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Actuation remains a significant challenge in soft robotics. Actua-
tion by light has important advantages: Objects can be actuated
from a distance, distinct frequencies can be used to actuate and
control distinct modes with minimal interference, and significant
power can be transmitted over long distances through corrosion-
free, lightweight fiber optic cables. Photochemical processes that
directly convert photons to configurational changes are par-
ticularly attractive for actuation. Various works have reported
light-induced actuation with liquid crystal elastomers combined
with azobenzene photochromes. We present a simple model-
ing framework and a series of examples that study actuation
by light. Of particular interest is the generation of cyclic or
periodic motion under steady illumination. We show that this
emerges as a result of a coupling between light absorption and
deformation. As the structure absorbs light and deforms, the
conditions of illumination change, and this, in turn, changes the
nature of further deformation. This coupling can be exploited in
either closed structures or with structural instabilities to generate
cyclic motion.

actuation | photomechanical materials | liquid crystal elastomers |
azobenzene | propulsion

A major challenge in soft robotics is the integration of sens-
ing, actuation, control, and propulsion. In most soft robotic

systems, propulsion and controls are enabled through a physi-
cal tether or complex onboard electronics and batteries. A tether
simplifies the design but limits the range of motion of the robot,
while onboard controls and power supplies can be heavy and can
complicate the design (1). Actuation by light through photome-
chanical processes directly converts photons to deformation and
offers an attractive alternative. It can deliver energy remotely.
Further, multiple frequencies can be used to actuate and sense
different modes. Finally, if a tether is an option, then a significant
energy can be delivered through corrosion-free and lightweight
fiber optic cables.

A further challenge arises in propulsion where one needs
to generate cyclic motion. Since most actuation systems actu-
ate one way, there is a need to reset the system (1). To
simplify the control process, it is desirable to do so by inher-
ent response rather than by pulsing of the external source.
Actuation by light is again attractive because one can use
the directionality of the propagation of light. As the struc-
ture absorbs light and deforms, the conditions of illumina-
tion change, and this, in turn, changes the nature of further
deformation. This coupling can be exploited either in closed
structures or with structural instabilities to generate cyclic
motion.

These advantages have motivated a recent body of work
on developing photomechanical materials (see ref. 2 for an
extensive review). Much of this work has focused on incorpo-
rating azobenzene photochromes that absorb light and trans-
form between cis and trans configurations into liquid crystal
elastomers (LCEs) whose orientational order is coupled to
deformation, following the pioneering work of Yu et al. (3).
These materials are typically synthesized as thin strips which
bend when illuminated with light of appropriate frequency. Fur-
ther, they can be combined with structural polymers to provide
robustness (4).

Various works have demonstrated the ability to generate cyclic
motion under steady illumination. Yamada et al. (5) demon-
strated that a ring of LCE film containing azobenzene derivatives
can roll in the presence of illumination. When wrapped around
a series of pulleys, the film can be used as a light-driven plas-
tic motor system. White et al. (6) developed a high-frequency
oscillator from a strip which bends under illumination sufficiently
to block the light source and reset. Wie et al. (7) produced
rolling motion in monolithic polymer films where ultraviolet-
visible light transforms the film from flat sheets to spiral rib-
bons, which then rolls under continuous illumination. Finally,
Gelebart et al. (4) created an oscillatory behavior of a doubly
clamped LCE film.

Modeling light-mediated actuation is a complex multiphysics
process involving three key elements: propagation and absorp-
tion of light, chemical transformation and temporal evolution of
chromophores between states, and the nonlinear mechanics of
structures undergoing large deformations. Corbett and Warner
(8) analyzed light absorption and actuation in azobenzene con-
taining LCEs and proposed a geometrical theory of illuminated
thin strips (9); this theory assumes that the stress in the strip
remains zero, and is only applicable to the special case when
the strips are unconstrained. While this model reveals various
aspects of photoactuation, it is unable to explain the cyclic behav-
ior in the experiments above, where the constraints applied on
the ends of strips, either through boundary conditions (4) or as a
closed loop (5), give rise to internal stress.

In this paper, we build on the work of Corbett et al. (9) by
coupling it to the mechanics of beams, and derive a fully cou-
pled photoactivated mechanical model for thin illuminated strips
which can handle arbitrary boundary conditions. Remarkably,
a number of material, physical parameters—time constants of
photoactivation and relaxation, penetration depth, the elastic
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modulus and thickness of the strip, and illumination intensity—
collapse into a single nondimensional parameter that governs
the behavior. This highlights the flexibility that is available in
the choice of material and structure in the development of light-
activated structures. Our resulting model is simple and can be
solved numerically in real time on any personal computer, while
capturing a rich range of behaviors. We use it to address cyclic
or periodic motion under steady illumination and reveal the
underlying mechanisms. The ability of this simple model to cap-
ture complex dynamics of light-illuminated deformation make
it a useful tool for the design and control of this novel type of
structures.

Photodeformable Elastica
Consider an inextensible beam or a strip (planar elastica) sub-
jected to illumination as shown in Fig. 1. Let x(s, t) denote the
position of centerline point s at time t , and let θ(s, t) denote
the angle that the tangent to the beam makes with the horizontal
axis e1. We assume that the deformation caused by illumination
takes place over a significantly slower time scale than the natural
periods of vibration of the beam so that we may assume that the
beam is at equilibrium at all times. Therefore, at each t ,

∂f
∂s

(s, t) = 0, [1]

∂m

∂s
(s, t) + (̂t(s, t)× f(s, t)) · e3 = 0, [2]

where t̂(θ(s, t)) = ∂x/∂s(s, t) = cos θ(s, t)e1 + sin θ(s, t)e2 is
the unit tangent, f(s, t) is the internal force transmitted across
a cross-section, and m(s, t) is the internal moment about e3.

Since we assume that the beam is inextensible and unshear-
able, the internal force f is constitutively indeterminate, and
we only need to specify a constitutive law for the moment
m . Following Corbett et al. (9), we assume that the beam is
made of an elastic material whose spontaneous or stress-free
strain, ε0, changes with time depending on the local population
of cis molecules. The longitudinal stress at a point at a posi-
tion s along the length of the beam and z along the depth of
the beam and at time t is given by Hooke’s law, σ(s, z , t) =
E(ε(s, z , t)− ε0(s, z , t)), where ε is the strain and ε0 is the spon-
taneous strain. The moment is found by integration through
the thickness as

m(s, t) =

∫ h/2

−h/2

E(ε(s, z , t)− ε0(s, z , t))zdz , [3]

where h is the thickness of the beam and z = 0 is taken to be the
center of the beam. The strain is related to curvature as in clas-

Fig. 1. Elastica under illumination.

sical elastica theory, and the spontaneous strain depends on the
built-in curvature κr of the beam (the curvature with no applied
load and no illumination) and the concentration nc of the cis
molecules,

ε(s, z , t) =κ(s, t)z , [4]

ε0(s, z , t) =κr (s)z −λnc(s, z , t), [5]

where λ is a constant of proportionality linking the longitudinal
strain and concentration of cis molecules.∗ λ> 0 is when the cis
molecules corresponds to an expansion, while λ< 0 corresponds
to an induced contraction. This depends on the orientation of the
director of the LCE. If the strip is made with directors parallel to
the length of the strip [as in the “planar” face of Gelebart et al.
(4)], illumination produces a contraction along the length and
therefore λ< 0. If, on the other hand, the strip is made with the
director along the normal to the strip (as in the “homoetropic”
face of Gelebart et al.), illumination causes an elongation along
the length of the strip, and therefore λ> 0.

Substituting [4] and [5] into [3], we find the constitutive law in
the form

m(s, t) =
Eh3

12
(κ(s, t)−κ0(s, t)), [6]

where

κ0(s, t) =κr (s)− 12λ

h3

∫ h/2

−h/2

nc(s, z , t)zdz . [7]

It remains to specify the evolution of the spontaneous curva-
ture in the presence of illumination. The concentration of cis
molecules is increased by photon absorption, and decreased by
thermal decay (9),

∂nc

∂t
(s, z , t) =−κ1nc(s, z , t) + (1−nc(s, z , t))κ2α̃1I(s, z , t),

where nc is the fraction of activated chromophores, α̃1 is a mate-
rial constant which measures the efficiency of the production of
cis isomers by incident light, and I(s, z , t) denotes the illumi-
nation, that is, the quantity of photons per unit time arriving
at the depth z at time t . κ1 and κ2 are the thermal decay and
the forward isomerization reaction rates, respectively. In typical
materials, nc� 1 is small (2), so we can simplify the differential
equation to

τ
∂nc

∂t
(s, z , t) =−nc(s, z , t) +α1I(s, z , t), [8]

where τ = 1/κ1 and α1 =κ2α̃1/κ1. Further, at any location s
along the length of the strip, the intensity diminishes with depth
with the number of photons absorbed (9),

∂I
∂z

=
1−nc

d
I(s, z , t),

where d is the penetration depth. So, when nc� 1, the intensity
follows Beer’s law,

I(s, z , t) = I0 (s, t)exp

(
−h/2− z

d

)
, [9]

*We assume that the neutral axis is unaffected by illumination, since the penetration
depth is small, as argued later.
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where z = h/2 is the free surface that is illuminated and I0 is the
intensity of light on the illuminated surface.† Combining [7]–[9],

τ
∂κ0

∂t
(s, t) =−12λ

h3

∫ h/2

−h/2

τ
∂nc

∂t
(s, z , t)zdz

=−(κ0(s, t)−κr (s)) +αI0 (s, t),

where α=− 12λα1
h3

∫ h/2

−h/2
exp

(
− h/2−z

d

)
zdz is an effective

(macroscopic) coupling constant. Finally, the absorption of light
on the surface depends on light intensity I0 and on the relative
orientation of the light and the strip, I0 (s, t) = I0f (θ(s, t)− θI ),
where θI is the angle of illumination. Therefore,

τ
∂κ0

∂t
(s, t) + (κ0(s, t)−κr (s)) =αI0f (θ(s, t)− θI ). [10]

The projection function f is chosen as

f (φ) =

{
cosφ if φ∈ (−π/2,π/2),

0 else.
[11]

This f accounts for self-shadowing in an approximate but effec-
tive way: In our examples, the parts of the rods that are exposed
to the light source are such that φ∈ (−π/2,π/2), and, in that
case, the coefficient cosφ accounts for the reduction in light flux
per unit area due to the nonnormal incidence. Regions such that
φ /∈ (−π/2,π/2) are considered to be shadowed by other parts of
the rod.

Finally, we combine [1], [2], [4], and [6], and nondimensional-
ize the resulting equation along with [10], introducing the scaled
arclength S = s/l (where l is the length of the beam), the scaled
time T = t/τ , and the scaled curvature K = lκ,

∂

∂S

(
∂θ

∂S
(S ,T )−K0(S ,T )

)
−Fx cos θ(S ,T )+Fy sin θ(S ,T ) = 0, [12]

∂K0

∂T
(S ,T ) + (K0(S ,T )−Kr (S)) = Λf (θ(S ,T )− θI ). [13]

The constants Fx and Fy are Lagrange multipliers that enforce
the inextensibility. Remarkably, these equations depend on
two parameters only: the angle of illumination θI and the
dimensionless constant

Λ =αlI0 =−12κ2α̃1I0
κ1h3

∫ h/2

−h/2

exp

(
−h/2− z

d

)
zdz [14]

that encompasses various material and physical parameters—
time constants of photoactivation and relaxation, penetration
depth, the elastic modulus and thickness of the strip, and illu-
mination intensity. The fact that so many material and phys-
ical parameters collapse into a single nondimensional param-
eter highlights the flexibility that is available in the choice of
material and structure in the development of light-activated
structures. Since the dimensionless equations are governed by
a single dimensionless parameter Λ, we are able to charac-
terize all of the possible behaviors in a given geometry sim-
ply by sweeping over Λ. Based on the values in Table 1
estimated from literature reports on a glassy azobenzene-
functionalized polyimide, we obtain a value of |Λ| ≈ 2.9; these

†Note that the result (10) does not require the exponential profile of Beer’s law, but sim-
ply a steady profile, I(s, z, t) = I0 (s, t)f(z). Also note that the failure of the condition
nc� 1 leads to bleaching and other effects discussed in refs. 9 and 10.

Table 1. Estimates of the experimental parameters based on
the literature

Parameter Typical value

λα1 −5.4× 10−5 m2·W−1 (11)
I0 100 W/m2 (11)
E 0.6 GPa to 4 GPa
h 15 µm (11)
d 0.56 µm (12)
w 1 mm (11)
l 15 mm (11)

values are typical of the materials used in many other experi-
mental works, although not all of them document the material
properties in detail.

To predict how the shape of the beam evolves with time, we
solve these Eqs. 12 and 13 for θ(S ,T ) using a numerical method
described in SI Appendix, section A with specific initial, bound-
ary, and illumination conditions. We remark that, in deriving the
equations, we assumed that the material response—the relation
between curvature and moment [6], and the relation between
illumination and spontaneous curvature [7]—are linear. Yet, the
final equations are nonlinear, as evidenced by the presence of the
trigonometric terms in [12] and f in [13] due to the presence of
finite rotations.

For future reference, we note that the equilibrium Eq. 12 can
be derived by the Euler–Lagrange method as the stationarity
condition of the energy functional

E [θ] =

∫ 1

0

1

2

∣∣∣∣ ∂θ∂S −K0

∣∣∣∣2 dS . [15]

Rolling Ring
Our first example is motivated by the work of Yamada et al. (5)
on a rolling ring and motor, as well as that of Wie et al. (7) on
a rolling spiral. We consider a closed, initially circular ring on a
rigid horizontal surface, which is illuminated with a steady source
at angle θI . The fact that the ring is closed implies that∫ 1

0

sin θ(S ,T )dS =

∫ 1

0

cos θ(S ,T )dS = 0, [16]

as well as θ(0,T ) = θ(1,T ). We assume that the ring makes
a tangential rolling contact with the horizontal surface so that
X (Sc(T ),T ) =Sc(T ), Y (Sc(T ),T ) = 0, and

θ(Sc(T ),T ) = 0, [17]

where Sc(T ) is the point of contact. We determine this point of
contact by assuming overall mechanical equilibrium of the ring
under gravity so that the center of mass of the ring is always
vertically above the point of contact,

Sc(T ) =X (Sc(T ),T ) =

∫ 1

0

X (S ,T )dS

=

∫ 1

0

(∫ S

0

cos θ(S̃ ,T )dS̃

)
dS

=

∫ 1

0

(1−S) cos θ(S ,T )dS

=−
∫ 1

0

S cos θ(S ,T )dS .

[18]

We set Kr = 2π and θ(S , 0) = 2πS corresponding to an initially
circular ring and solve Eqs. 12 and 13 subject to the conditions
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above. Fig. 2A shows snapshots of the ring for various angles
and intensity of illumination. In each case, the ring deforms as
it is illuminated, in a way which is nonsymmetric with respect
to the vertical axis and depends on the angle of illumination.
This asymmetry causes the center of mass of the ring to move,
which, in turn, causes the ring to roll. Fig. 2B shows the dis-
tance traveled by the point of contact as a function of time
under various angles and intensity of illumination. After an ini-
tial transient, the ring rolls with a steady velocity and has an
invariant shape. The steady velocity is plotted as a function
of the illumination angle for various illumination intensities in
Fig. 2C: It is zero when the illumination is vertical (θI = 0), which
is a consequence of the symmetry, and increases with increas-
ing angle of illumination θI . Remarkably, the rolling velocity is
practically independent of the intensity of illumination in the
range of values of Λ relevant to the experiments and inves-
tigated here. To investigate this further, we plot the scaled
deviation in spontaneous curvature (K0−Kr )/Λ as a function
of arclength in Fig. 2D: This quantity appears to be practically
independent of the intensity of illumination as well. This shows
that the amount of deformation scales linearly with the light
intensity, while the profile of deformation (and, hence, the asym-

metry and the rolling velocity) is largely independent of the
intensity.

To understand these features, we analyze steadily rolling solu-
tions, that is, we seek solutions of the form θ(S ,T ) = Θ(S −
VT ) and aim at identifying the rolling velocity V . We set ω=
2π(S −VT ), choosing T = 0 to be a time when the point in
contact with the ground is S =Sc(0) = 0. This implies

Θ(0) = 0. [19]

The rolling condition [18] becomes

0 =

∫ 2π

0

ω cos Θ(ω)dω, [20]

and the evolution Eq. 13 becomes

− 2πV
dK0

dω
+ (K0− 2π) = Λf (Θ− θI ). [21]

We now assume that the shape of the ring is almost circular,
so that

T = 0
T = 11.83

T = 23.68
T = 35.48

Simulations
Analytical Solution

D
is

ta
nc

e

D
is

ta
nc

e

Time [T] Time [T]

00

0.4

00

0.2

0.4

2 4
0
0

0.2

0.4

2 4

0

-0.4

-0.8

0 0.4 0.8

0 0.4
0

0.2

0.4

1 0 1

A C

B D

Arc Length [S]

0.4

-0.99

-0.93

0.45 0.49

Fig. 2. Rolling ring. (A) Snapshots of an initially circular ring with radius R = 1/(2π) subjected to illumination at angle θI and of intensity Λ at times
T = {0, 11.83, 23.68, 35.48}. The point that is initially in contact with the ground is marked with a black dot, while the center of mass is the blue dot.
The incident arrows indicate the direction of incoming light. Self-shadowing is taken into account thanks to the choice of f in Eq. 11; this is depicted
by the absence of arrows in the lower part of the ring. (B) Distance traveled by the rolling ring vs. time for various intensities Λ = {0.01, 0.1, 1, 10}.
Note that a steady velocity is reached in all cases, after an initial transient. (C) Steady-state velocity as a function of illumination angle and intensity
Λ = {0.01, 0.1, 1, 10}. The velocity increases when the illumination angle moves away from the vertical, but is relatively insensitive to the intensity of
illumination. (D) Scaled change of spontaneous curvature induced by illumination along the beam for θI = 0.2 (indicated by dot in C), for various illumination
intensities Λ = {0.01, 0.1, 1, 10}. This quantity appears to be largely insensitive to the intensity of illumination. Simulation data are shown as solid black
lines, while the analytical solution given by solving Eq. 29 is shown as a red dashed line. The Inset is at higher magnification.
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Θ(ω) =ω+ Θ1(ω), K0(ω) = 2π+K1(ω), [22]

where |Θ1|� 1 and |K1|� 1 are treated as perturbations. Keep-
ing only terms linear in Θ1,K1, the equilibrium Eq. 12 and
closure condition [16] become

4π2Θ′′1 (ω)− 2πK ′1(ω) +Fy cosω−Fx sinω= 0,∫ 2π

0
cos(ω)Θ1(ω)dω=

∫ 2π

0
sin(ω)Θ1(ω)dω= 0.

[23]

Introducing the Fourier transform f̂ (k) =∫ 2π

0
f (ω) exp(−ikω)dω where k is an integer, we can

solve [21] as

K̂1(k) =
Λf̂I (k)

1− 2iπkV
, [24]

where
fI (ω) = f (ω− θI ). [25]

Similarly, we can solve Eq. 23 in Fourier form as

Θ̂1(±1) = 0 for |k |= 1,

Θ̂1(k) =−i K̂1(k)
2πk

for |k |> 2.
[26]

Note that the first equation in [23] yields Fx and Fy in terms
of Θ̂1(±1) and K̂1(±1) as well, but these expressions are not
needed.

The horizontal tangency condition [19] reads 0 = Θ(0) =

Θ1(0) = 1
2π

∑
k Θ̂1(k), where the sum runs over all signed inte-

gers k . Rearranging the terms in the sum and solving for Θ̂1(0),
we find

Θ̂1(0) =−2
∑
k>1

<Θ̂1(k), [27]

where we have used Θ̂1(−k) + Θ̂1(k) = Θ̂1(k) + Θ̂1(k) =

2<Θ̂1(k), since Θ1(ω) is a real function. Here, z denotes the
conjugate of the complex number z .

Eqs. 24–27 yield the shape in terms of the known illumina-
tion parameter Λ and of the unknown scaled rolling velocity V .
The latter can be found by linearizing the rolling condition [20]
as
∫ 2π

0
g(ω)Θ1(ω)dω= 0, where g(ω) =ω sinω. Using Parseval’s

identity, this can be rewritten as

1

2π

∑
k

ĝ(k)Θ̂1(−k) = 0,

where ĝ(k) =

{
−π

2
(2πik + 1) if |k |= 1,

2π
k2−1

if |k | 6= 1.

[28]

Inserting [26] and [27] into this equation, we obtain
2
∑

k>2
k2

k2−1
<Θ̂1(k) = 0, which, in view of [24]–[26],

yields an implicit equation for the rolling velocity V in terms of
the angle of illumination θI ,

Λ ·H (θI ,V ) = 0

where H (θI ,V ) =
∑
k>2

k

k2− 1
Im

(
f̂I (k)

1− 2iπkV

)
.

[29]

Note that fI , and hence H depends on θI ; see Eq. 25.
When θI = 0, fI (ω) = f (ω) is an even function of ω, so that

f̂0(k) is real; hence H (0, 0) = 0. It is also clear from the form

of H (θI ,V ) that
∂H

∂θI
and

∂H

∂V
are generally nonzero. By the

implicit function theorem, we can solve [29] for V =V (θI ), at

least for θI that is small enough. We do so numerically; the
result is shown in Fig. 2C as the dashed line, and agrees well with
the nonlinear simulations. In Fig. 2D, the distribution of natural
curvatures predicted by the linear theory is compared to the non-
linear numerical simulations, and a good agreement is obtained
as well; the agreement with the linear theory is better and better
for lower and lower illuminations, as could be anticipated.

Remarkably, the intensity of illumination Λ factors out in
Eq. 29, selecting the rolling velocity, so that V depends on θI
but not on Λ in this linear theory; this explains why the rolling
velocity is largely independent of Λ in the nonlinear simulations.

Waves in Doubly Clamped Beams
The second example we study is motivated by the experiments of
Gelebart et al. (4). These experiments were done on a nematic
strip possessing a splay director field: The nematic directors
are aligned along the length of strip on one surface (called the
planar face) and normal to the surface on the opposite face
(homeotropic face). The goal is to induce contraction on one face
and expansion on the other in order to maximize the magnitude
of the photobending coupling |λ|. Exposing the planar face to
light makes λ< 0, while exposing the homeotropic face to light
makes λ> 0. In view of the analysis done in Photodeformable
Elastica, Λ∝α∝−λ, so illuminating the planar (respectively,
homeotropic) face corresponds to Λ> 0 (respectively, Λ< 0) in
our model. Illumination, either due to the direct effect or due to
temperature rise or both, reduces the nematic order, causing a
contraction by (r/r0)2/3 when illuminated on the planar face and
an extension by (r0/r)1/3 when illuminated on the homeotropic
face, where r (respectively r0) is the anisotropy parameter in the
illuminated (respectively ambient) state. Since r < r0, for fixed
unscaled illumination intensity I0, we expect the resulting pho-
tostrain and spontaneous curvature coefficients 0≤Λp ≈−2Λh ,
where Λp is the coefficient when illuminated on the planar side
and Λh is the coefficient when illuminated on the homeotropic
side. This distinction between Λp and Λh is caused by the small
penetration depth only activating the trans to cis isomerization
on the illuminated side; therefore, it is only the nematic ori-
entation on the illuminated surface that matters. We study the
results of our model first, and compare to the experimental
observations next.

We first consider the case Λ> 0. We take a strip that is flat in
the absence of any light or stress, so that Kr = 0. We use the same
scaled quantities as earlier, and the scaled length of the strip is
1. We clamp the two ends at a distance lf < 1 from each other,
corresponding to boundary conditions

θ(0,T ) = θ(1,T ) = 0,∫ 1

0

sin θ(S ,T )dS = 0,∫ 1

0

cos θ(S ,T )dS = lf .

[30]

Since lf < 1, the beam buckles, and there are two equivalent
fundamental buckled modes, buckled up and down. We choose
one of the two states, say, the buckled up state for definiteness,
although the results are independent of this choice. We illumi-
nate the strip with a light source that is spatially uniform and at
an angle (θI 6= 0) as shown in Fig. 3A. We solve Eqs. 12 and 13
subject to the boundary conditions [30].

Fig. 3 AE shows a typical simulation result. After an initial
transient, we find that the beam goes into a periodic motion alter-
nating between the up and down buckled shapes (Fig. 3A). At the
start of the cycle, we have an up-bump at the left side of the strip
(state A). Illumination moves it to the right initially rapidly but
slows down and becomes very slow as it reaches the right end
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10, θI =π/4. The arrows indicate the direction of incoming light. After an initial transient, it goes into a periodic motion. (B) Evolution of the light-induced
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(B). It then pops into a down-bump located on the left (C). Sub-
sequently, the down-bump moves to the right initially rapidly but
slows down and becomes very slow as it reaches the right end
(D). It then pops again into an up-bump located on the left of
the sample, and the cycle repeats.

The evolution of the light-induced spontaneous curvature as a
function of time and position is shown in Fig. 3B. After an initial
transient, we see that the spontaneous curvature reaches a steady
periodic cycle. This is emphasized in Fig. 3C, which plots one
particular Fourier component γ(T ) of the deflection against one
particular Fourier component β(T ) of the natural curvature,

γ(T ) =

∫ 1

0

sin(2πS)Y (S ,T )dS ,

β(T ) =

∫ 1

0

sin(2πS)K0(S ,T )dS .

[31]

We call these quantities the descriptors of the deformation and
curvature, respectively. In Fig. 3, the deformation descriptor
appears to vary abruptly during the sudden changes from state B
to C, and from D to A, although the curvature descriptor remains
unchanged. This suggests that the jumps are snap-through bifur-
cations, from one equilibrium solution of the elastica to another
one. For some fixed time T and spontaneous curvature dis-
tribution K0(S ,T ), the equilibrium Eq. 12 may have multiple
solutions (equivalently, E has multiple stationary points). Sta-
ble solutions are those for which the second variation is positive
definite (SI Appendix, section B). With the aim to confirm the
snap-through scenario, we study the lowest eigenvalue associ-
ated with the second variation δ2E of the energy. It is plotted
from the numerical solution, as a function of β in Fig. 3D. We
see that this eigenvalue is positive at the start of the cycle at A
(the solution with the up-bump) but decreases as we go from A to
B. The jump at B occurs when the eigenvalue is becoming nega-
tive and the solution loses stability. It arrives on another solution
C having a down-bump, which appears to be elastically stable,

that is, has a positive lowest eigenvalue. Again, the lowest eigen-
value begins to decrease as we go from C to D and passes through
zero at D.

This reveals the mechanism of the cyclic motion. At any time,
there are two possible solutions, one with an up-bump and one
with a down-bump. If the solution with the up-bump has the
bump on the right, the solution with the down-bump has the
bump on the left, and vice-versa. The evolution of light-induced
spontaneous curvature always forces the bump to move to the
right, that is, away from the light source. At some point, it loses
stability and has to snap to the other solution. The periodic cycles
are represented in the phase space (β, β̇) in Fig. 3E. Immedi-
ately after a snap-through, the evolution speed |β̇| is high. As
the instability is approached, the magnitude of |β̇| decreases
until nearly zero. This coincides with the snap-through, and,
once the system snaps to the new configuration, |β̇| jumps to
a large value again, and the other half of the cycle proceeds
similarly.

We repeat this calculation for various illumination angles
and illumination intensities, and the results are summarized in
Fig. 3F. At any given intensity, there is a window of illumina-
tion angles at which periodic flapping solutions are observed.
Outside of this window, a stationary solution is reached, which
can be the up-bump or the down-bump, depending on the ini-
tial conditions. Physically, if the illumination is oriented in a
direction too shallow to the beam, then the bump moves to the
far end and is stable. This explains the lower limit. Similarly, if
the illumination is close to being normal to the beam, then the
beam finds it difficult to break the symmetry required to induce
the periodic motion. This explains the upper limit. The window
of periodic behavior becomes wider when the light intensity is
increased. Further, at any given orientation, the frequency of
the limit cycle increases with intensity; this can be seen from
Eq. 10, where an increase of the light intensity in the right-hand
side is seen to induce a quicker rate of change ∂κ0/∂t of the
curvature.
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In Fig. 3F, the angle of incidence θI maximizing the flapping
frequency is 65.1◦ for lf = 0.95, and this angle appears to be
virtually independent of the light intensity as long as flapping
takes place: It is just a function of lf in our model. To com-
pare with the observations of ref. 4, we ran additional simulations
using the same value lf = 0.957 as in the experiments, and found
that the maximum frequency is obtained for an angle of inci-
dence θI = 65.7◦; this value is similar to the peak at 70◦ in the
experiment.

We now turn to the case when Λ< 0. As can be seen in Fig. 4A,
the system again alternates between up and down buckled states.
In this case, however, the bulge propagates from right to left,
that is, toward the light source, and opposite from the case where
Λ> 0. It can be seen, in Fig. 4 C–E, that the descriptors give differ-
ent paths through the phase space than when Λ> 0. This shows
that flipping the sign of Λ does not simply amount to reversing
the arrow of time. Interestingly, even though the deformation
mode differs, the flapping frequency does not change significantly
between the positive and negative cases (see Fig. 4F).

We now compare the experimental observations of Gelebart
et al. (4). After an initial transient, the strip begins a periodic
motion with the wave moving from right to left as predicted in
Fig. 4, when illuminated on the homeotropic phase (Λ = Λh <
0). The wave moves from left to right as predicted in Fig. 3,
when illuminated on the planar face (Λ = Λp > 0). They also
observed that the frequency of oscillation when illuminating the
homeotropic face is lower as compared to the planar face, hold-
ing all other parameters fixed. Again, this is consistent with
the predictions in Figs. 4F and 3F, since |Λp |> |Λh | for fixed
I0. Further, this wavelike motion is observed only in a finite
range of illumination angles, and, for fixed illumination inten-
sity, the range when illuminating the planar side is larger than
that of the homeotropic side as predicted, because |Λp |> |Λh |.
All of these results are in good agreement with the experimental
observations.

Snap-through Instability of Doubly Clamped Beams
The critical event in the emergence of wavelike cyclic behav-
ior is the snap-through instability. We study this instability more
closely in our final example, by analyzing the experiments first
conducted by Shankar and coworkers (12, 13).

As in the previous example, an initially flat (Kr = 0) strip
of (normalized) length 1 is clamped at both ends so that the

end to end distance is lf < 1; the beam is subject to the same
boundary conditions (Eq. 30). There are two equilibrium con-
ditions, one buckled up, and one buckled down. As before, we
start with the buckled up state and shine light on it. There are
two differences compared to the geometry of the previous sec-
tion: We limit attention to normal illumination (θI = 0), and
use a wide light beam described by a Gaussian distribution of
intensity,

Λ(S ,T ) = Λmax g(X (S ,T ),µ,W ), [32]

where g(X ,µ,W ) = exp
(
− (X−µ)2

2W 2

)
is a normal distribution

centered at µ, with width W and scaled so that the peak
value is 1.

We also conduct experiments using 1 mm × 15 mm × 50 µm
beams made of planar nematic liquid crystal network (LCN)
films (see Materials and Methods and SI Appendix, section C for
details) illuminated using a 365-nm light-emitting diode.

Fig. 5 summarizes our results. First, consider the case when
the illumination is centered on the bump (µ= lf /2) in Fig. 5A.
When the light is turned on, the bump flattens out slowly
due to photoinduced curvature; after a period of slow defor-
mation, it snaps suddenly at a critical time T ∗ to the down-
buckled state. We have verified through eigenvalue analysis
as before that the snap-through occurs when the up-bump
solution becomes unstable. Continued illumination beyond the
time of snap-through does not result in any significant fur-
ther deformation. Fig. 5B shows the results of the case where
the illumination is slightly off the center of the bump (µ=
0.45). The overall phenomenon is similar, but the initial slow
deformation pushes the bump to the side away from the illu-
mination instead of flattening it. Fig. 5 A and B superposes the
results of theoretical computation (cyan dashed line) with images
retrieved from the experimental observation, showing excellent
agreement.

As the illumination becomes too low, or the offset from cen-
ter |lf /2−µ| is too large, the beam does not snap through. The
phase portrait is shown in Fig. 5C along with the experimen-
tal observations, again showing good agreement between theory
and experiments. At higher illuminations, we see some evi-
dence of photobleaching in the experiments, and we believe that
this accounts for the slight discrepancy. The phase portrait also
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shows that the smallest illumination required for snap-through
decreases as the light is moved away from the center (i.e., when
µ decreases from lf /2). In other words, it is easier to snap when
the illumination is slightly off center.

Finally, the time it takes for the snap-through to occur as a
function of illumination in the centered case is plotted in Fig. 5D.
We observe that, for moderate to large illumination (i.e., away
from the snap/no-snap boundary), this takes on a power law with
an exponent −1. Shankar et al. (12) studied this over a very
large range of illuminations, and they reported a slope of −1,
in agreement with our simulations.

Materials and Methods
Planar nematic liquid crystal network films were prepared fol-
lowing the procedure of Gelebart et al. (4) with modification. To
synthesize films with a penetration depth of 1.5 µm at an illumi-
nation wavelength of 365 nm, a formulation of 9.2:90.8 by weight
of 4,4’-Bis(6-acryloyloxyhexyloxy)azobenzene (Azo-6): 1,4-Bis[4-(6-
acryloyloxyhexyloxy)benzoyloxy]-2-methylbenzene (RM82) was used, with
2.5 wt % of photoinitiator with respect to the total monomer weight. In a
typical sample preparation, 4.6 mg of Azo-6, 45.4 mg of RM82, and 1.25 mg

of Iphenylbis(2,4,6-trimethylbenzoyl)phosphine oxide) (Irgacure 819) were
melted together in a vial and vortexed repeatedly to ensure mixing. The
molten monomer mixture was then infiltrated via capillary action into
alignment cells on a hot plate at 100 ◦C. The alignment cells were prepared
by spin-coating Elvamide onto clean glass slides, rubbing the slides with
a velvet cloth, and gluing the two Elvamide sides facing each other with
epoxy mixed with 15-µm glass beads. The filled cells were subsequently
cooled to 80 ◦C, held isothermal for 5 min to induce alignment of the
liquid crystalline mesogens, and photopolymerized for 30 min with 405-nm
light. Following photopolymerization, samples were postcured at 120 ◦C
for 10 min, and the 15-m-thick LCNs were harvested by cracking open the
alignment cells with a razor blade. Finally, beams of 1 mm in width were
cut from the film with the nematic director along the long axis of the strip.

Data Availability. All data needed to evaluate the conclusions in this paper
are available in the main text or in SI Appendix.
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