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Throughout history, a relatively small number of individuals have made a
profound and lasting impact on science and society. Despite long-standing,
multi-disciplinary interests in understanding careers of elite scientists, there
have been limited attempts for a quantitative, career-level analysis. Here, we
leverage a comprehensive dataset we assembled, allowing us to trace the
entire career histories of nearly all Nobel laureates in physics, chemistry, and
physiology or medicine over the past century. We find that, although Nobel
laureates were energetic producers from the outset, producing works that
garner unusually high impact, their careers before winning the prize follow
relatively similar patterns to those of ordinary scientists, being characterized
by hot streaks and increasing reliance on collaborations. We also uncovered
notable variations along their careers, often associated with the Nobel Prize,
including shifting coauthorship structure in the prize-winning work, and a sig-
nificant but temporary dip in the impact of work they produce after winning
the Nobel Prize. Together, these results document quantitative patterns govern-
ing the careers of scientific elites, offering an empirical basis for a deeper
understanding of the hallmarks of exceptional careers in science.
1. Introduction
According to Zuckerman [1], scientific elites ‘are worthy of our attention
not merely because they have prestige and influence in science, but because
their collective contributions have made a difference in the advance of scientific
knowledge’. Indeed, across the broad spectrum of sciences, scientific elites
are often pathbreakers and pacesetters in the science of their time [2–7]. Under-
standing patterns governing the careers of scientific elites helps us uncover
insightful markers for exceptional scientific careers, useful for scientists and
decision-makers who hope to identify and develop individual careers and
institutions [8].

The Nobel Prize, widely regarded as the most prestigious award in science,
offers a unique opportunity to systematically identify and trace many of the
world’s greatest scientists [1,3,8–15]. These scientific elites have attracted
interest from a wide range of disciplines [1,3,8,11,12,15–27], spanning socio-
logy, economics, psychology and physics. On the one hand, quantitative
studies analysing publication and citation records have mainly focused on
the prize-winning work alone, helping uncover a set of highly reproducible
patterns ranging from understanding the link between age and creativity
[3,16,17,28–30] to allocating credits and recognition [4,15,19,21]. On the other
hand, Zuckerman’s canonical work [1] probes into the entire career histories
of Nobel laureates through qualitative methods [13,14,16,31–35]. The rich
patterns articulated by Zuckerman vividly highlight the need to go beyond
their prize-winning works, and put them in the context of the entire careers of
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laureates. Together, the two strands of research call for a quan-
titative, career-level analysis relying on large-scale datasets to
study patterns of productivity, collaboration, authorship and
impact governing the careers of scientific elites.

Despite the recent surge of interest in the science of science
[3,19,28,29,36–43] and efforts in constructing large-scale
datasets of scholarly activities [3,44–46], large-scale studies
of the career histories of Nobel laureates remained limited,
largely owing to the difficulty in collecting systematic data
for their scientific contributions. Here, by combining infor-
mation collected from the Nobel Prize official websites,
laureates’ university websites, Wikipedia entries, publica-
tion and citation records from the Microsoft Academic
Graph (MAG) (https://www.microsoft.com/en-us/research/
project/microsoft-academic-graph/), and extensive manual
curations,we constructed a unique dataset capturing career his-
tories of nearly all Nobel laureates in physics, chemistry, and
physiology or medicine from 1900 to 2016 (545 out of 590,
92.4%) [47]. We cross-validated this dataset with four different
approaches to ensure the reliability of our results.We deposited
the derived dataset in a public data repository [48], and
described our data collection and validation procedures in a
data descriptor with great detail [47].

We further constructed a comparison dataset of scientific
careers using data from the Web of Science (WOS) and
Google Scholar (GS) [46], representing the kinds of ‘ordinary’
careers that tend to be studied in the science of science litera-
ture [29,49]. For each laureate who published the first paper
after 1960, we randomly selected 20 scientists in the same dis-
cipline who started their careers in the same year (electronic
supplementary material, S1). Note that the goal here is not
to create a matching sample of Nobel-calibre scientists, but
a comparison group consisting of scientists who are more
similar to typical scientists in the field. One advantage of
this comparison approach is that, by selecting individuals
with long careers and well-maintained GS profiles, it covers
scientists with relatively higher visibility and impact than
typical scientists, indicating that our comparisons offer a con-
servative estimate of the difference between Nobel laureates
and their contemporary peers.
2. Results
2.1. Early performance
Widely held is the belief that the great minds do their critical
work early in their careers [3,16,17], prompting us to ask if
there is any early signal that distinguishes Nobel laureates.
Here, we focus on the first 5 years since their first publication
and measure their productivity and impact at this early stage
of their careers. Consistent with Zuckerman’s observation
[1], we find that Nobel laureates were energetic producers
from the outset, publishing almost twice as many papers as
scientists in our comparison group (figure 1a). Yet, compared
with this productivity difference, more impressive is the gap
in impact. Indeed, the future laureates had a more than sixfold
increase over the comparison group in terms of the rate of pub-
lishing hit papers, defined as papers in the top 1% of rescaled
10 year citations (equation (4.1)) in the same year and field
(electronic supplementary material, S3.1) (figure 1b). This
difference is not simply driven by the early onset of prize-win-
ning works. Indeed, we repeated our measurements by
omitting the careers of laureates who published their prize-
winning work in this period, finding that a substantial gap
remained (electronic supplementary material, figure S1).

To conceptualize the observed difference in productivity
and impact, we separated team- and solo-authored papers,
finding that both types of work boost early performance, but
they do so in different ways: most of the difference in early
productivity is accounted for by team-authored papers, as
solo-authored papers show meagre productivity difference
between the laureates and their comparison group (figure 1c),
documenting a greater propensity towards collaborations for
scientific elites in their early careers [1]. The only exception is
physics laureates, who published slightly more solo-authored
papers than their comparison group (1.73 versus 1.07, Stu-
dent’s t-test, p-value = 0.07). Yet, interestingly, solo-authored
papers in early careers turned out to be disproportionally
more likely to be prize-winning papers than team-authored
ones. Indeed, comparing the fractions of prize-winning
papers within solo- and team-authored papers, we find that
the former is about twice as high as the latter on average
(χ2 test, p-value < 10−11, figure 1d).
2.2. Career before the prize
Figure 1 documents the outstanding early performance of
future laureates. This is consistent with the innovation litera-
ture, which shows that the most important works tend to
occur early in the life cycle [3,16,50], speaking to the idea that
great, young minds disproportionally break through. Yet, on
the other hand, growing evidence shows that ordinary scientific
careers are governed by the random impact rule [28], predicting
that the highest impact work occurs randomly within the
sequence of works. To reconcile these two schools of thought,
we focus on the career of laureates before they were awarded
the Nobel Prize andmeasure the positions of the prize-winning
work and highest impact work within the sequence of works
one produced. Here, the paper impact is measured by rescaled
10 year citation (Methods). We find both types of works tend to
occur early within the sequence of papers (figure 2a), a result
that contradicts the random impact rule governing typical
scientific careers [28,46]. Yet, our earlier analysis suggests that
a selection effect may offer a potential explanation for this
observation [51]—since the Nobel Prize in science has never
been awarded posthumously, those who produced ground-
breaking works early were more likely to wait long enough to
be recognized [20,22]. Indeed, we removed prize-winning
papers and calculate among the remaining ones the position
of the highest impact papers. We find that the timing of each
of the three remaining highest impactworks forNobel laureates
all follow clearly uniform patterns [51] (figure 2b). This means,
apart from the prize-winning works, all other important works
in Nobel careers closely follow the random impact rule: they
could be, with equal likelihood, the very first work, the last or
any one in between. This observation is in line with the recent
discovery of hot streaks that occur at randomwithin individual
careers [46], and therefore raises an important next question:
Are these high-impact works clustered together in time?

To answer this question, we quantify the relative timing
between the two most-cited papers (N* and N**) within each
career by calculating the joint probability P(N*, N**) with a
null model in which the two papers each follow their indepen-
dent temporal patterns. We uncovered clear diagonal patterns
across all three domains (figure 2c–e), showing that high-
impact papers are more likely to cluster together than expected
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Figure 1. Early career performance. By early career stage, here we mean the first 5 years after publishing the first paper. (a,b) Early performance of Nobel laureates
compared with typical authors in terms of productivity and hit rate per paper (top 1%). We chose typical authors with at least 10 years of career length, and
consider Nobel laureates and GS typical scientists with their first paper published after 1960. We randomly selected 20 typical authors with the same first-paper
publishing year and research domain, eventually leading to 3540 scientists for 177 Nobel laureates. (a) In terms of productivity, the Nobel laureates are indeed more
productive (11.15 versus 6.59, Student’s t-test, p-value < 10−7). (b) When it comes to impact, the two populations are not comparable, and the hit paper rate
( probability of publishing papers in the top 1% of rescaled 10 year citations in the same year and field) of the Nobel laureates is 6.33 times higher than for typical
authors. (c) Much of the difference in early productivity between Nobel laureates and typical scientists resulted from joint papers (9.67 versus 5.46, Student’s t-test,
p-value < 10−7). In chemistry and medicine, there was no significant difference between the average number of single-authored papers published by laureates in
their early stage and the average author. In physics, instead, Nobel laureates publish slightly more single-authored papers than typical authors (Student’s t-test,
p-value = 0.07). (d ) We further compare the fractions of prize-winning papers within all laureates’ early stage single-authored papers and team-authored papers
published in early stages. The former is 2.16 times as high as the latter on average (χ2 test, p-value < 10−11). As for different disciplines, the ratios are 2.13, 1.95
and 2.03 times for physics, chemistry and medicine, respectively. ***p < 0.01, **p < 0.05, *p < 0.1 and n.s. (not significant) for p > 0.1. Error bars represent the
s.e.m.
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by chance. The diagonal pattern disappeared when we shuffle
the order of the works, while preserving the random impact
rule (figure 2f–h). We also measured the distribution of the
longest streak within a career L, finding that P(L) follows a
broader distribution than that in shuffled careers across all
three disciplines (figure 2i–k) (electronic supplementary
material, S4.3–S4.5). We further find that their hot streaks
occur randomly within the sequence of works (figure 2l ),
and are not associatedwith any detectable change in the overall
productivity (figure 2m, Kolmogorov–Smirnov test, p-value =
0.18). Together, these results demonstrate a remarkable resem-
blance between the career histories of Nobel laureates and
those of ordinary scientists [46].

What seems to distinguish the Nobel laureates from
ordinary scientists, however, is that they are disproportio-
nately more likely to have more than one hot streak.
Indeed, while a hot streak is usually unique for typical scien-
tists [46], Nobel laureates are characterized by 1.93 hot streaks
on average (figure 2n). Furthermore, their hot streaks also
tend to sustain for longer. We measured the duration distri-
bution of hot streaks for Nobel laureates, finding that it
peaks around 5.2 years (figure 2o), compared with 3.7 years
for typical scientists [46]. The longer duration of laureates’
hot streaks is also captured by its proportion over career
length (figure 2p). We also find that prize-winning works
are disproportionately more likely to be produced during
hot streaks (figure 2q). Overall, the vast majority of all
Nobel-winning works (88%) occurred within hot streaks.
2.3. Collaboration patterns
One of themost fundamental shifts in science over the past cen-
tury is the flourishing of large teams across all areas of science
[29,39,52,53]. Compared with the overall rate of this shift,
Nobel laureates’ papers are produced by an even higher pro-
portion of large teams (figure 3a). One possible factor that
may explain this team-size difference is impact, as larger
teams tend to produce paperswith higher impacts [37]. To con-
trol for this factor, we created amatching sample for each paper
published by the laureates by selecting 20 papers from the
same field and year but with the most similar number of cita-
tions. We find that, after controlling for impact, the Nobel
laureates’ papers are still more likely to be produced by
larger teams in all times across the last century (figure 3b).

Figure 3a,b thus underscores another similarity between
Nobel and ordinary careers, highlighting the increasing
reliance of team work across all types of scientific careers.
Yet, the ubiquitous increase in team size can be in tension
with the fact that the Nobel Prize can only be awarded to at
most three recipients for each subject every year [1], prompting
us to compare the team size of all prize-winning papers with
those published immediately before and after them by the
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same laureates [51] (electronic supplementary material, S5.1).
We find a greater propensity for the prize-winning papers to
be written by fewer than three authors [51] (61.43% versus
53.28%, χ2 test, p-value < 10−4, figure 3c). We further examine
the authorship structure of the prize-winning papers, finding
that they are substantially more likely to have the laureates



Figure 2. (Opposite.) Hot streak phenomenon. (a) The cumulative distribution function (CDF) P(≤Ni/N ) of relative sequence positions of the prize-winning papers and the most-
cited papers (citations are ranked based on 10 year citation counts) during the academic career before the reception of the prize. Ni denotes the order of the hit work within N
works in a career. The red dotted line represents the null model, in which the most-cited paper can occur at any position in the sequence of papers. (b) To eliminate sample bias
brought from prize-winning works (49.7% of the most-cited papers before the prize is given are the prize-winning papers, and the Laureates wait an average of 17.6 years for
formal recognition after making prize-winning achievements), prize-winning papers are removed and then we recalculate the top three most-cited papers among the papers
published before conferment of the award. (c–e) The normalized joint distribution of the relative position of the top two most-cited papers (e.g. N* and N**) within N works in a
career of a Nobel laureate across three domains, compared with a null model in which the two papers each follow their independent timing distributions. Values greater than 1
indicate that two hits are more likely to co-locate than random. ( f–h) We shuffle the order of each work in a career while keeping their impact intact as a null model for (c–e). The
longest streak within a career before the Nobel Prize, L, is defined as the maximum number of consecutive works whose impact is above the median impact of the career before the
prize. (i–k) The distribution P(L) of the longest streak within a career before the Nobel Prize and the corresponding distribution P(Ls) for shuffled careers, for physics, chemistry and
medicine, respectively. Orange dots represent empirical observations, whereas green dots correspond to shuffled careers. The orange solid line shows the simulation results
produced by a hot streak model (electronic supplementary material, S4.3–S4.5) and the shuffled version is illustrated by the green solid line. (l ) The hot streak model describes
well the laureates’ scientific career pattern for different disciplines. Nhot streak/N measures the relative position of the work lying in the middle position of the hot streak period,
among works in a career before the Nobel Prize after removing the prize-winning papers. Their cumulative distributions are shown by the green dots. (m) The distribution of the
number of works produced during hot streaks P(NH), compared with a null distribution, where we randomly pick onework as the start of the hot streak for Nobel laureates. We use
the Kolmogorov–Smirnov (KS) measure to compare P(NH) of data with the null distribution, finding that we cannot reject the hypothesis that the two distributions are drawn from
the same distribution ( p-value = 0.18). (n) The histogram of the number of hot streak periods. Nobel winners have 1.93 hot streak periods on average; specifically, 1.67 for physics,
2.08 for chemistry and 2.04 for medicine. (o) The duration distribution of the hot streak P(τH) for Nobel laureates. The median hot streak duration τH is 8 years, which is shown as
the red dotted line. ( p) The relative hot streak duration distribution P(τH/T ) for Nobel laureates, where T is the career length of Nobel laureates. The red dotted line shows the
median relative duration. (q) We show the normalized probability of prize-winning papers occurring during the hot streak periods Pwinning papers/Prandom. We find that the prize-
winning papers are about 1.42 times more likely to occur during the hot streak periods than random, especially for physics laureates.
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as the first author than other joint papers published by them
(45.04% versus 30.64%, χ2 test, p-value < 10−7) (figure 3d).
We also calculate the probability of being the last author,
finding no statistical difference (χ2 test, p-value = 0.41).

To test if these phenomena are unique to the prize-
winning works, we removed the prize-winning papers and
repeated the same analysis for the most-cited paper among
the remaining papers. We find that there is no statistical
difference in their likelihood of being written by small
teams [51] (60.18% versus 56.17%, χ2 test, p-value = 0.1193,
figure 3e). While the difference in the likelihood of being
the first author still exists for chemistry laureates, there is
no statistical difference for laureates in physics or medicine
(figure 3f ). Together, these results show that prize-winning
papers are more likely to be authored by fewer than three
authors, with an intriguing tendency for laureates to claim
the first authorship in the prize-winning works. While these
observations are consistent with the finding that works pro-
duced by small teams tend to disrupt science and
technology [37], they are also consistent with Zuckerman’s
argument that ‘the future laureates were especially concerned
to have the record clear for their most significant work, and
particularly in their prize-winning research papers’ [1].
2.4. After the prize
How does winning the Nobel Prize impact one’s subsequent
career? The Matthew effect [4,54] tells us that winning begets
more winnings. Hence, one may expect that works produced
after the Nobel Prize garner more impact than those produced
before, given their substantially elevated reputation and visi-
bility [15]. Here, we find that, to the contrary, when comparing
the average impact of papers (defined in equation (4.4)) pub-
lished by the laureates in each of the 4 years before and after
winning the Nobel Prize, the average impact per paper shows
a significant drop in the 2 years following the Nobel Prize. The
effect is most significant in the year immediately after, where
impact dropped by 11.1% on average compared with the year
before. Furthermore, the effect is not permanent, with impact
quickly bouncing back by year 4 to a similar level to that of
the year of the Nobel Prize (figure 4a). The ‘Nobel dip’ is most
pronounced for physics laureates, as the impacts of their
papers were reduced by 18.1%, compared with 4.8% for chem-
istry and 13.4% for medicine (electronic supplementary
material, S6.2, figure S17). Interestingly, in contrast with the
common perception of decreased productivity following the
Nobel Prize [1,21], possibly because of ‘the disruptive conse-
quences of abrupt upward social mobility’ [1], we find that the
average number of papers by the laureates shows no significant
change (figure 4b), indicating that the uncovered Nobel dip
mainly pertains to impact rather than productivity. Note that
winning the Nobel Prize may introduce citation boosts to prior
papers by the laureate [15,26]. To understand if the observed
dip in impact may be explained by this factor, we alter the obser-
vationwindowtoexcludepost-prize citations topre-prizeworks,
finding that the ‘dip and bounce back’ pattern remains robust
(figure 4c; electronic supplementary material, S6.4, figure S20).
We also find that the number of solo-authored papers decreased
precipitately after the Nobel Prize (Student’s t-test, p-value =
0.004, figure 4d), whereas the fraction of team-authored papers
increased (Student’s t-test, p-value = 0.008, figure 4e), suggesting
that collaboration and teamwork carry an increasing importance
for the laureates after winning the Nobel Prize.

The Nobel dip signals that the scientific community’s
attention is not driven by status but the quality of work. To
unearth potential mechanisms underlying the ‘dip and
bounce back’ dynamics, we trace topic changes before and
after the Nobel Prize as reflected in their publications. We
use an established method [43] that detects research topics
based on communities in the co-citing network of papers
published by a scientist, offering a discipline-independent
method to identify and trace research topics across a career
(electronic supplementary material, S6.5). As an illustrative
example, figure 4f shows the constructed co-citing network
and topic communities for the career of Jean-Marie Lehn,
who was awarded the 1987 Nobel Prize in Chemistry
together with Donald J. Cram and Charles J. Pedersen for
the synthesis of cryptands. In his remarkable career, Lehn
published more than 700 papers. Figure 4f visualizes his pub-
lication history by topic, showing that his research agenda
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was almost exclusively focused on cryptands-related
research, until he was awarded the Nobel Prize in 1987.
Yet, just as this line of research was officially recognized,
we observed a clear shift in the topic right after winning
the Nobel Prize (figure 4g). In the next 10 years, his research
was primarily focused on self-assembly and self-organiz-
ation. Most interestingly, this is a topic that he had never
published on before winning the Nobel Prize.

The intriguing example of Lehn’s career prompts us to ask if
laureates disproportionately shift research topic after winning
the Nobel Prize. We randomly selected two papers, within 4
years before and after the Nobel Prize, respectively, and
measured the probability of two papers belonging to the same
topic, finding only 36.8% of the two papers cover the same
topic before and after winning the prize. We then built a null
model by randomly choosing a year as the pretended prize-
winning year for comparison, finding that the probability
is significantly higher (45.2% versus 36.8%, p-value = 0.004,
figure 4h), which suggests the laureates have a higher likelihood
of shifting research topics after winning the Nobel Prize.
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We furthermeasured the likelihood of laureates studying a new
topic after winning the prize, and compare it with a null model
wherewe shuffled the topic of theworks, finding that the laure-
ates are much more likely to study a new topic after winning
the prize than expected (14.2% versus 1.8%, p-value < 10−14,
figure 4i). To ensure that these results are not affected byspecific
community detection methods used to detect topics, we
repeated our analyses with another well-known algorithm
(Infomap [56]), obtaining the same conclusions (electronic
supplementary material, S6.6).

To understand potential forces behind the uncovered
change in research agenda following the Nobel Prize, we exam-
ined several different factors, including the popularity of
research topics before and after the prize (electronic supple-
mentary material, S6.7), changes in collaborators (electronic
supplementary material, S6.8) and funding opportunities (elec-
tronic supplementary material, S6.9). We find that the topic
studied after the Nobel Prize tends to be less popular at the
time. The number of new collaborators does not increase after
the Nobel Prize, but these collaborators tend to be more estab-
lished in terms of productivity and impact. And somewhat
surprisingly, the overall funding to each laureate remains
mostly constant around the time of the award. Although none
of these factors can directly explain the observed topic change
and the associated citation dip (figure 4j–m; electronic sup-
plementary material, S6.7–S6.9, figures S24–S26), they appear
consistent with an endogenous shift in the laureate’s interest
to explore new directions. Note that, although the uncovered
dip–bounce-back dynamics and topic shifting behaviour both
occur around the same time (when awarded the Nobel Prize),
it does not imply that the two are causally related. On the
other hand, while one may be better at anticipating which
work will be recognized by the Nobel Prize eventually
(https://en.wikipedia.org/wiki/Clarivate_Citation_Laureates),
it remains difficult to precisely predict the year of winning,
indicating that the award year can be viewed as a largely
exogenous variation in a career [57], which then coincides
with topic-shifting behaviour that is largely endogenous to
the individual. Regardless, these results highlight the unwaver-
ing scientific efforts by the laureates, actively pursuing new
lines of enquirywhile undeterredby the extra burdens imposed
by growing duties and responsibilities [1].
3. Discussion
In summary, building on Zuckerman’s canonical work on
scientific elites [1], here we present a systematic empirical
investigation of the careers of Nobel laureates by studying
patterns of productivity, collaboration, authorship and
impact. This analysis is now possible owing to a novel dataset
we curated—both algorithmically and manually—which links
several disparate biographical and bibliographical data
sources, offering a unique opportunity to quantitatively
study the scientific contributions and recognitions of scientific
elites. Despite the clear difference between the Nobel laureates
and ‘ordinary’ scientists, we find universal career patterns that
are applicable to both ordinary and elite scientists. Indeed, we
find the careers of the laureates before winning the prize are
governed by remarkably similar patterns to those of ordinary
scientists, characterized by hot streaks and increasing reliance
on teamwork. Hence, these results help advance the canonical
innovation literature by offering new empirical evidence from
large-scale datasets. At the same time, we also uncovered
notable but previously unknown variations along their careers
associated with the Nobel Prize, including shifting coauthor-
ship structure in the prize-winning works, and a temporary
but significant dip in the impact of works they produce after
winning the Nobel Prize. Overall, these results represent new
empirical patterns that further enrich our understanding of
careers of the scientific elite.

This paper takes an initial step probing our quantitative
understanding of career patterns of the scientific elite,
which not only offers an empirical basis for future studies
of individual careers and creativity in broader domains
[16,50], but also deepens our quantitative understanding of
patterns governing exceptional careers in science.
4. Methods
4.1. Rescaled number of citations
To approximate the scientific impact of each paper,we calculate the
number of citations the paper received after 10 years,C10, and use it
as a proxy for the paper’s impact. Previous studies [29,37,44] have
shown that the average number of citations per paper changes over
time. To be able to compare the impact of papers published at
different times and to adjust for temporal effects, the rescaled
number of citations a paper receives after 10 years, Ĉ10,i, is
suggested as a good proxy for publication impact. According to
Fortunato et al. [29], given a paper i, Ĉ10,i, is defined as follows:

Ĉ10,i ¼ 10� C10,i

hC10i , ð4:1Þ

where C10,i is the raw number of 10 year citations for paper i, and
〈C10〉 is the average C10 calculated over all publications published
in the same year and field.

4.2. Definition of hit paper rate
In figure 1b, we compare the ‘hit’ paper rate—defined as the prob-
ability of publishing papers in the top 1% of rescaled 10 year
citations in the same year and field—for Nobel laureates and typi-
cal authors. Our collected Nobel laureate dataset is based on
information provided by the MAG, which assigns the field of sub-
ject for each paper. It is worth noting that the field of subject is a
hierarchal structure with six levels. The first level contains 19
main fields, such as ‘physics’, ‘chemistry’, ‘medicine’ and ‘biology.’
The second level contains 295 subfields, such as ‘astrophysics’,
‘biophysics’ and ‘geophysics’. In this paper, we choose the
second-level fields in calculating the hit paper rate for Nobel laure-
ates. The GS typical scientist dataset is based on information from
the WOS, and it is almost impossible to precisely match the career
histories of 3540 GS scientists from theWOS to theMAG. Thus, the
hit rate analysis of the GS scientists is based on the WOS database
itself. Papers in the WOS are also assigned to one of 234 specific
field categories, such as ‘astronomy & astrophysics’, ‘biophysics’
and ‘geochemistry & geophysics’. The hit paper rate for typical
scientists is calculated using these 234 specific fields from theWOS.

4.3. Selecting matching papers
In figure 3b, we created a matching sample for each paper pub-
lished by Nobel laureates. The procedure for selecting
matching papers is introduced here in detail. For each Nobel
prize-winner’s work, we first determine its year of publication,
total citation number and subject categories based on the MAG
dataset. Next, all the MAG papers with the same publishing
year and specific field are obtained and sorted according to
their number of citations. It is worth noting that, when a

https://en.wikipedia.org/wiki/Clarivate_Citation_Laureates
https://en.wikipedia.org/wiki/Clarivate_Citation_Laureates
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laureate’s paper spans multiple subjects, we deem MAG papers
appropriate matches if they share at least one common subject
with the laureate’s. We then select the 20 papers with citation
counts that are most similar to the laureate’s paper and use
these as matching papers.

4.4. Quantifying impact
In figure 4a, we compare the average impact of papers published
by the laureates in each of the 4 years before and after winning
the Nobel Prize. We propose a measure to quantify the average
impact of papers: we first calculate the average impact within
all papers in specific years, and then we take the individual het-
erogeneity of Nobel laureates into consideration when
quantifying the average impact of papers.

The impact of paper i is quantified by Gi ¼ log (Ĉ10,i þ 1),
where Ĉ10,i measures the rescaled number of citations within 10
years of publication. We denote Dy ¼ yi � yPr ize as a laureate’s
relative publishing time after winning the Nobel Prize, where
yi is the publication year of paper i. Assuming there are NDy

papers publishing in the Δy year after winning the prize, we
define the average impact of papers as follows:

hGPiDy ¼
PNDy

i¼1 Gi

NDy
: ð4:2Þ

However, the above measure did not consider the individual het-
erogeneity of Nobel laureates. For example, average impact may
be driven by those laureates with high productivity as well as
high paper quality. Thus, we first measure the average impact
of papers for each laureate and then calculate the average for
all Nobel laureates. For laureate j, the average impact of papers
published in the Δy year after winning the prize is defined as:

hGPiDy,j ¼
PNDy,j

i¼1 Gi

NDy,j
, ð4:3Þ

where NDy,j is the number of papers published in the Δy year of
laureate j. Factoring in individual heterogeneity, the average
impact of papers is defined as follows:

hGNiDy ¼
PMDy

j¼1 hGPiDy,j
MDy

, ð4:4Þ

where MΔy denotes the number of laureates who still publish
papers in the Δy year after winning the Nobel Prize. In the
main text (figure 4a), we use 〈ΓN〉 to measure the average
impact of papers.

4.5. Topic changing after winning the Nobel Prize
To quantify the topic of a paper, we adopt a recent method based
on community structure of the co-citing network of a scientist’s
papers [50]. To ensure meaningful community detection results,
we consider all Nobel laureates who have published at least 50
papers. We also excluded Nobel laureates who published fewer
than five papers after winning the prize. Finally, we selected
283 Nobel laureates (74 for physics, 96 for chemistry, 113 for
medicine) who satisfied these requirements.

In figure 4g, wemeasure the probability of twopapers belonging
to the same topic within 4 years before and after the reception of the
prize and a random year. To measure the probability of changing
topics of Nobel laureates after winning the prize, we randomly
selected two papers, within 4 years before and after the Nobel,
respectively, and measured the probability of those two papers
belonging to the same topic.We then built a nullmodel by randomly
choosing ayearas the pretendedprize-winning year for comparison.

To test if Nobel laureates tend to study a new topic after winning
the prize,wemeasure the chance ofNobel laureates shifting to a new
topic after winning the Nobel Prize, by no. new topics after winning
Prize/no. topics. We also shuffled the topic of the works and
repeated the measurement as a null model for comparison.
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