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When new, highly infectious strains of influenza emerge, global pandemics
can occur before an effective vaccine is developed. Without a strain-specific
vaccine, pandemics can only be mitigated by employing combinations of
low-efficacy pre-pandemic vaccines and reactive response measures that are
carried out as the pandemic unfolds. Unfortunately, the application of reactive
interventions can lead to unintended consequences that may exacerbate
unpredictable spreading dynamics and cause more drawn-out epidemics.
Here, we employ a detailed model of pandemic influenza in Australia to
simulate the combination of pre-pandemic vaccination and reactive antiviral
prophylaxis. This study focuses on population-level coupling effects between
the respective methods, and the associated spatio-temporal fluctuations in
pandemic dynamics produced by reactive strategies. Our results show that
combining strategies can produce either mutual improvement of performance
or interference that reduces the effectiveness of each strategy when they are
used together. We demonstrate that these coupling effects between interven-
tion strategies are extremely sensitive to delay times, compliance rates and
the type of contact targeting used to administer prophylaxis.
1. Introduction
Epidemic processes share the general feature of a transition from vanishing to
extensive spreading, separated by a threshold in the propensity of the contagion
to transmit from infected to susceptible individuals [1–6]. A practical conse-
quence of this nonlinearity is that influenza outbreaks become pandemics
only when the transmissibility of the disease among individuals and the flux
of individuals among locations are high enough for extensive spreading to
occur on the global scale. Therefore, to mitigate the spread of a pandemic, inter-
ventions must effectively reduce the ability of the virus to transmit between
people and locations, so that herd immunity is achieved [7,8].

Vaccination programmes with a tailored, strain-specific vaccine are widely
considered the most effective single method for limiting the spread of an infec-
tious virus. However, because pandemics typically occur with the emergence of
new viral strains, high-efficacy vaccines are usually not available in time to miti-
gate the spread of the disease using pre-pandemic vaccination alone. In light of
this, most pandemic modelling studies that include the use of pre-pandemic
vaccines assume a rather limited efficacy, and therefore require the additional
application of other, reactive intervention methods in order to successfully con-
tain the spread. Numerous simulation studies have been performed using a
variety of modelling frameworks and model populations that all reach the
same conclusion: highly infectious pandemics can only be mitigated by
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combining multiple strategies that act on different mechan-
isms in parallel to reduce susceptibility and infectiousness
[9–15].

The theoretical picture becomes much more complex
when reactive strategies are applied, as these alter the proper-
ties of the contagion non-uniformly in space and time.
Previous modelling results suggest that unintended conse-
quences can occur, such as the prolongation of an epidemic.
For example, owing to logistical constraints, reactive interven-
tion strategies cannot be maintained continuously, which
produces fluctuations in the population’s susceptibility,
resulting in more drawn-out epidemics [14,16–18].

In this work, we explore the combination of pre-pandemic
vaccination and reactive antiviral prophylaxis, with a focus
on nonlinear coupling effects between the respective
methods. We demonstrate that these coupling effects are
extremely sensitive to delay times, compliance rates and the
type of contact targeting used to administer prophylaxis.
Our results show that combining strategies can produce
either mutual improvement of performance or interference
that reduces the effectiveness of each strategy when they
are used together.

To simulate detailed intervention strategies, it is necessary
to model the spread of the pandemic in both space and time,
while explicitly accounting for recurrent mobility patterns
and the clustered contact structure of the population over
which the pandemic spreads. These attributes are difficult
or impossible to incorporate into standard continuum frame-
works or metapopulation models because local variations in
community structure and contact patterns violate the
assumptions of homogeneity typically made in their formu-
lation [19–21]. Rather than attempt to describe the
population’s complex features within an expanded, high-
resolution, multiplex metapopulation framework [22], we
employ an individual-based model of an entire nation
(Australia), with a population of approximately 23 million
(at the time of the most recent census, 2016). Through a
detailed calibration with census data from 2016, we model
demographic heterogeneity and clustering of social inter-
actions through household, neighbourhood, school and
workplace environments which are fundamental to under-
standing departures from continuum dynamics that can
easily be captured by stochastic, individual-level models
[23]. Upon this surrogate Australian population, we simulate
pandemic influenza using a stochastic discrete-time model of
disease spread. (See the Methods section and electronic
supplementary material, S1 for detailed descriptions of popu-
lation structure and pandemic transmission simulations.
Electronic supplementary material, figure S1 provides a
schematic of the population structure that we derive from
census data, as described in our previous publications
[24,25].)

We have previously used this model to investigate spatial
hierarchies and epidemic synchrony and to simulate the role
of urbanization in the spatio-temporal dynamics of simulated
pandemics in the Australian context [24,25]. Here, we extend
our modelling framework to incorporate reactive interven-
tions. The main contributions of this work can be
summarized in two points:

— A characterization of the spatio-temporal fluctuations in
contagion dynamics brought about by the application of
reactive intervention strategies.
— A detailed investigation of the nonlinear coupling between
combined static and reactive strategies (pre-pandemic
vaccination and targeted antiviral prophylaxis, in this case).

1.1. Mitigation strategies
While many of the strategies tested in previous studies involve
three or more distinct types of interventions, including targeted
vaccination, travel restrictions, household quarantine, reactive
school closure and targeted antiviral prophylaxis, we focus
here on a relatively simple system of interacting mitigation
techniques. Specifically, we examine uniform treatment with a
pre-pandemic vaccine at a specified compliance rate (random
pre-pandemic vaccination), in combination with targeted
deployment of antivirals to treat identified index cases and pro-
vide prophylaxis to their neighbourhoods (geographically
targeted antiviral prophylaxis, GTAP) or contacts (TAP). In
this work, we use the abbreviations TAPand contact-TAP inter-
changeably to refer to contact-targeted antiviral prophylaxis.

This choice of intervention strategies is relevant because
these methods are widely included in the pandemic response
plans of industrialized nations [26–29]. It is also pragmatic
from a modelling perspective because their pharmacological
mechanisms are distinct, allowing us to reasonably exclude
drug interactions within individuals. In addition, they are
well-establishedmeasures in thepandemicmodelling literature,
and shouldbe familiar tomost expert readers [9–13,16,17,30,31].
With respect to the choice of antiviral prophylaxis as a relevant
subject, Australia’s national pandemic preparedness plan
includes the targeted use of antivirals among its list of pharma-
ceutical control measures. The federal government maintains a
reasonably large antiviral stockpile of several tens of millions
of courses [32,33], and the deployment of those resources has
been a persistent feature of policy-related modelling studies in
the Australian context [18,34].

The consideration of only pharmaceutical methods is con-
venient from a modelling perspective because it allows a
relatively simple implementation of the programme, without
having to simulate the topological changes in population
interaction structure brought about through social distancing
and behaviour modification [35,36]. These effects are impor-
tant in epidemiological modelling in general, and, indeed,
human behaviour can have dramatic effects on compliance
with pharmaceutical delivery programmes [37]. However,
our focus here is not on simulating an elaborately optimized
system of interventions, but rather on demonstrating how
coupled methods interact in a relatively simple but reason-
ably realistic test case. As much as possible, we want to
avoid the common issue of a combinatoric explosion of simu-
lation parameters that is frequently encountered in pandemic
intervention modelling studies (see Milne et al. [34] for an
illustrative example). Even with our relatively conservative
scope, the scale and complexity of our model imposes signifi-
cant limitations on our study that must be left to future work.

In this study, we focus on the essential roles of two impor-
tant factors, which we encode as control parameters in our
simulations. These are:

— compliance rate, which is the fraction of those scheduled
for treatment who decide to participate in the programme

— delay time, which characterizes the interval between
identification of index cases and the successful deploy-
ment of antivirals to their contacts or neighbourhoods.
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We chose these two parameters because they have been
broadly identified in many previous studies as crucial to
the success of mitigation strategies.

The role of compliance is usually intuitive: the larger the
number of susceptible people who participate in the prophy-
laxis programme, the more successful it will be (we therefore
expect monotonic behaviour of overall illness rates as a func-
tion of compliance). The role of delay time is more nuanced,
as it is a less well-studied factor, and conflicting results have
been published with respect to the effects of timing on both ill-
ness suppression and cost-effectiveness [14,16,17]. In the
approach taken here, we investigate the effects of logistical
deployment time to specific localities or social clusters,
which aligns with the interpretation taken by Black et al. [38]
in their investigation of antiviral administration to households.
Other models interpret delay time as a universal property that
controls the global implementation of measures [9,10].

Because we model delay time on the scale of targeted sub-
populations, our simulations capture the imposition of
spatially localized temporal fluctuations in the rate of trans-
mission. As we will show, these heterogeneous interventions
have complex effects on epidemic dynamics that can alter
the efficiency of reactive strategies. (A full description of our
implementation of the mitigation strategies is included in the
electronic supplementary material, section S1. A flow chart
for the intervention algorithm is included in electronic sup-
plementary material, figure S2, for which table S1 defines the
symbols used in the flow chart.)
2. Results and discussion
Our results are organized into three sections. First, we present
simulation results for the individual mitigation strategies (pre-
pandemic vaccination, contact-TAP and GTAP). We then use
the same format to present the results of mixed strategies apply-
ing antiviral prophylaxis to a population already treated with a
pre-pandemic vaccine at a compliance rate of 70%. Finally, we
investigate coupling between the combined strategies over the
[delay time] × [compliance rate] parameter space.
2.1. Pre-pandemic vaccination
To provide context for our results using mixed strategies, we
begin by discussing the effects of the component strategies
(vaccination and antiviral prophylaxis) individually. The
pre-pandemic vaccination programme we simulate is
simple: prior to the first index case reaching Australian
cities, each individual has an independent probability of
being vaccinated. This probability is the compliance rate for
the simulation, and determines the level of suppression
imparted by the vaccination programme, as the efficacy (the
effect of the vaccine on individuals) is fixed. Specifically, a
vaccinated individual is only 50% as likely to become infected
as an untreated individual for the same force of infection
from contacts. In addition, if a vaccinated individual becomes
infected, their contribution to the force of infection on con-
tacts is reduced by 30% relative to what it would have been
had they not been vaccinated. Our simulations occur over a
time interval of only 250 days, so we neglect complex factors
associated with viral evolution in the presence of imperfect
vaccination for the present study [39].
2.1.1. Reproductive ratio
The reproductive ratio of the disease (R0) is defined as the
expected number of secondary cases produced by a typical
infected individual introduced to a completely susceptible
population. Epidemics cannot spread extensively if R0 < 1,
which defines the critical threshold of infectiousness above
which epidemics are possible. In this work, we treat R0 as a
measure of the infectiousness of the disease in the absence
of any mitigation efforts, which is an increasing function of
the global infectivity multiplier κ (see the electronic
supplementary material for transmission model details).

It is possible in principle to analytically determine R0 as
the dominant eigenvalue of the next-generation matrix
accounting for the heterogeneous population structure (e.g.
[40]). A related method is to estimate R0 from an explicit con-
tact network structure using the epidemic percolation
network (EPN) approach [41]. However, the size and com-
plexity of our agent-based model makes these rigorous
methods intractable.

Instead, we apply stochastic sampling of index cases to
estimate R0 numerically. To calibrate between R0 and explicit
values of κ, we average over many (n≈ 104) micro-simu-
lations, introducing a single randomly selected index case
and counting the number of secondary infections produced
between infection and recovery of that individual. In this cali-
bration scheme, only the force of infection produced by the
index case is taken into consideration. That is, secondary
infections caused by the index case do not exert a force of
infection, so that all cases counted can be unequivocally
attributed to the index case chosen in a given instance.

Owing to biases introduced by uniform sampling of index
cases, we modified the R0 estimation procedure used by Cliff
et al. [24] and Harding et al. [42] to account for the non-
uniform probability of infection in different population
cohorts as described by Germann et al. [9]. Specifically, we
biased the selection of index cases based on age-stratified
attack rates. This technique produces a much better estimate
of R0 because of the inhomogeneous population structure
which makes school-aged children and their parents more
likely to become infected during an epidemic. The details of
these age-stratified attack rate and R0 computations are
included in electronic supplementary material, figure S3.
2.1.2. Pre-pandemic vaccination
The performance of pre-pandemic vaccination programmes is
illustrated in figure 1, which shows that the low-efficacy pre-
pandemic vaccine simulated here is not capable of providing
substantial herd immunity for highly infectious pandemics
(R0 = 2.23; as a comparison, the R0 value for the 2009 H1N1
pandemic strain was estimated at approx. 1.5 [43]). This lim-
ited population-level illness suppression is demonstrated by
the lack of a pronounced threshold for attack rate as vaccine
compliance increases. Electronic supplementary material,
figure S4 contains more details on the sensitivity of the vacci-
nation programme performance to different values of R0 and
compliance. These results show that, as expected, suppres-
sion through vaccination alone is possible if R0 is
sufficiently low. However, because of the persistent influx
of new index cases in our simulation scenario, full eradication
is not observed.

To provide a rudimentary estimate of relative cost-
effectiveness, we plot the ratio of illnesses prevented to
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vaccines delivered, which we refer to as the efficiency of the
single-component mitigation strategy,

hi ¼
Io � Ii
ci

, (2:1)

where Io is the expected attack rate in the absence of interven-
tion, Ii is the attack rate using the intervention programme i
and ci is the number of administrations of intervention pro-
gramme i. If we define the suppression attributable to
strategy i as σi = Io− Ii, then the efficiency can be written
simply as the ratio ηi = σi/ci.

The efficiency is the average number of cases averted by
each individual administration of the intervention pro-
gramme (vaccines, in this case). If herd immunity effects
are introduced as compliance increases, the efficiency
should increase dramatically, followed by saturation and an
eventual drop after passing the herd immunity threshold
beyond which additional vaccinations are unnecessary.

Although pre-pandemic vaccination is not capable of com-
pletely mitigating the epidemic, figure 1 does show slight
nonlinearity in the attack rate for values of vaccine compliance
greater than≈0.8, corresponding to a significant increase in the
efficiency, which begins to noticeably increase as compliance
exceeds� 70%. This departure from linear behaviour indicates
that the system is approaching the critical amount of suppres-
sion needed for containment. Based on this observation, it is
reasonable to expect that the concomitant application of reac-
tive policies with pre-pandemic vaccination could tip the
scales in favour of containment, given sufficiently complete
vaccine compliance. In our explorations of mixed intervention
strategies,we intentionally place the systemnear this threshold
by setting R0 = 2.23 and vaccine compliance to 70% in order to
investigate coupling of the combined strategies near the
transition to containment.

2.2. Reactive strategies: targeted antiviral prophylaxis
In our study of reactive antiviral prophylaxis strategies, we
investigated two different targeting programmes: geographic
targeting, in which antivirals are distributed to the residential
neighbourhoods of index cases, and contact targeting, in
which the immediate contacts of index cases at work,
school and home environments receive prophylaxis. In both
targeting programmes, all ill individuals who seek medical
services are treated with antivirals to alleviate symptoms,
which partially reduces transmission strength from the trea-
ted individuals after a lag time of 1 day. If an ill individual
seeks treatment and has contacts who are not already sched-
uled for prophylaxis, they will be designated as an index case
and their contacts or neighbours will be scheduled for
antiviral provision.

The delivery of antivirals occurs after a logistical delay
time that we systematically vary in our study. Only a fraction
of identified contacts actually take antivirals, which we inter-
pret as an independent probability (the compliance rate). In
real terms, compliance rates less than 1 could correspond to
any combination of factors that limit the completeness of tar-
geting, inhibit delivery of products or negatively influence
people’s willingness to take the delivered pharmaceuticals.

An individual taking antivirals is less likely to contract
influenza; if they do become infected, they are less infectious
and only half as likely to express symptoms. Note that this
effect of antivirals represents a countervailing factor that
can have unfortunate population-scale effects on contagion
spread, as asymptomatic individuals cannot be ascertained
as index cases [44]. An infected individual treated for symp-
toms takes antivirals at a higher dosage for 5 days, while an
individual receiving prophylaxis takes antivirals for 10 days
(this is not modified if the person becomes ill while taking
prophylaxis). We assume that the effects of antivirals cease
after the dosage period ends.

Importantly, index case detection is not deterministic, and
occurs only for symptomatic cases with a probability of 0.1
on each day of symptom expression (because of the distri-
bution of illness duration in our model, this averages to an
expected detection probability of ≈0.27). Imperfect index
case detection is an essential aspect of our modelling frame-
work, as it has been shown to dramatically alter the
performance of simulated antiviral prophylaxis strategies in
continuum models [45]. It is worth noting that, while our
detection probability corresponds to a minority of cases and
is low compared with that used in the work by McCaw
et al. [45], it is close to the value ascertained from seropreva-
lence data after the first wave of the 2009 pandemic in the UK
(if a 30% asymptomatic fraction is assumed) [46].

In accordance with our goal of investigating situations for
which combined strategies are essential to pandemic suppres-
sion, we simulated the performance of these reactive
programmes for the case of a highly infectious strain (R0 =
2.23). Figure 2 and electronic supplementary material,
figure S5 illustrate the behaviour of TAP and GTAP, respect-
ively, as functions of the delay time between detection of
index cases (from 1 to 20 days) and compliance rate within
targeted groups (from 0% to 100%).
2.3. Contact-targeted antiviral prophylaxis
Contact-targeting specifically focuses attention on those most
likely to be in immediate danger of becoming infected. There-
fore, under circumstances in which all cases are symptomatic,
all index cases are ascertained, all contacts are identified, deliv-
ery of antivirals is immediate, the prophylaxis period is long
compared with the epidemic generation time, and the
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efficacies of antivirals and vaccines are identical, the
suppression due to prophylaxis will mimic exactly that of
random pre-pandemic vaccination [30]. However, in the cases
investigated here, every one of these conditions is relaxed, and
theperformanceof targetedantivirals isdifficult topredict apriori.

Figure 2a–c demonstrates the temporal behaviour of the
pandemic TAP programme for selected sets of parameters.
Comparison of these plots reveals several important results:

— Figure 2a shows that, if the delay time is sufficiently short,
the initial growth rate of the pandemic can be slowed,
giving results that resemble those for pre-pandemic vacci-
nation (with a later, smaller incidence peak).

— Figure 2b demonstrates that the direct effect on the pan-
demic growth rate disappears as the delay time increases;
however, the attack rate and peak incidence can still be sup-
pressed significantly, suggesting effects on time scales
longer than the single-generation events to which the TAP
protocol is tailored.

— Figure 2c shows that these ‘secondary’ effects are still
delay-time dependent and vanish with long delay
times, for which the deployment of antivirals has little
effect, even for very high compliance rates.

The image plots in figure 2d,e show the attack rate and
efficiency, respectively, as functions of compliance and
delay time. They illustrate a conundrum: efficiency and sup-
pression are not monotonically related, and the area with
highest suppression does not demonstrate maximum effi-
ciency. Instead, for short delay times, efficiency increases to
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a maximum near 40% compliance and then decreases
monotonically as compliance and suppression both increase.

This is most likely because prophylaxis can slow the
spread of the epidemic within localized pools of susceptible
individuals, while still allowing the virus to survive. Once
the prophylaxis period ends, resurgence of the virus through
the treated communities can occur, and subsequent rounds of
prophylaxis become necessary to prevent illnesses, leading to
a substantial drop in efficiency. This phenomenon gets more
prominent with higher compliance rates, for which ‘sub-
critical’ intervention policies extend the time scale of epi-
demic spread more substantially, requiring more rounds of
prophylaxis, each of which requires a large outlay of
resources due to the high compliance rate.

The fact that total antiviral administration numbers exceed
the total population over portions of parameter space confirms
that this mechanism is occurring (see electronic supplementary
material, figure S7 for plots of antiviral administration num-
bers). While a thorough quantitative analysis of local
dynamics is planned for a future study, we provide a qualitat-
ive description in the electronic supplementary material.
Specifically, high-resolution movies of disease spread through
Australia are provided that correspond to the incidence plots
shown in figure 2a. These are shown in electronic supplemen-
tary material, movies SM1 (no intervention) and SM3 (TAP).

When geographical targeting is implemented, suppression
levels are higher, but efficiency drops off very rapidly for high
compliance rates and suppression levels. GTAP requires prohi-
bitively high numbers of antivirals for implementation in the
programme described here. These results are detailed in elec-
tronic supplementary material, figure S5, which provides
data on GTAP performance for comparison with the TAP
data shown in figure 2. In addition, electronic supplementary
material, movie SM4 illustrates the spatio-temporal spread of
the virus when GTAP is implemented, corresponding to
electronic supplementary material, figure S5a.

2.4. Coupled strategies
We now turn to the main subjects of this study, which are the
performances and properties of mitigation strategies that
combine pre-pandemic vaccination with reactive response
measures (TAP or GTAP). In these scenarios, the pre-pan-
demic vaccine is applied as described above, followed by
the introduction of the pandemic and a reactive programme
of antiviral prophylaxis. The effects of the coupled pharma-
ceuticals are cumulative: if an individual is given both
vaccine and antivirals the efficacies multiply as though the
mechanisms act independently in parallel. While this
approximation is likely to be an oversimplification of the
complex behaviour of human immune response and antiviral
enzyme inhibition, we consider it reasonable as the two
classes of drugs have distinct mechanisms, and the acute
activity of the pre-pandemic vaccine is considered stabilized
before introduction of the antivirals.

Representative results of our simulations combiningTAPand
GTAPwith pre-pandemic vaccination are shown in figure 3 and
electronic supplementary material, figure S6, respectively.

2.4.1. Pre-pandemic vaccination and contact-targeted antiviral
prophylaxis

The combined programme of vaccination and TAP demon-
strates some desirable features. Plots of illness incidence
and antiviral applications as functions of time are shown in
figure 3a–c, for varying values of compliance and delay
time. For reference, these plots include incidence curves cor-
responding to the vaccination programme alone, so that the
contribution of the TAP protocol is clearly demonstrated.
These plots illustrate that the vaccination programme appears
to enhance the effects of the reactive strategy:

— Figure 3a shows that, for short response times, the sup-
pression of epidemic growth rate and delay of peak
timing already observed for the TAP protocol are
amplified when TAP is carried out in concert with pre-
pandemic vaccination. Not only is the effect greater for
a delay time of 1 day, but suppression of initial growth
is still observed when the delay time is extended to 9
days (figure 3b).

— Figure 3c demonstrates that, while the suppression of
initial growth rate vanishes for long delay times, the ill-
ness suppression attributable to TAP is still significant
even with a long delay time of 17 days.

The image plots of attack rate and efficiency shown in
figure 3d and 3e, respectively, demonstrate a marked depar-
ture from the behaviour of the reactive TAP strategy alone.
The first significant difference is that the diminishing return
on TAP compliance reverses for high compliance and short
delay time, producing the desired coincidence of high sup-
pression and efficiency. In addition, for compliance rates
below about 60%, both attack rate and efficiency become
almost independent of delay time. Both of these differences
are positive in the sense that they improve both the ‘best
case’ and ‘worst case’ scenarios with respect to delay time.
That is, in a situation where logistical delay time is long, a
sufficient compliance rate can still generate substantial sup-
pression, with an achievable antiviral stockpile. On the
other hand, if the response is fast, a high compliance rate
can facilitate both high efficiency and high suppression.

If the delay time is long enough that first-generation
effects are limited, the effect of TAP on epidemic peak
timing vanishes. Examination of electronic supplementary
material, figure S8a shows that this delay time threshold
depends on compliance rate, indicating that TAP feeds posi-
tively into its own mechanism. That is, high TAP compliance
lengthens the first-generation spreading rate, which opens a
wider window of response times capable of acting on
first-generation transmission events.

The benefits of coupling reactive strategies with pre-pan-
demic vaccination are not observed for the case of GTAP,
which still suffers from the problem of over-distribution of
antivirals. Even when applied to the vaccinated population,
the strategy requires prohibitively large antiviral stockpiles,
and no efficiency gains are observed for high compliance rates.

Even though GTAP distributes many more prophylaxis
courses, it has a less pronounced effect on the initial spreading
rate of the virus, which translates to an earlier epidemic peak
than for TAP (with the same delay time and compliance
rate). In addition, the rather modest effect of GTAP on spread-
ing rate does not appear to couple with the slow down
provided by pre-pandemic vaccination, while combining
TAP with vaccination has a significant combined effect on
spreading rate. This difference can only be explained as a
result of the targeting method: the contact-targeted protocol
is intended to act explicitly on first-generation spreading
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Figure 3. Simulation results for contact-TAP, in combination with pre-pandemic vaccination at 70% compliance. Plots (a–c) show antiviral (AV) course deployments
and incidence of new illnesses as functions of time for selected TAP compliance rates and delay periods. The green traces in (a–c) correspond to the illness incidence
for the case of 70% vaccine compliance. Plots (d) and (e) show attack rate and efficiency per course, respectively, as functions of TAP compliance rate and delay time.
For (e), efficiency was computed as total illness suppression divided by the sum total of vaccinations and antiviral courses deployed. With the exception of those
used to define the mitigation protocols, the simulation parameters used to generate these plots were the same as those used for figure 2 and electronic sup-
plementary material, figure S5.
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events, which will hinder the spread of the disease in space,
despite the complex connectivity between geographical
regions arising from human travel [24,47]. Because GTAP
only targets interactions based on residential location, it has
no direct pre-emptive effect on the spatial spread of the disease,
and is perpetually ‘catching up’ with the virus. A full descrip-
tion of these results, includingmovies of disease spread during
GTAP implementation, is given in electronic supplementary
material, figure S6 and movies SM4, SM7 and SM8).

Careful comparison of the movies in the electronic sup-
plementary material reveals a general trend with respect to
reactive interventions: for the caseswithout reactive intervention
the movies show smooth, mono-modal prevalence levels within
local regions (electronic supplementarymaterial, SM1 and SM2).
However, for thescenarios includinga reactive intervention (elec-
tronic supplementary material, SM3–SM8) we observe more
drawn-out prevalence profiles, with locally noisy dynamics
(particularly during the ‘tails’ of the epidemics).
2.5. Coupling benefit
Now that we have described the general results for individual
and mixed strategies, we turn to a more nuanced analysis of
the coupling between static and reactive interventions. To
assess the benefits associated with coupling of the reactive
prophylaxis strategies and the pre-pandemic vaccination pro-
gramme, we begin by introducing a simple measure which
we call the coupling benefit,

bij ¼ sij � (si þ sj), (2:2)

where σij is the illness suppression computed for the combined
strategy, while σi and σj represent the suppression levels
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computed for each individual strategy separately. The measure
βij can be interpreted as the quantitative benefit from combining
the component strategies i and j, and allows us to tell whether or
not the processes are mutually beneficial. It provides a naive
quantification of whether or not ‘the whole is greater than the
sum of the parts’, in terms of illness suppression.

The coupling benefit results for TAP and GTAP combined
with pre-pandemic vaccination are plotted in figure 4a and 4b,
respectively. The most obvious result of this analysis is that,
from a coupling perspective, GTAP does not mix well with
pre-pandemic vaccination, while TAP demonstrates positive
coupling benefit for large areas of parameter space. The benefits
of combining TAP and vaccination are greatest for long delay
times and high coverage. In this region, TAP alone has almost
no effect on illness levels, because of a strong dependence of
suppression on delay time (figure 2d). The positive coupling
in this region is apparently due to the slower epidemic growth
rate imparted by vaccination. The disease moves through the
partially vaccinated population more slowly, allowing even a
very late prophylaxis programme to provide protection.

Interestingly, for the region of parameter space in which
the mutual effects on epidemic growth rate are more pro-
nounced (figure 3a), the coupling benefit in terms of attack
rate suppression is at a minimum. This is somewhat intuitive
in the sense that TAP by itself is reasonably effective in this
region (though inefficient), driving down the coupling benefit
according to equation (2.2), which depends only on absolute
suppression levels. Furthermore, in a crucial region of this
parameter space, characterized by high efficiency and low
attack rates (figure 3d ), the coupling benefit does not provide
a useful intuition as the combined suppression (σi + σj) is
larger than Io, which points to the basic limitation that the
sum of σi and σj is not an attainable quantity in practice. To
further our practical understanding of these coupling effects
over the whole parameter space, and to account for dose
numbers, we must take a more nuanced approach. In the
next section, we do this by computing the per-course illness
suppression of each method within the combined strategy.
2.6. Component efficiency analysis
Simply comparing attack rates is not sufficient to gain an
intuition regarding the coupling process. In order to under-
stand how the component strategies affect one another, we
introduce the component efficiency, which is a simple extension
of the per-course suppression efficiency introduced in
equation (2.1). We wish to quantify the efficiency of each
strategy separately, when they are working together. To do
so, we compute component efficiency as the average illness
suppression attributable to each individual course of measure
i included in the mixed protocol ij,

h(ijij) ¼
Ij � Iij
c(ijij)

, (2:3)

where Ij is the attack rate computed for the mitigation strat-
egy excluding measure i, Iij is the attack rate computed for
the coupled strategy incorporating both programmes i and
j, and ci|ij is the expected number of courses (i.e. vaccines
or antiviral courses) of type i applied when the mixed
strategy ij is in effect.

The results of component efficiency analysis for the com-
bination of TAP and pre-pandemic vaccination are shown in
figure 5. The efficiency attributable to antivirals is depicted in
figure 5a. To quantify the relative increase in efficiency of
antivirals when they are combined with vaccination, figure
5b plots the ratio of the TAP component efficiency to that of
TAP alone (as plotted in figure 2d ). Likewise, the component
efficiency of pre-pandemic vaccination is shown in figure 5c,
in which the white dotted contour corresponds to the
efficiency of vaccination alone.

Component efficiency analysis produces three notable
results:

(i) Vaccination increases the efficiency of antivirals for
short delay times and high compliance. This coupling
explains the favourable scaling of efficiency with com-
pliance for the short delay times shown in figure 3e.
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Vaccination efficiency is actually reduced in this area
of parameter space, as shown in figure 5c.

(ii) The area of parameter space characterized by the largest
positive coupling values in figure 4a demonstrates
enhancement of both antiviral and vaccine efficiency,
compared with their independent efficiencies.

(iii) For fast delay times and compliance rates below
approximately 80%, both antivirals and vaccines act
with lower efficiencies together than they do separately.

To understand this further, we can express the component
efficiency in terms of the coupling benefit,

hijij ¼ [bij þ si][cijij]
�1, (2:4)

in which σi is the suppression attributed to measure i applied
by itself. It follows that, for the efficiency of an individual
strategy to increase when combined with another (i.e. ηi|ij >
ηi), the following inequality must be satisfied:

bij þ si . hicijij, (2:5)

that is, the illness suppression of strategy i acting alone plus the
benefit of coupling it with the other strategy must be greater
than the linear prediction based on its per-course suppression
when applied by itself. Note that for reactive strategies it is
possible to have both a negative coupling benefit in terms of
absolute illness suppression and an increase in per-course effi-
ciency. On the other hand, for static intervention strategies this
is not possible because ci|ij = ci, as specified by the hom-
ogenous compliance rate, and σi is a constant, so the
component efficiency is a linear function of coupling benefit
(this is clear when comparing figure 5c and figure 4b).

Using this framework, we can define four coupling
regimes applicable to reactive strategies for which dose num-
bers are not constant and suppression is a function of our
control parameters:

— Regime I: [ ηi|ij > ηi ; βij> 0 ], in which total suppression is
greater than the sumof the parts and per-course suppression
increases due to coupling. This is themost favourable regime.

— Regime II: [ ηi|ij > ηi ; βij < 0 ], in which total suppression is
less than the sum of its parts, but per-course suppression
is still enhanced because of coupling.
— Regime III: [ ηi|ij < ηi ; βij > 0 ], where per-course efficiency
is reduced through coupling, but the intervention
measures in combination still suppress more illnesses
than the sum of their individual contributions.

— Regime IV: [ ηi|ij < ηi ; βij < 0 ], the least favourable regime,
in which coupling benefit is negative and per-course
suppression is reduced relative to its un-coupled value.

Figure 6 consolidates our understanding of the benefits
and drawbacks of coupling antiviral prophylaxis with
pre-pandemic vaccination. For the case of contact-targeted
distribution (figure 6a), regime I dominates the parameter
space, applying to almost all combinations of compliance
rate for delay times above 10 days.

Regime II is also prominent, showing that, over a majority
of these scenarios, coupling with pre-pandemic vaccination
increases the per-course illness suppression of antivirals.
For the parts of parameter space in which antivirals alone
provide significant benefits (i.e. for short delay times and
moderate compliance), per-course efficiency decreases
owing to its coupling with pre-pandemic vaccination. This
is because coupling between TAP and pre-pandemic vacci-
nation slows the time scale of disease spread substantially
(figure 3a,b and electronic supplementary material, figure
S8). While illness prevalence is lowered substantially as
well, this lengthening of the disease ‘dwell time’ within tar-
geted communities beyond the antiviral dosage period
requires additional rounds of prophylaxis, leading to a
decline in per-course illness suppression.

In the case of our geographical targeting technique (figure
6b), this effect leads to almost exclusively unfavourable
coupling, with regime IV dominating the vast majority of
parameter space. This occurs despite the much less pro-
nounced effects of GTAP on the global time scale of disease
spread. GTAP targets so many individuals for prophylaxis
that the per-course efficiency plummets, even though
suppression is substantial.

In the case of the TAP protocol, the dominance of regime I
for delay times greater than 10 days deserves some further dis-
cussion. There are several factors that must be taken into
account in order to explain the counterintuitive result that, in
combination with vaccination, antivirals are relatively more
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efficient with longer delay times (figure 5b). Without a detailed
assessment of disease transmission between the individuals
and mixing groups in the model, and detailed quantification
of the distribution and activity of antivirals, it is not possible
to give a thorough analysis of the relevant effects, but we
can still make conjecture on a likely explanation.

There are two time scales that are important with respect to
the effectiveness of contact-TAP. The first is the time required
for the disease to transmit between two subsequent gener-
ations, T2. If the delay time for TAP, Tdelay, is longer than T2,
then prophylaxis will not have the intended effect, and will
only act incidentally on subsequent rounds of infection that
happen to expose the same individuals originally targeted.

The second time scale of interest is the time required for a
mixing group to effectively become immune from further
introductions of the infection, T*. Assessment of T* would
require an in-depth analysis of the simulation results that
goes beyond the scope of this work. However, if this time
scale T* is longer than Tdelay plus the prophylaxis period
Tp = 10d, then multiple rounds of prophylaxis will be
required on the same targeted subpopulations, and the effi-
ciency of TAP will suffer.

In short, if Tdelay >T2, then prophylaxis will not have the
intended effect, and if T* > Tdelay + Tp, then prophylaxis will
not be efficient. Using these principles we can tentatively explain
the dominance of regime I for long delay times as follows.

Figure 3c shows that vaccination has a significant effect on
the initial growth rate of the disease, and should therefore
increase T2. However, the same figure also indicates that anti-
viral prophylaxis with Tdelay > 10d does not add to the effect
of vaccination on T2, excluding the possibility that it is having
the intended effect on first-generation spreading events. It is
also clear that vaccination alone reduces the overall attack
rate significantly while also drawing out the epidemic,
which could reasonably correspond to a higher likelihood
of multiple waves of infection through the same mixing
groups. This leaves us to speculate that, in this regime of
long delay times, TAP does not act directly on second-gener-
ation transmission events, but instead acts indirectly on
subsequent waves of transmission. This could produce a
reduction in T*, helping to prevent multiple rounds of pro-
phylaxis, and facilitating an efficient TAP programme
despite the long delay times.
To validate this conjecture, further analysis would be
necessary to quantify the time scales of interest and elucidate
the activity of antiviral prophylaxis when delay times are
long compared with T2.
3. Conclusion
To conclude, we conducted a study of pandemic influenza
response strategies over a systematic sweep of compliance
rates and response times and characterized the disease
dynamics within a population of 23 million individual agents
representing the Australian population. We then investigated
the coupling of different prophylaxis strategies using analytical
techniques that are likely to be applicable in other cases invol-
ving increasingly complex combinations of reactive
intervention methods. Our desire was to decouple the com-
ponent effects in an effort to understand the complexity
underlying disease dynamics in the presence of reactive
response methods that modulate contagion properties in
space and time. We took initial steps to achieving this by intro-
ducing two simple measures to help elucidate how the
respective effects combine to mitigate pandemic spread: the
first of thesewas the coupling benefit, which quantifies the differ-
ence between illness suppression resulting from coupled
strategies and the sum of their respective individual effects.
The second was the component efficiency, which quantifies the
per-course illness suppression of each component strategy in
the combined approach, and allows us to establish to what
degree the respective strategies amplify the effects of the others.

By examining these measures as functions of the average
compliance rate and the delay time between index case detec-
tion and resource deployment, we show that cooperative
effects can act on both the severity and time scale of disease
spread, leading to nonlinear coupling of the combined
methods and substantially widening the time window for
effective application of reactive strategies. However, these
beneficial effects are highly dependent on the type of contact
targeting. While contact-targeted prophylaxis (TAP) per-
forms well over a broad range of parameters, and
demonstrates beneficial coupling with vaccination, GTAP
performs with prohibitively low efficiency and does not
couple well with vaccination.
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Our results emphasize the wisdom, well established in the
public health community, that pandemic intervention policy
needs to take into account the logistical constraints on resource
deployment, the expected levels of compliance and case sever-
ity [14,34]. Importantly, we identified regimes in which the use
of TAP is beneficial and relatively efficient, evenwhen logistical
delays are significant and compliance is relatively low. Unfortu-
nately, nowhere in our study did we identify what would be
considered successful containment of the pathogen. Even in
cases where suppression was very high, the disease still mana-
ged to spread between regions and eventually become widely
distributed. Furthermore, the more successful our suppression
plans, the more drawn-out the epidemic, lengthening the
required logistical response to potentially untenable duration.
The realistically ‘leaky’ nature of our response plans and the
unavoidable problem of asymptomatic index cases are respon-
sible for this divergence from the results of idealized models
in which immunization is deterministic and the percolation be-
haviour of the system can be exploited to great (but apparently
unrealistic) effect [8,48,49].

The real-world consequences of influenza pandemics
demand data-rich, adaptable modelling approaches for assess-
ments of intervention plans. The sobering nature of our results
comes about as a result of realistic social structure, multi-scale
mobility, heterogeneous interactions in various settings and
logistical constraints, all of which must be taken into account
to provide reasonable assessments of projected intervention
effectiveness. The work we have presented here is a step for-
ward in understanding the complex, dynamic landscape
produced by epidemics and reactive intervention responses.

4. Methods
We performed our simulations using an extension of the ACEMod
(Australian Census-based Epidemic Model) platform, which was
developed by Cliff and co-workers to simulate influenza dynamics
in Australia [24,25]. It offers a discrete-time simulation of disease
spread among a population of 23 406 335 agents stochastically gen-
erated according to distributions from the 2016 comprehensive
Australian census. The ACEMod platform can be characterized as
an agent-based model which incorporates a fine-grained suscep-
tible–exposed–infectious–recovered (SEIR) cycle. Individuals
transition from the susceptible to exposed state upon stochastic
transmission of the virus from their infected contacts, become ill
for a period of several days over which they may transmit the dis-
ease to others, and eventually recover, after which they are
immune to further infection. In addition to this basicmodel of influ-
enza disease progression within infected individuals, the approach
we take here is underpinned by three important elements:

(i) An Australian-focused global pandemic scenario, where
infected individuals arrive by air and the disease spreads
via social mixing groups.

(ii) A layered social mixing model based on comprehen-
sive commuting data, school attendance data and local
residential statistics.

(iii) Implementation of proposed intervention strategies for
containing the pandemic.

The electronic supplementary material, Methods section con-
tains a detailed description of how transmission between agents
is computed, and the exact functional form of our disease
progression model can be found in the work by Cliff et al. [24].

We assume Australia is exposed to a widespread global
pandemic caused by a new strain of influenza that emerged else-
where. To capture this scenario, our seeding conditions follow the
approach outlined byGermann et al. [9], with influenza being intro-
duced continuously to residential areas within 50 km of
international airports. This influx to each seeding region is pro-
portional to the number of daily international passengers arriving
at the corresponding airport, according to the Australian Bureau
of Infrastructure, Transport and Regional Economics (BITRE) [50].

4.1. Social mixing model
The layered socialmixingmodel overwhich the virus spreads com-
prises three components to approximate routine interactions
between agents: the work, school and community layers. The com-
munity layer captures interactions within the home, household
cluster and neighbourhood of each agent. Interactions at work or
school can spread the disease between localities owing to travel
patterns of commuters and students. A schematic of the model is
illustrated in electronic supplementary material, figure S1. The
spread of the pandemic occurs in alternating daytime and night-
time phases. During the daytime phase agents that attend work
or school can interact outside of their local regions. At night, all
agents may spread the disease locally.

4.2. Pandemic control measures
Wehave implemented threemitigation strategies. These includepre-
pandemic vaccination and two targeted, dynamically applied anti-
viral prophylaxis methods. These dynamic strategies are: GTAP,
and contact-TAP. In our algorithm, we implemented vaccination
and antiviral administration as reductions to the context-dependent
force of infection between infected and uninfected agents.

The dynamic interventions are triggered by detection of
index cases. In geographical targeting, an index case is the first
detected illness (symptomatic infection) in a neighbourhood
that is not currently scheduled for intervention. In contact target-
ing, index cases occur when an ill individual is detected who has
close contacts who are not scheduled for antiviral prophylaxis.
For the purposes of contact targeting, interactions at home,
work and school environments are considered ‘close’. Individ-
uals can be subject to multiple rounds of targeted intervention
if new index cases appear after the conclusion of previous
rounds, each of which lasts 10 days.

Each new symptomatic infection has a fixed chance to be
detected, simulating the individual seeking medical treatment
and receiving a positive clinical diagnosis. Detection results in
application of the chosen mitigation strategy to the detected indi-
vidual after a period of 1 day. If the detected individual is
determined to be an index case, the strategy is applied to the rel-
evant sub-population of their contacts after a fixed delay time
that we systematically vary in order to investigate the effect of
logistical roll-out time on pandemic mitigation. The other free
parameter we investigate is the average compliance rate, which
describes the percentage of the targeted population that is treated
during pandemic response. For example, given a compliance rate
of 0.5, if a neighbourhood were targeted for GTAP, each of its
residents (excluding the index case and any other previously
detected cases that subsequently recovered) would have a 50%
chance of being treated with antivirals. Agents who have pre-
viously become ill and recovered without illness detection
occurring could be treated in subsequent rounds of mitigation.

The flow of events, from symptomatic infection of an index
case to the end of a single round of intervention, is shown in elec-
tronic supplementary material, figure S2. The process begins
with detection of an index case.

For the pre-pandemic vaccination strategy, each individual
has an independent probability of being vaccinated prior to the
onset of the pandemic equal to the vaccine compliance rate.
For the dynamic strategies, the compliance rate is equal to the
probability that an individual will be treated with the selected
measures, given that they are targeted. In the case of mixed
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interventions, the treatment probabilities are evaluated indepen-
dently for each applied measure.
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