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Abstract

To better understand cerebellum-related diseases and functional mapping of the cerebellum, 

quantitative measurements of cerebellar regions in magnetic resonance (MR) images have been 

studied in both clinical and neurological studies. Such studies have revealed that different 

spinocerebellar ataxia (SCA) subtypes have different patterns of cerebellar atrophy and that 

atrophy of different cerebellar regions is correlated with specific functional losses. Previous 

methods to automatically parcellate the cerebellum—that is, to identify its sub-regions—have been 

largely based on multi-atlas segmentation. Recently, deep convolutional neural network (CNN) 

algorithms have been shown to have high speed and accuracy in cerebral sub-cortical structure 

segmentation from MR images. In this work, two three-dimensional CNNs were used to parcellate 

the cerebellum into 28 regions. First, a locating network was used to predict a bounding box 

around the cerebellum. Second, a parcellating network was used to parcellate the cerebellum using 

the entire region within the bounding box. A leave-one-out cross validation of fifteen manually 

delineated images was performed. Compared with a previously reported state-of-the-art algorithm, 

the proposed algorithm shows superior Dice coefficients. The proposed algorithm was further 

applied to three MR images of a healthy subject and subjects with SCA6 and SCA8, respectively. 

A Singularity container of this algorithm is publicly available.
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1. INTRODUCTION

The cerebellum is associated with both motor and cognitive functions.1 To better understand 

the diseases and functional mappings of the cerebellum, quantitative measurements from 

magnetic resonance (MR) images have been used in recent studies.2 Since manual labeling 

is laborious and time-consuming, accurate automated cerebellum parcellation algorithms are 

required, especially in large-scale studies. Previously reported algorithms are mainly based 

on multi-atlas segmentation. CGCUTS3 uses multi-atlas registration and label fusion which 

is refined in a graph cut framework. CERES4 uses a multi-atlas patch-based segmentation 

and a non-local label fusion algorithm to perform the parcellation.

In recent years, convolutional neural networks (CNNs) have been successfully used in 

cerebral sub-cortical structure segmentation.5 They essentially act by learning a set of non-

linear filters, producing feature maps of local to global information to segment the image. It 

has been shown that CNN-based cerebral sub-cortical structure segmentation can achieve 

superior results in a shorter execution time compared with conventional methods such as 

FreeSurfer.5 However, CNNs have not been applied to cerebellum parcellation. Inspired by 

Mask R-CNN,6 we used a two-step strategy to parcellate the cerebellum in this work. We 

first used a locating network to predict a bounding box around the cerebellum then a 

parcellating network to parcellate the cropped-out cerebellum (Fig. 1). The proposed 

algorithm was compared with a state-of-the-art algorithm, CGCUTS3*, using leave-one-out 

cross validation and applied to other images to show its broad applicability. A Singularity 

container of this algorithm is publicly available †.

2. METHODS

2.1 Network Architectures

Unlike Mask R-CNN which relies on region proposals, our locating network only computes 

a single bounding box around the cerebellum since there is one and only one cerebellum 

presented in the image. The locating network was modified from the pre-activation ResNet,7 

taking a 3D image as input and outputting six numbers specifying the extends along x, y, 

and z axes (Fig. 2, 4). Instead of using “RoIAlign” which interpolates the cropped region 
into a fixed size as in Mask R-CNN, we chose to symmetrically extend the bounding box 
(Fig. 1) to a size of 128 × 96 × 96 voxels thus keeping the original resolution. We modified a 

3D U-Net8 (Fig. 3) to parcellate the cropped-out image into 28 regions (29 including the 

background). Note that instance normalization9 was used instead of batch normalization 

since it is invariant to additive and multiplicative transformations of the image intensities. As 

a result, image intensity normalization such as white matter peak normalization is not 

required, which simplifies the pre-processing.

2.2 Data and Pre-processing

Training Data. Fifteen magnetization prepared rapid gradient echo (MPRAGE) images 

were expertly delineated.10 These images were acquired on a 3.0 T MR Intera scanner 

*Downloaded from: http://iacl.jhu.edu/index.php/Resources with minor improvement.
†http://iacl.jhu.edu/index.php/Cerebellum_CNN
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(Phillips Medical Systems, Netherlands) with the following parameters: slice thickness = 1.1 

mm, flip angle = 8◦, TE = 3.9 ms, TR = 8.43 ms, field of view = 20.5 × 20.5 × 14.5 cm, and 

image matrix = 256 × 256. The images were resampled to 1 mm isotropic resolution. 

Testing Data. Three images of a healthy control, a subject with SCA subtype 6, and a 

subject with SCA subtype 8 were acquired using the same protocol (except that the SCA6 

image was acquired with 0.9 mm isotropic resolution). Pre-processing. The images were 

first rigidly transformed to the 1 mm isotropic ICBMc 2009c template11 in the MNI space 

then N4 inhomogeneity corrected12 using the ANTs registration suite‡. No skull-stripping or 

intensity normalization was performed.

2.3 Training Networks

Data Augmentation. Right-left flipping, random translation, and random rotation were used 

in the training of the locating network. Right-left flipping, random rotation, and random 

elastic deformation were used in the training of the parcellating network. When flipping, the 

corresponding right-and-left labels were swapped. The translations were uniformly sampled 

from 0 to 30 voxles independently for the x, y, and z axes. The rotation angles were 

uniformly sampled from 0 to 15 degrees independently for the three axes. Elastic 

deformations were generated by smoothing voxel-wise random translations. Examples of 

data augmentation are shown in Fig. 5. Training. We used a smooth L1 loss13 to train the 

locating network and one minus the mean Dice coefficient over all the labels14 (the weight 

for each label is equal to each other) to train the parcellating network. The Adam 

optimizer15 with learning rate 0.001, β1 = 0.9, β2 = 0.999, and ϵ = 1 × 10−7 was used. The 

locating and parcellating networks were trained for 200 and 400 epochs, respectively, with a 

batch size of one.

2.4 Post-processing

Since CNNs perform per-pixel labeling, isolated mislabeling can occur (see Fig. 1). To 

correct this, we first calculate the connected components of each label. Using a threshold for 

the fraction of the volume of the largest connected components, these components were 

divided into two categories: the large size or the small size. A large-size component keeps its 

original label, while a small-size component changes its label depending on its adjacency to 

other labels. If a small-size component is not adjacent to any non-background large-size 

components, it is discarded; otherwise, it is assigned with the label of the region with which 

it shares most of its boundary. Finally, we fill the holes of each label using binary-image 

morphological operations.

3. EXPERIMENTS AND RESULTS

Leave-one-out cross validation was performed using the fifteen manually delineated images 

and the results were compared with CGCUTS. The Dice coefficient between the prediction 

and manual delineation per cerebellar region was calculated and shown as box plots in Fig. 

6. A two-sided paired Wilcoxon signed-rank test was performed per region with the null 

hypothesis that the CNNs with post-processing and CGCUTS have the same performance. 

‡http://stnava.github.io/ANTs/
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The p-values were further adjusted by the BH (false discovery rate) method. Nine regions 

(corpus medullare, vermal lobule VII, left lobule crus I, left lobule VIIIA, left lobule VIIIB, 

right lobule VIIIB, left lobule IX, right lobule IX, and vermis X) with significant p-values (p 
< 0.05) are marked by red asterisks. Four regions (corpus medullare, vermal lobule VII, left 

lobule crus I, and left lobule VIIIA) with significant adjusted p-values (p < 0.05) are marked 

by blue asterisks (Fig. 6). An example visual comparison is shown in Fig. 7.

Furthermore, the algorithm was also applied to three images of a healthy control, a subject 

with SCA6, and a subject with SCA8, respectively, using the networks trained from all 

fifteen manually delineated images, and the results are shown in Fig. 8.

The two CNNs take approximately 50 seconds in total to run using a Tesla K40c GPU 

(NVIDIA Corporation, USA). The post-processing takes approximately 74 seconds using an 

Xeon E5–2623 v3 CPU (Intel Corporation, USA) without parallel computing. As a 

comparison, CERES takes 212 seconds4 without pre-processing and CGCUTS takes 

approximately 7 hours.3

4. DISCUSSION AND CONCLUSIONS

The proposed algorithm to parcellate the cerebellum uses locating and parcellating networks 

instead of multi-atlas segmentation. The paired Wilcoxon signed-rank tests show that the 

proposed algorithm provides superior results compared with a state-of-the-art algorithm, 

CGCUTS. A Singularity container of the proposed algorithm is provided.

However, the proposed methods have several limitations. First, different from fully 

convolutional neural networks, the proposed locating network is not inherently translation-

invariant. Therefore, the locating network usually cannot successfully capture the cerebellum 

if the MNI alignment fails. Although this can be dealt to some extent by the translation data 

augmentation, a better approach could be appending a coordinate map as an additional 

channel for the input to this network. Another approach could be using a coarse fully 

convolutional neural network (the U-Net used as the parcellating network for example) to 

locate the cerebellum instead.

Second, the proposed methods should be preferentially applied to MPRAGE images with 

similar tissue contrast as the training images. We noted that the parcellation was less 

accurate on images acquired with the spoiled gradient recalled echo (SPGR) sequence. Even 

for the MPRAGE sequence, the algorithm may also be less accurate if the sequence 

parameters are too different. This could potentially be dealt with intensity augmentation 

during training or image contrast harmonization.16

Third, the largest-connected-component-based post-processing used in this work is not 

highly accurate. It failed to remove the mislabeled voxels if these voxels were directly 

connected to the desired region. Additionally, this method can wrongly change the voxel 

label if the threshold for the connected-component size is chosen inappropriately. More 

sophisticated post-processing methods such as conditional random fields17 could be used to 

enforce the topological constraint and reduce mislabeling.
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Figure 1. 
Flowchart of the proposed algorithm. Before and after post-processing difference is marked 

by a yellow arrow.
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Figure 2. 
Architecture of the locating network. The output number of features are marked on each 

block.
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Figure 3. 
Architecture of the parcellating network. The output number of feature maps are marked on 

each block. The input spatial shape is marked on the left of each contracting block.
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Figure 4. 
Architecture of building blocks: (a) input block, (b) contracting block, and (c) expanding 

block.
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Figure 5. 
Data augmentation: (a) the original image, (b) the flipped image, (c) the translated image, 

(d) the rotated image, and (e) the deformed image, overlaid with their corresponding 

parcellation.
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Figure 6. 
Comparison with CGCUTS. Significantly improved regions are marked by asterisks (p < 
0.05); red asterisks for p-values and blue asterisks for adjusted p-values. CM: corpus 

medullare, L: left, R: right, and V: vermis.
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Figure 7. 
Cerebellum parcellation by the manual rater and three different algorithms on three coronal 

slices: (a) image, (b) manual rater, (c) CGCUTS, (d) CNNs without post-processing, and (e) 

CNNs with post-processing. CM: corpus medullare, L: left, R: right, and V: vermis.
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Figure 8. 
Parcellation results on three coronal slices: (a) healthy control, (b) subject with SCA6, and 

(c) subject with SCA8. CM: corpus medullare, L: left, R: right, and V: vermis.
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