prime components with symbolic
variables, where prime graphs with equal Kirchhoff
polynomials are assigned the same variable, and finally,
(iv) symbolically simplify the coarse-grained expression.
However, it is an open problem to efficiently determine which
prime components generate equal Kirchhoff polynomials
without their explicit generation.
3.1. Prime graphs with equal Kirchhoff polynomials
We consider Kirchhoff polynomial equality in the algebraic
sense. By uniquely labelling a graph we assign identity to
each edge through its label, that is, a label defines a particular
reaction. Applying the graph operations of prime decompo-
sition, edge deletion, edge contraction, and vertex rooting
to a uniquely labelled graph preserves the identity of the reac-
tions while the names of the vertices can change. However,
when comparing two Kirchhoff polynomials originating
from different sources, identical (different) reactions between
the sources need to carry the same (different) labels to have a
meaningful comparison.

A necessary condition for two polynomials to be equal is
that they have the same set of variables corresponding to
terms with non-zero coefficients. This condition cannot be
transferred directly to compare the graphs generating Kirchh-
off polynomials because the graphs may contain nuisance
edges that do not participate in any spanning tree. With nui-
sance edges, the set of labels of two graphs that generate
equal Kirchhoff polynomials will be different. However, if
we compare only prime graphs we can prove that they do
not contain nuisance edges because every edge participates
in at least one spanning tree.

Theorem 3.1. Let G be a prime graph, then each edge in G partici-
pates in at least one spanning tree.

The absence of nuisance edges in prime graphs allows us
to formulate a necessary condition for Kirchhoff polynomial
equality.

Corollary 3.2. Let G and H be two prime graphs with equal
Kirchhoff polynomials, then G and H have equal sets of edge
labels, i.e. κ(G) = κ(H )⇒ ‘(G) = ‘(H ).

Proof. Follows directly from theorem 3.1. □

The condition can be tested efficiently since it involves
only a comparison between sets, but it is not a sufficient con-
dition for Kirchhoff polynomial equality (figure 3a).

To obtain a graph-based sufficient condition of Kirchhoff
polynomial equality, we define the term λ-isomorphism to
denote a vertex bijection that is edge-preserving and enforces
the corresponding edges to have identical labels.
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Figure 3. Examples for (a) two graphs with equal edge label sets but different Kirchhoff polynomials and for (b) two non-λ-isomorphic prime graphs with identical
Kirchhoff polynomials.

royalsocietypublishing.org/journal/rsif
J

6

Definition 3.3 (λ-isomorphism). Two labelled graphs G and
H are called λ-isomorphic, denoted G ≃l H, iff there exists a
bijective mapping c :V(G) 7! V(H), such that

1. uv∈ E(G) iff ψ(u)ψ(v)∈ E(H ) and
2. ‘(uv) = ‘(ψ(u)ψ(v)).
 .R.Soc.Inter
Evidently, two λ-isomorphic graphs give rise to equal
Kirchhoff polynomials because the graphs differ only by
vertex names, and otherwise have identical topologyand labels.
 face

17:20190828
Observation 3.4. LetG andH be λ-isomorphic, then they gener-
ate identical Kirchhoff polynomials, i.e.G ≃l H ) k(G) ¼ k(H).

To derive a condition testing for λ-isomorphism we first
define the so-called line graph L(G) associated with G.
Definition 3.5 (line graph). The line graph L(G) associated
with the graph G satisfies the conditions

1. the vertices of L(G) are the unique edge labels of G, i.e.
V(L(G)) ; ‘(G) and

2. two vertices u, v [ V(L(G)) are joined by an edge uv iff
u = ‘(rs), v = ‘(st) for r, s, t∈V(G).
Theorem 3.6. Two prime graphs G and H are λ-isomorphic iff the
edge sets of their line graphs are equal, i.e. G ≃l H , E(L(G)) ¼
E(L(H)).

Theorem 3.6 allows us to formulate a sufficient condition
for prime Kirchhoff polynomial equality.
Corollary 3.7. Let G and H be two uniquely labelled prime graphs
whose line graphs have equal edge sets, then the Kirchhoff polynomials
they generate are equal, i.e. E(L(G)) ¼ E(L(H)) ) k(G) ¼ k(H).

Proof. Follows directly from observation 3.4 and theorem 3.6.
□

The sufficient condition in corollary 3.7 is also cheap to
evaluate since it only involves line graph construction,
which has quadratic time complexity, and the comparison of
two sets. The condition is not necessary for prime Kirchhoff
polynomial equality (figure 3b).
3.2. Formulation of coarse-grained expressions
We use the conditions in corollary 3.2 and corollary 3.7 to
assign identical variable names to prime graphs with equal
Kirchhoff polynomials when formulating the coarse-grained
description of an expression of Kirchhoff polynomials with-
out their explicit generation. First, we apply the necessary
condition to filter possible matches, and then the sufficient
one to certify the equality. Pairs of prime graphs that are
non-λ-isomorphic but have the same label sets require special
attention. With such pairs, we cannot guarantee that we have
identified all graphs with equal Kirchhoff polynomials,
which translates to a lack of guarantees for maximal symbolic
simplification of the coarse-grained description. However,
without such pairs of graphs in the expression, we can guar-
antee the exhaustive identification of prime graphs with
equal Kirchhoff polynomials. Furthermore, comparisons of
prime graphs can be accelerated by realizing that each
prime component of a graph is equal to at most one prime
component of another graph, since prime factorization par-
titions the set of labels. Note that there might be other
reasons that do not guarantee full simplification and contexts
in which full simplification is guaranteed (see electronic sup-
plementary material for details). Additionally, some proofs
and derivations assume that the graph models have unique
and irreducible expressions in their labels. If this assumption
is not met, e.g. when different reactions have the same rate
constant, rate constants are expressions that can be simplified,
or rate constants contain symbols shared across different
labels, then additional symbolic simplification might be
required since the primality of the decomposition is not guar-
anteed and the manipulation formulae of the coarse-grained
representation might not hold.

The study of non-equilibrium steady-state LFMs is not
complete without efficient methods to apply differentiation
and integration to Kirchhoff polynomials, for example, to
derive parameter sensitivities. In electronic supplementary
material, we show that the properties of Kirchhoff poly-
nomials allow us to map differentiation and integration to
graph operations, and thus to work with the implicit
coarse-grained representation.
3.3. Application examples
To illustrate the manipulation of expressions of Kirchhoff
polynomials in the coarse-grained representation, we first
consider a simple open receptor trafficking model with
graph G shown in figure 4a. It consists of species for an
unbound surface receptor R, a cell surface ligand–receptor
complex RL, their respective internalized counterparts Ri

and RLi, and a set of state transition, synthesis, and degra-
dation reactions. Figure 4b shows the steady state for RLi
obtained by prime decomposing the graphs in the steady-
state ratio and crossing out the common factors. Without
complete generation of the polynomials kRLi (G) or k(G), we
immediately see that the resulting expression does not
depend on the rate constants r1, r2 and r3.

The coarse-grained description is most instrumental in
understanding large non-equilibrium systems when steady-
state derivations are difficult or practically impossible. For
example, one could study relative responses, expressed through
ratios between the steady states of two species, which upon sim-
plification could become decoupled from a subset of reaction
rate constants. Biologically important examples for such relative
responses are ratios of folded and misfolded protein confor-
mations in proteostasis, where chaperones expend energy to
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alter the ratios [25], and ratiometricmechanisms in signalling, in
which the ratio between unoccupied receptors and ligand-
bound receptor complexes determines downstream effects
[26]. Decoupling can beused to infer the connectivityof reaction
networks, or design measurements to focus on (or isolate) the
effect of certain reactions on the combinatorially complex
steady state of a system.

Let us consider the detailed catalytic cycle of the prosta-
glandin H synthase 1 (PGHS) from [27] (for description see
COX in electronic supplementary material, table S1), whose
graph G is shown in electronic supplementary material,
figure S2a, and contains 24 quadrillion spanning trees. We ana-
lyse the decoupling from reaction rate constants in all of its
possible steady-state ratios by coarse-graining the relevant
Kirchhoff polynomials and cancelling the common factors
between the numerator and denominator. We find that the
ratio between the steady states of species E21 and E17 (two
states in the peroxidase cycle of the enzyme containing the ara-
chidonic acid radical in the cyclooxygenase site and differing
by the state of tyrosine 385) contains the fewest number of
reaction dependencies—only five (see electronic supplemen-
tary material, figure S2b)—while the Kirchhoff polynomials
κE21(G) and κE17(G) consist of trillions of spanning trees.
4. Compact generation of Kirchhoff polynomials
After simplifying an expression of Kirchhoff polynomials in its
coarse-grained form, we find which labels have vanished (the
corresponding reactions do not affect the expression) and
which ones remain (the corresponding reactions might affect
the functionmodelled by the expression). However, to symboli-
cally obtain the simplified expression for further analysis or
repeated evaluation, e.g. for parameter space exploration, we
have to explicitly generate full-length Kirchhoff polynomials.
The coarse-grained representation is advantageous here as
well because we only need to generate the Kirchhoff poly-
nomials for prime graphs with unequal Kirchhoff polynomials.

4.1. Recursive and iterative algorithms
Specifically, we extend the approach of [21] to Kirchhoff
polynomial generation, namely, that of algebraic simplification—
compression of the polynomial to an equivalent but more
compact form. Thus we look for an algorithm C that takes a
graphG as input and produces a representation of its Kirchhoff
polynomial ΓC(κ(G)) of size as small as possible. An ideal
algorithm C would generate ΓC(κ(G)) in a maximally compact
form, bypassing explicit generation and tedious simplification.
However, it is hard to even check if a Kirchhoff polynomial
is fully simplified. Therefore, we aim to propose algorithms
that, without guarantees for maximal compression, provide
satisfactory results to practical problems.

The prime decomposition in [21] behaves as the ideal
algorithm C for compression—in linear time, it produces a
guaranteed maximally compact representation for a graph
due to the irreducibility of each prime component. However,
it cannot be applied to prime graphs, which can also have siz-
able Kirchhoff polynomials. To compress the Kirchhoff
polynomials of the prime components, we rearrange prime
Kirchhoff polynomials, particularly by taking a factor out
from part of their monomials, such that we can further factor-
ize parts of them. Without explicit generation, this is achieved
through the deletion–contraction identity (equation 2.6), in
which the modified graphs G n e and G/e could be amenable
to further prime decomposition since e’s deletion and
contraction could change the connectivity of G.

With this insight, we formulate the algorithm CR (initially
presented in [21]; see pseudocode in electronic supplementary
material as algorithm 1). It takes a graph G, and recursively
alternates between prime decomposition and edge deletion–
contraction in every prime component until graphs are reduced
to a single vertex or a single edge, whose polynomials are trivial
to generate.CR is easy to implement andproduces an expression
tree as in figure 2b that is more compact than the expanded
form of the Kirchhoff polynomial. However, multiple recursive
calls could unnecessarily work on large graphs with equal
Kirchhoff polynomials.

We propose a second, iterative algorithm, CI (for details
and pseudocode see electronic supplementary material,
algorithm 2). It employs the graph comparisons certifying
Kirchhoff polynomial equality to eliminate the potential
redundancy of multiply generating equal Kirchhoff poly-
nomials. In contrast to CR, CI associates a unique pointer to
every graph under study, and reduced graphs are added to
a queue for further reduction, while remembering the partial
expression tree they participate in. Then, the algorithm iter-
ates over the graphs in the queue, reducing them only if
their Kirchhoff polynomials are distinct from the Kirchhoff
polynomials of all graphs already considered. Algebraically,
this is equivalent to a change of variables—substituting iden-
tical parts of the Kirchhoff polynomial with identical symbols
and explicitly generating them only once (see figure 2c for an
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example). The partial expression trees are then assembled to
obtain a forest of expression trees marked with the pointers of
the initializing graphs as in figure 2c. This forest corresponds
to a set of Kirchhoff polynomials, which after being substi-
tuted into each other, gives rise to the complete Kirchhoff
polynomial of graph G.

CI’s representation of the Kirchhoff polynomial is more
compact than the expanded form and can still be easily evalu-
ated and analysed. However, if there are few small graphs
with equal Kirchhoff polynomials encountered during the
reduction, compared to CR, CI might consume more memory
(to remember pointers and already considered graphs), have
longer running time (due to equality comparisons), and not
provide significantly better compression (compare figure 2b,
c). On the other hand, if the reduction encounters many
large graphs with equal Kirchhoff polynomials, only CI may
generate practically relevant Kirchhoff polynomials.

An important ingredient of both algorithms GR and CI is
the choice of an edge for the deletion–contraction operation
(function GETEDGEFORDELCONTR in electronic supplementary
material, algorithms 1 and 2). It is unknown which edges to
delete–contract to generate a maximally compressed Kirchh-
off polynomial [21]. Therefore, we resort to a heuristic
approach: we greedily select an edge to delete–contract
such that a criterion on the decomposition properties is opti-
mized. Since Kirchhoff polynomial generation results are
instance specific, we explore different heuristics (see elec-
tronic supplementary material).
4.2. Performance evaluation
For performance analysis, we evaluated the running time and
compression of CR and CI, where we define compression as the
ratio of the size of the expanded representation of a Kirchhoff
polynomial |ΓE(κ(G))| and the size of its representation
produced by an algorithm C, |ΓC(κ(G))|. Specifically, we
applied 109 heuristics on a collection of example graphs of
widely different complexity (see electronic supplementary
material, table S1). Ten less complex graph models have tens
to millions of spanning trees and two more complex models,
HC4 and COXD, have up to quadrillion of spanning trees.

First, we analysed the less complex examples to compare
the performance of the different heuristics (see electronic sup-
plementary material for details). For more complex graphs, a
random heuristic’s performance quickly deteriorates, becoming
orders of magnitude worse than heuristics informed by the
graph connectivity (electronic supplementary material, figure
S5). We normalized the performance measures over all heuris-
tics separately for each example and divided them into groups
(see electronic supplementary material, figures S3 and S4). Post
hoc comparisons of sub-heuristic choices revealed that focusing
deletion–contraction on edges relevant to the cycle structure of
the graphs, and considering the edge deleted graphs and
strongly connected components leads to significantly shorter
running time and larger compression on average (see electronic
supplementary material, tables S2 and S3).

Figure 5 compares the performance of algorithms CR and CI

for the connectivity-informed heuristics. The performance data
for examples of low complexity lie on or symmetrically around
the 45° line, indicating that the two algorithms perform alike.
However, the more complex the examples, the more apparent
becomes the superiority of algorithm CI over CR. The difference
is most striking for compression, implying that the change of
variables benefits the compression of all models.

Finally, the results for the heuristics leading to the largest
compression with CI (table 1) show that, for larger graphs, the
compressed form is orders of magnitude shorter than the
number of spanning trees. Therefore, algebraic compressibil-
ity, rather than the number of spanning trees, is a hard bound
for Kirchhoff polynomial generation. It is an open problem
how to determine the compressibility of a graph, but we
can get an impression by comparing HC4 and COXD. The
compression results are expected because it is difficult to
uncover strong connectivity and domination during the
graph reduction procedure in dense graphs with many
reversible edges; it is simpler to break open cycles in
graphs with low density and many unidirectional edges.
4.3. Application to non-equilibrium gene regulation
Example HC4 from table 1 belongs to a family of LFMs used in
[9] to explore possible biophysical mechanisms behind the sharp
expression profile of the hunchback gene as a function of the tran-
scription factor Bicoid in the early Drosophila embryo. In this
family of hypercube graphs, vertices represent DNAmicrostates
(patterns of a transcription factor (TF) bound to a gene), and
edges and edge labels mark TF binding (with rates dependent
on TF concentration) and unbinding. Graph topology is deter-
mined by the number n of TF binding sites at the gene, for
example, n= 3 corresponds to a cube graph (see electronic sup-
plementary material, figure S6) and n = 4 to the four-
dimensional hypercubeHC4.Under the stochastic interpretation
of LFM dynamics, microstate probabilities evolve depending on
the transition rates until a steady state is reached.

Estrada et al. [9] develop a sharpness analysis for relations
between gene expression rate and TF concentration, called
GRFs, that are derived from these LFMs. More precisely,
GRFs are functions of steady-state microstate probabilities
determined by a choice of an expression strategy. For example,
in the all-or-nothing strategy, transcription is proportional
to the steady-state probability of the microstate in which all
TF sites are bound; microstate probabilities are, in turn,
functions of TF concentrations. After normalization, two
features are extracted from a GRF to evaluate its sharpness:
(i) steepness—the GRF’s maximal derivative and (ii) position—
the TF concentration at which the maximal derivative is
attained. A subsequent exploration of the GRF parameter
space by a biased sampling algorithm aims to determine the
boundaries of the feasible position-steepness region.

An important result of [9] is that energy expenditure is
one possible explanation for the observed sharp response
expression profiles in development. In particular, at thermo-
dynamic equilibrium GRF position-steepness regions are
restricted by the Hill function, which acts as a Hopfield barrier,
whereas energy expenditure broadens the feasible position-
steepness regions and allows for sharper responses. However,
due to the large algebraic complexity of non-equilibrium
steady states, the non-equilibrium position-steepness analysis
in [9] is limited to models with up to n = 3 sites, while the
hunchback P2 enhancer has 5–7 Bicoid binding sites.

The 2000-fold compression of the n = 4 sites model HC4
allows us to extend the non-equilibrium case analysis and
explore how the number of binding sites affects the
position-steepness regions. We focus on the all-or-nothing
expression strategy and models with n = 2, 3, 4 binding
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Table 1. Performance of algorithm CI with the heuristics leading to the largest compression on a set of example graphs (see graph descriptions in electronic
supplementary material, table S1): size of the expression tree of the expanded Kirchhoff polynomial |ΓE(k(G))|, size of the compressed expression tree
jGCI (k(G))j, heuristic H, compression calculated as the ratio jGE (k(G))j=jGCI (k(G))j, and average running time in seconds obtained from 10 runs (one run for
HC4 and COXD) of KirchPy on a Dell laptop with Intel i-7 CPU@2.10 GHz and 8 GB RAM.

G |ΓE(κ(G))| |ΓCI(κ(G))| H compression time (s)

COLE1 157 46 2012 3.4 0.09

AMPAR 211 63 2102 3.3 0.07

MDH 1270 141 2001 9.0 0.27

ACTMYO 3561 142 3003 25.1 0.19

KNF33 15 553 940 3114 16.5 1.41

SHPIL 45 601 786 2204 58.0 1.58

GR 65 742 1280 2102 51.4 1.63

PHO5 640 513 4691 3215 136.5 10.61

RND 967 681 3281 1011 294.9 7.53

TF 38 746 801 1191 2002 32 533 1.84

HC4 679 477 249 333 599 1001 2036 1797

COXD 367 647 474 647 060 221 89 532 1010 4.1 × 1012 661
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sites whose non-dimensionalized kinetic parameters are
sampled in the range [103, 10−3]. We obtain position-
steepness boundaries as described in [9], with differences
mentioned in electronic supplementary material. Our results
are shown in figure 6 and indicate that the n = 3 and n = 4 site
models can achieve steepness of around 5.5 and 6.4, respect-
ively, both exceeding the experimentally fitted Hill coefficient
of 5 to the hunchback expression profile in response to Bicoid.
Interestingly, n = 4 site models can generate GRFs with pos-
ition values greater than 1, which are not attainable by Hill
functions, equilibrium GRFs (since they are bounded by
Hill functions acting as a Hopfield barrier), and non-equili-
brium models with a lower number of sites. A normalized
position value of 1 corresponds to a TF concentration at
which the GRF is half-maximal, suggesting that n≥ 4 binding
sites permit a wider class of GRF shapes in which the maxi-
mal steepness arises at TF concentrations larger or equal to
the half-maximal TF concentration (see examples in electronic
supplementary material, figure S7). Note that the increase of
the position-steepness area from n = 2 to n = 3 sites is much
larger than from n = 3 to n = 4 sites. We believe that, because
of the vastly different dimensions of the sampled parameter
spaces (six, 22 and 62 free parameters for models with n =
2, 3 and 4 sites, respectively), the more the sites, the less
precise the boundaries.
5. Conclusion
Here, we concentrated on biochemical models falling under
the linear framework [7] and took an algebraic graph
theory approach to describe their non-equilibrium steady
states. The convenient correspondence between graphs and
polynomials was essential in the development of theory
and algorithms allowing us to manipulate and compress
the combinatorially complex expressions. In particular, our
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coarse-grained representation permits the manipulation of
otherwise symbolically intractable expressions of Kirchhoff
polynomials. It also helps establish a structure–function
relationship between a model and its steady-state response
by identifying which reactions do not partake in the
expression due to algebraic simplification and, in some
cases, which reactions participate in it due to irreducibility.

To explicitly generate individualKirchhoff polynomials from
a simplified coarse-grained expression, our two proposed algor-
ithms produce compressed polynomials that are algebraically
equivalent to their fully expanded counterparts. We demon-
strated the practical utility of the algorithms for a wide range of
graph examples. The large compression results affirm the finding
from [21] that Kirchhoff polynomial generation depends on
graph connectivity and not on the (super) exponentially growing
number of spanning trees. This calls for a more in-depth charac-
terization of Kirchhoff polynomial compressibility based on
connectivity. Additionally, compression allowed us to expand
the non-equilibriumgene regulation analysis of [9] and conclude
that with four transcription factor binding sites qualitatively
different shapes of GRFs can be obtained.

A direction for improvement of the manipulation and
simplification tools is the further development of Kirchhoff
polynomial equality conditions, since the ones we present
are not simultaneously necessary and sufficient, such that we
cannot, in general, guarantee to identify all graphs giving
rise to equal Kirchhoff polynomials in a coarse-grained
expression. We anticipate that developments in Kirchhoff
polynomial isomorphism similar to those for undirected
graphs [28] and optimized deletion-contraction heuristics
fuelled by recent advances in strong connectivity and
2-connectivity [29] could further improve the performance of
our compression algorithms. Overall, we believe that our
implementation of the methods in the package KirchPy,
together with the theoretical insights into manipulation and
generation of Kirchhoff polynomials, would (i) allow model-
ling and analysis efforts to catch up with the ever more
comprehensive experimental data by promoting the construc-
tion and analysis of larger LFMs, (ii) enable the analysis of the
functional significance of simplifications in classes of models,
which can be useful in experimental design as well as for
studying phenomena such as proteostasis, ratiometric and
differential signalling, (iii) find applications beyond biology
because of the equivalence of LFMs to continuous-time
Markov chains, linear compartmental models, and linear
non-negative systems in general, and (iv) offer an alternative
for steady-state derivations that is more convenient than the
direct application of the Matrix-Tree Theorem through naive
spanning tree enumeration.
Data accessibility. The presented manipulation and generation theory
and algorithms are implemented in the Python package KirchPy,
which is available at https://gitlab.com/csb.ethz/KirchPy.
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