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Clear cell renal cell carcinoma (ccRCC) is the most common lethal subtype of renal cancer, and changes in tumor metabolism play a
key role in its development. Solute carriers (SLCs) are important in the transport of small molecules in humans, and defects in SLC
transporters can lead to serious diseases. The expression patterns and prognostic values of SLC family transporters in the
development of ccRCC are still unclear. The current study analyzed the expression levels of SLC family members and their
correlation with prognosis in ccRCC patients with data from Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA),
The Cancer Genome Atlas (TCGA), cBioPortal, the Human Protein Atlas (HPA), the International Cancer Genome Consortium
(ICGC), and the Gene Expression Omnibus (GEO). We found that the mRNA expression levels of SLC22A6, SLC22A7,
SLC22A13, SLC25A4, SLC34A1, and SLC44A4 were significantly lower in ccRCC tissues than in normal tissues and the protein
expression levels of SLC22A6, SLC22A7, SLC22A13, and SLC34A1 were also significantly lower. Except for SLC22A7, the
expression levels of SLC22A6, SLC22A13, SLC25A4, SLC34A1, and SLC44A4 were correlated with the clinical stage of ccRCC
patients. The lower the expression levels of SLC22A6, SLC22A13, SLC25A4, SLC34A1, and SLC44A4 were, the later the clinical
stage of ccRCC patients was. Further experiments revealed that the expression levels of SLC22A6, SLC22A7, SLC22A13, SLC25A4,
SLC34A1, and SLC44A4 were significantly associated with overall survival (OS) and disease-free survival (DFS) in ccRCC patients.
High SLC22A6, SLC22A7, SLC22A13, SLC25A4, SLC34A1, and SLC44A4 expression predicted improved OS and DFS. Finally,
GSE53757 and ICGC were used to revalidate the differential expression and clinical prognostic value. This study suggests that
SLC22A6, SLC22A7, SLC22A13, SLC25A4, SLC34A1, and SLC44A4 may be potential targets for the clinical diagnosis, prognosis,
and treatment of ccRCC patients.

1. Introduction

Kidney cancer is one of the most common malignant tumors
in the urinary system, and more than half of patients are
found by chance and have no clinical symptoms. In 2019,
the number of new cases of kidney cancer in the United

States was 73,820, ranking fifth in the number of new cases
in men and eighth in the number of new cases in women
[1]. Renal cell carcinoma (RCC) is the most common form
of kidney cancer and accounts for 90% of all tumors, with
ccRCC being the most common histology (75%) [2, 3].
ccRCC is derived from the proximal tubular epithelium of
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the kidney and exhibits unique histological characteristics.
Macroscopically, ccRCC are golden yellow in section and
often have bleeding, necrosis, and cystic areas. Histologically,
ccRCC usually consists of tumor cells with clear cytoplasm,
surrounded by nests or tubules with a rich network of blood
vessels. The clear appearance of the cytoplasm is due to the
accumulation of glycogen and lipids [4]. Different renal can-
cer cell subtypes have different genetic changes and different
prognoses. The cure rate is high for patients with early, local-
ized disease, with 5-year survival at more than 90% [5]. In
contrast, 5-year survival drops to 12% for patients with dis-
tant metastatic disease.

Epigenetic changes in ccRCC may be related to its
prognosis and treatment. Genetic markers of ccRCC include
biallelic inactivation of Von Hippel-Lindau (VHL) tumor
suppressor genes; negative regulators of hypoxia-inducible
factor (HIF) protein; copy number changes of chromosome
3p, 5q, and 14q genes; and chromatin-modifying enzyme
high mutation frequencies, such as protein polybromo-1
(PBRM1), SET domain containing 2 (SETD2), and BRCA1-
associated protein-1 (BAP1) [6]. Currently, multitarget
tyrosine kinase inhibitors (TKIs) and mechanistic target of
rapamycin kinase (mTOR) inhibitors have become major
breakthroughs in the treatment of ccRCC. In addition,
immune checkpoint inhibitors have also become effective
treatment options against advanced ccRCC. However,
ccRCC has been called “metabolic disease,” and its multiple
bioenergy pathways are changed [7, 8]. Extensive meta-
bolic reprogramming in glucose, lipid, and amino acid
metabolism has largely promoted the clear cell phenotype
[9], but the genetic mechanism of these changes is not
fully understood.

In recent years, the role of membrane transporters in
cancer has received increasing attention. Two superfamily
transporters have been discovered, namely, the ATP-
binding cassette (ABC) family and SLC family. SLC trans-
porters help ingest certain essential molecules [10], such
as amino acids and glucose, and regulate metal absorption,
mediating the normal functions of important enzymes [11].
Previous studies have found several essential nutrient trans-
porters, such as the glucose transporter SLC2A1 [12] and
the amino acid transporters SLC1A5, SLC7A5, SLC6A14,
SLC7A11, and SLC38A2 [13–17], which are upregulated
in cancer as tumor promoters. SLC39A1 regulates the
malignant potential of prostate cancer cells by inhibiting
the nuclear factor kappa B (NF-κB) signaling pathway,
and SLC39A1 may play a role as a tumor suppressor gene
in prostate cancer [18]. A good understanding of the differ-
ential expression of SLC transporters in various cancer cells
can provide a theoretical basis for the development of new
strategies for the treatment of cancer.

Although some scholars have studied the differential
expression of SLC mRNA in ccRCC, it was found that
SLC10A2 was significantly downregulated in TKI-treated
samples and SLC10A2 was upregulated in ccRCC compared
with adjacent kidney tissues in paired The Cancer Genome
Atlas (TCGA) samples. High SLC10A2 expression was asso-
ciated with good prognosis of ccRCC [19]. The results were
contradictory. In this study, a bioinformatics analysis was

performed to explore the roles of multiple SLCs in ccRCC.
We analyzed the expression and mutation of different SLCs
in ccRCC patients to determine their expression patterns,
potential functions, and prognostic values in ccRCC.

2. Materials and Methods

2.1. Screening Cancer-Associated Genes in ccRCC and the
Expression Level of the SLC Family Genes in Pancancer
Using Oncomine Datasets. The Oncomine datasets (http://
www.oncomine.org) integrate RNA and DNA sequencing
data from sources such as the Gene Expression Omnibus
(GEO), TCGA, and published literature. We used the Jones
Renal dataset to screen overexpressed and underexpressed
genes in the associated concept tab of Oncomine. Compared
with normal tissues, we screened top 10% overexpressed and
10% underexpressed genes in Jones Renal dataset of ccRCC.
These screened genes were used in the next step of data
analysis.

We use Oncomine to analyze the expression levels of
the SLC family genes in pancancer (cancer vs. normal).
The P value was defined as 0.01, fold change (FC) was
defined as 2, gene rank was defined as all, and data type
was also defined as all.

2.2. The Differential Expression and Prognostic Value of
the SLC Family Genes Using Gene Expression Profiling
Interactive Analysis (GEPIA) Dataset. GEPIA (http://gepia
.cancer-pku.cn/) is a newly developed interactive web server
for analyzing the RNA sequencing expression data of 9,736
tumor samples and 8,587 normal samples from TCGA and
Genotype-Tissue Expression (GTEx) projects using a standard
processing pipeline [20].We used GEPIA to analyze the differ-
ential expression of the SLC family in ccRCC and its relation-
ship with clinical stage. TCGA normal tissue and GTEx
normal tissue werematched. The P value and fold change were
defined as 0.01 and 2, respectively. In addition, the GEPIA was
used to analyze the correlation between the SLC family and the
prognosis of ccRCC. The group cutoff for the survival analysis
was 50%, and the P value and fold change were defined as 0.01
and 2, respectively.

2.3. Analysis of Genetic Alteration in the SLC Family Genes
Using cBioPortal. TCGA (http://www.cancer.gov/tcga) col-
lected, characterized, and analyzed cancer samples from
over 11,000 patients over a 12-year period. TCGA data,
resources, and materials were originally published by the
National Cancer Institute. We used the cBioPortal tool to
analyze 538 cases of kidney renal clear cell carcinoma
(TCGA, Firehose Legacy). The cBioPortal for cancer geno-
mics (http://www.cbioportal.org/) provides the visualization,
analysis, and download of large-scale cancer genomic
datasets [21, 22]. The genomic profiles included mutations,
putative copy number alterations from the Genomic Identifi-
cation of Significant Targets in Cancer (GISTIC), mRNA
expression Z-scores (RNASeq V2 RSEM), and protein
expression Z-scores (RPPA). In addition, the correlation
between the expression levels of the SLC family genes was
analyzed using a plot module of cBioPortal. Data type was
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selected mRNA and the mRNA profile was selected mRNA
expression Z-scores (RNASeq V2 RSEM). Then, we used
the bioconductor “pheadmap” package for drawing.

2.4. Detection of the SLC Family Protein Expression in
Tissues by the Human Protein Atlas (HPA). The HPA was
a Swedish-based programme initiated in 2003 with the aim
of mapping all the human proteins in cells, tissues, and
organs using the integration of various -omics technologies,
including antibody-based imaging, mass spectrometry-based
proteomics, transcriptomics, and systems biology. Immuno-
histochemistry (IHC) images of ccRCC were kindly pro-
vided by the Protein Atlas Project, which is publicly
available (http://www.proteinatlas.org). In the Human Pro-
tein Atlas, all images of tissues stained by immunohisto-
chemistry were manually annotated by a specialist followed
by verification by a second specialist. Staining intensity was
divided into four levels: negative, weak, medium, and strong.
According to the fraction of stained cells, staining quantity
was also divided into four levels: none, <25%, 25-75%, and
>75%. Protein expression levels were based on staining
intensity and staining quantity. The classification criteria
for protein expression levels were as follows: negative, not
detected; weak and <25%, not detected; weak combined with
either 25-75% or 75%, low; moderate and <25%, low; mod-
erate combined with either 25-75% or 75%, medium; strong
and <25%, medium; and strong combined with either 25-
75% or 75%, high.

All slides with SLC22A6, SLC22A7, SLC22A13,
SLC25A4, SLC34A1, and SLC44A4-staining were down-
loaded from the HPA. The average number of normal tissues
was 5, and the average number of cancer tissue was 36.8. The
protein expression levels in cancer and normal tissues were
compared in terms of staining, intensity, and quantity. The
data was subjected to a Mann–Whitney U test using SPSS
to calculate the P value. When performing statistical calcu-
lations, the weight of each patient was 1. If a patient had
multiple samples, 1 was equally divided into each sample.
The P value was defined as 0.01.

2.5. The Protein-Protein Interaction (PPI) Network
Construction and Analysis of Modules. The STRING database
(http://http://string-db.org/) provides a significant associa-
tion of protein-protein interactions [23]. Cytoscape is used
for the visual exploration of interaction networks [24]. In this
study, PPI networks were analyzed by the STRING data-
base and subsequently visualized by using Cytoscape. The
minimum required interaction scores were defined as high
confidence (0.700). The max number of interactors to
show was set as 100. Cytoscape was then used to visualize
the PPI network. The Cytoscape plugin Molecular Com-
plex Detection (MCODE) was used to screen out modules
of PPI networks, and the degree cutoff =2, node score
cutoff = 0:2, k − score = 2, and max depth = 100 [25].

2.6. Metascape for Functional Enrichment and Kyoto
Encyclopedia of Genes and Genomes (KEGG) Analysis. The
aim of Metascape (http://metascape.org/gp/index.html) is
to develop a set of reliable, productive, and intuitive tools that

help a biomedical research community to analyze gene/pro-
tein lists and make better data-driven decisions. Metascape
combines feature enrichment, cross analysis, gene annota-
tion, and other search functions, including more than 40
independent knowledge bases [26]. We used Metascape to
perform functional enrichment and KEGG analysis of SLC
family member protein and its interacting proteins. Only
terms with P < 0:01, a minimum count of 3, and an enrich-
ment factor > 1:5 were considered significant.

2.7. Verify the Differential Expression of the SLC Family Genes
Using GSE53757 Dataset. The data of ccRCC were derived
from the GEO. We used the Bioconductor “GEOquery”
package to download the GSE53757 dataset from the GEO.
Subsequently, differential expression analysis was performed
using the Bioconductor “limma” package. The P value and
fold change were defined as 0.01 and 2, respectively. Then,
the bioconductor “pheatmap” package was used to draw the
heat map and the bioconductor “ggplot” package was used
to draw the boxplot.

2.8. Validate the Prognostic Value of the SLC Family Genes
Again Using the International Cancer Genome Consortium
Dataset. The package “UCSCXenaTools” of R software was
used to download the expression data and clinical data of
ccRCC from the ICGC. The downloaded dataset included
a total of 594 specimens, of which 72 were normal tissues
and 30 patients had a survival time of less than 30 days.
A total of 492 ccRCC patients were included for survival
analysis with the R package “survival.” The P value was
defined as 0.01.

3. Results

3.1. Screening the SLC Family in ccRCC. First, Oncomine was
used to select ccRCC in the Jones Renal database, which
includes 23 pairs of cancer and normal tissues. The top
10% overexpressed genes and 10% underexpressed genes,
totalling 2,524 genes, were selected, of which 50 were SLC
family genes. Second, the SLC family genes with the differen-
tial expression in ccRCC were screened again using GEPIA.
The P value and fold change were defined as 0.01 and 2,
respectively. Third, GEPIA was used to screen SLC family
genes associated with OS and DFS in ccRCC. The group cut-
off for the survival analysis was 50%, and the P value and fold
change were defined as 0.01 and 2, respectively. The specific
process is shown in Figure 1. Finally, six SLC family genes
were screened: SLC22A6, SLC22A7, SLC22A13, SLC25A4,
SLC34A1, and SLC44A4.

3.2. The Expression Levels of SLC Family Genes in Pancancer.
We used the Oncomine database to analyze the expression
levels of SLC22A6, SLC22A7, SLC22A13, SLC25A4,
SLC34A1, and SLC44A4 in various cancers and their normal
tissues (Figure 2). Among the various cancers examined,
SLC22A6, SLC22A7, SLC22A13, SLC25A4, and SLC34A1
were significantly downregulated, while SLC44A4 showed
different expression patterns in different cancers (upregu-
lated or downregulated). In kidney cancer, SLC22A6,
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SLC22A7, SLC22A13, SLC25A4, SLC34A1, and SLC44A4
were significantly downregulated.

3.3. The Difference Analysis of SLC Family Genes and Its
Relationship with Clinical Stage. The expression levels of
SLC22A6, SLC22A7, SLC22A13, SLC25A4, SLC34A1, and
SLC44A4 in ccRCC were compared using the GEPIA data-
base. A total of 523 ccRCC cancer tissues and 100 normal tis-
sues were included. As shown in Figures 3(a), the expression
levels of SLC22A6, SLC22A7, SLC22A13, SLC25A4,
SLC34A1, and SLC44A4 mRNAs in ccRCC were signifi-
cantly decreased, and the difference was statistically signifi-
cant (P < 0:01 and ∣Log2FC∣ > 1).

Further studies using the GEPIA database revealed that
the expression levels of SLC22A6, SLC22A7, SLC22A13,
SLC25A4, SLC34A1, and SLC44A4 in ccRCC correlated with
the clinical stage of the cancer, as shown in Figure 3(b). The
expression levels of SLC22A6, SLC22A13, SLC25A4,
SLC34A1, and SLC44A4 were significantly correlated with
the clinical stage of the cancer. The lower the expression
levels of SLC22A6, SLC22A13, SLC25A4, SLC34A1, and

SLC44A4 were, the later the clinical stage of the ccRCC
patients was. There was no correlation between the expres-
sion level of SLC22A7 and the clinical stage of the cancer.

3.4. The Differential Expression of SLC Family Proteins Was
Detected by Immunohistochemistry. The expression levels of
SLC22A6, SLC22A7, SLC22A13, SLC25A4, SLC34A1, and
SLC44A4 proteins in ccRCC were studied using the HPA.
We downloaded all slides stained with SLC22A6, SLC22A7,
SLC22A13, SLC25A4, SLC34A1, and SLC4A4 from the
HPA. A total of 30 normal tissues were included, and the
average number of normal tissues per gene was 5. A total of
221 cancer tissues were included, and the average number
of cancer tissues per gene was 36.8. The protein expression
levels in cancer and normal tissues were compared in terms
of staining, intensity, and quantity. Compared with normal
tissues (as shown in Figure 4 and Table 1), the expression
levels of SLC22A6, SLC22A13, and SLC34A1 proteins in
ccRCC tissues were significantly decreased in terms of stain-
ing, intensity, and quantity. Compared with normal tissues,
the expression levels of SLC22A7 proteins in ccRCC tissues

Total 2524 genes were included in top 10% over-
expressed and 10% under-expressed in

ccRCC (Oncomine, Jones Renal)

2474 genes did not belong to the
SLC family

A total of 50 SLC family genes were included
in the study

23 SLC family genes had no

P < 0.01 and |Log2FC| > 1)

SLC family genes were included

21 SLC family genes did not
relate to OS or DFS (GEPIA,

P < 0.01)

A total of 6 SLC family genes related to OS and DFS

Figure 1: Screening process of the SLC family. OS: overall survival; DFS: disease-free survival.
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were significantly decreased in terms of staining and quan-
tity. In cancer tissues, SLC25A4 and SLC44A4 proteins did
not change significantly in terms of staining, intensity, and
quantity.

3.5. Association of SLC Family Genes with the Prognosis of
Patients with ccRCC. The impact of SLC family genes on
the survival of ccRCC patients was analyzed with the GEPIA
database. As shown in Figure 5, the expression levels of
SLC22A6, SLC22A7, SLC22A13, SLC25A4, SLC34A1, and
SLC44A4 in ccRCC were significantly correlated with the
OS and DFS of patients, and the difference was statistically
significant (P < 0:01). High SLC22A6, SLC22A7, SLC22A13,
SLC25A4, SLC34A1, and SLC44A4 expression predicted
improved OS and DFS.

3.6. The Genetic Alterations of SLC Family Genes in ccRCC.
cBioPortal was used to analyze the genetic alterations and
correlations of SLC family genes in ccRCC. As shown in
Figures 6, genetic alterations in SLC22A6, SLC22A7,

SLC22A13, SLC25A4, SLC34A1, and SLC44A4 occurred in
42.2% of ccRCC patients, with SLC22A6 in 3%, SLC22A7
in 2.2%, SLC22A13 in 12%, SLC25A4 in 3%, SLC34A1 in
18%, and SLC44A4 in 4%. SLC22A6, SLC22A7, SLC25A4,
and SLC44A4 were mainly altered by mRNA high,
SLC22A13 was mainly altered by a deep deletion, and
SLC34A1 was mainly altered by an amplification.

3.7. The Correlation between Different SLC Family Genes and
Construction of PPI Network. We determined the correla-
tions between SLC family genes by analyzing their mRNA
expression levels (RNASeq V2 RSEM) via the cBioPortal
online tool for ccRCC (TCGA, Provisional), and Pearson’s
correlation was included. The results indicated positive cor-
relations between the following: SLC22A6 with SLC22A13
and SLC34A1; SLC22A7 with SLC22A13 and SLC34A1;
and SLC22A13 with SLC34A1 (Figure 7(a)). In particular,
there were significant positive correlations between SLC22A6
and SLC22A13 and SLC22A13 and SLC34A1.
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Figure 3: The expression level of SLC family genes and its correlation with tumor stage in ccRCC (GEPIA). (a) The boxplot of the SLC family
gene expression level. ∗P < 0:01 and jLog2FCj > 1. (b) The correlation between the expression of SLC family genes and tumor stage (I, II, III,
and IV) in ccRCC. Pr ð>FÞ < 0:01 meant the difference was statistically significant.
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Then, the SLC family genes were used to construct the
PPI network by STRING. When building a PPI network,
high confidence equals 0.700, and the max number of
interactors to show was 100. After the PPI network was
constructed, the network statistics are as follows: the num-
ber of nodes was 106, number of edges was 1053, average
node degree was 19.9, avg. local clustering coefficient was
0.771, expected number of edges was 121, and PPI enrich-
ment P value was 1.0e-16. Then, we use the Cytoscape
tool to visualize the PPI network (Figure 7(b)). Finally,
the Molecular Complex Detection (MCODE) plugins of
Cytoscape were utilized to choose a hub cluster of the
PPI network. The hub cluster contained 36 nodes and
561 edges. The genes concentrated in the hub cluster, such
as translocase of inner mitochondrial membrane (TIMM)
family genes, translocase of outer mitochondrial mem-
brane (TOMM) family genes, and ATP family genes, were
mainly involved in protein targeting to mitochondrion,
mitochondrial transport, etc.

3.8. Functional Enrichment and KEGG Analysis of SLC
Family Genes and Their Interacting Genes. The functions of
the SLC family genes and the genes significantly associated
with SLC family gene alterations were predicted by GO
and KEGG analyses with Metascape (Figure 8). The GO
enrichment analysis predicted the functional roles of the
target host genes on the basis of three aspects: biological
process, cellular component, and molecular function. The
biological process terms mainly included GO: 0007005
(mitochondrion organization), GO: 0006820 (anion trans-
port), GO: 0007006 (mitochondrial membrane organization),
GO: 0015672 (monovalent inorganic cation transport), and
GO: 0015893 (drug transport); the cellular component terms

mainly included GO: 0005740 (mitochondrial envelope),
GO: 0005758 (mitochondrial intermembrane space), GO:
0005744 (TIM23 mitochondrial import inner membrane
translocase complex), GO: 0005759 (mitochondrial matrix),
and GO: 0005742 (mitochondrial outer membrane translocase
complex); and the molecular function terms mainly included
GO: 0022804 (active transmembrane transporter activity),
GO: 0008509 (anion transmembrane transporter activity),
GO: 1904680 (peptide transmembrane transporter activity),
GO: 0015238 (drug transmembrane transporter activity),
and GO: 0015288 (porin activity).

The KEGG can define the pathways related to the func-
tions of the SLC family gene and their interacting genes
(Figure 8). The relevant signaling pathways were hsa05012
(Parkinson’s disease), M00009 (citrate cycle (TCA cycle,
Krebs cycle)), hsa00190 (oxidative phosphorylation), and
hsa04976 (bile secretion).

3.9. Validation of the Differential Expression of SLC Family
Genes in ccRCC Using GSE53757 Datasets. We downloaded
the GSE53757 dataset from GEO. It contained 144 tissues,
of which 72 are normal tissues and 72 are cancer tissues.
Cancer tissue includes 24 cancer tissues in clinical stage
1, 19 cancer tissues in clinical stage 2, 14 cancer tissues
in clinical stage 3, and 15 cancer tissues in clinical stage
4. After the difference analysis using the “limma” package,
we found that the expression levels of SLC22A6, SLC22A7,
SLC22A13, SLC25A4, SLC34A1, andSLC44A4 inccRCCwere
significantly decreased (P < 0:01, as shown in Figures 9(a)
and 9(b)), and the difference was statistically significant.
Except for SLC25A4, the abundance difference of SLC22A6,
SLC22A7, SLC22A13, SLC34A1, and SLC44A4 was more
than 2-fold.

recnaClamroNrecnaClamroN

4A52CLS6A22CLS

SLC22A7

SLC22A13

SLC34A1

SLC44A4

Figure 4: Representative tissue microarray (TMA) slides with SLC22A6, SLC22A7, SLC22A13, SLC25A4, SLC34A1, and SLC44A4 staining.
All slides were retrieved from the Human Protein Atlas (HPA, http://www.proteinatlas.org). Magnification, ×100.
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Figure 5: Kaplan-Meier survival curves for OS and DFS according to the expression level of SLC family genes in ccRCC (GEPIA). OS: overall
survival; DFS: disease-free survival; HR: hazard ratio. Logrank P < 0:01 meant the difference was statistically significant.
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3.10. The Prognostic Value of the SLC Family Genes Was
Reevaluated by the ICGC Dataset.We used the ICGC dataset
to verify the prognostic value of the SLC family genes in
ccRCC again. The cohort study included 492 patients,
including 168 women and 324 men. As shown in Figure 10,
the expression levels of SLC22A6, SLC22A7, SLC22A13,
SLC25A4, SLC34A1, and SLC44A4 in ccRCC were signifi-
cantly correlated with the OS, and the difference was statisti-
cally significant (P < 0:01). High SLC22A6, SLC22A7,
SLC22A13, SLC25A4, SLC34A1, and SLC44A4 expression
predicted improved OS. The analysis results were the same
as before and confirmed that our previous analysis results
were reliable.

4. Discussion

Metabolic disorders are hallmarks of cancer and offer the
potential for cancer diagnosis, prognosis, and treatment
[27–30]. Tumors readjust their metabolism to produce
enough energy and substances for the proliferation of malig-
nant cells. Recent studies have demonstrated that the patho-
logical accumulation of metabolic intermediates such as
fumarate and 2-hydroxyglutarate can contribute to tumori-
genesis [31, 32]. Lipids and glycogen are abundant in ccRCC
cells [33], suggesting that fatty acid and glucose metabolism
changes during the development of ccRCC. Several studies
have shown that metabolic changes play a key role in ccRCC
progression [34], and other studies have revealed that poor
patient survival is associated with the upregulation of pentose
phosphate pathway and fatty acid synthesis pathway genes
and the downregulation of the tricarboxylic acid (TCA) cycle
genes [34, 35]. As a metabolic disease, many mutated genes,
such as VHL, fumarate hydratase (FH), and succinate dehy-
drogenase (SDH), are involved in cellular respiration and
energy metabolism [7]. HIF-1-induced genetic reprogram-
ming promotes a classic Warburg phenotype in RCC
through VHL or mechanisms dependent on metabolic
enzymes [7, 36, 37]. Cancer cells predominantly produce

energy by lactic acid fermentation, regardless of the oxygen
level; this change was known as theWarburg effect or aerobic
glycolysis [38, 39]. The loss of VHL leads to a HIF-1-
dependent reprogramming of energy metabolism that
includes elevated glucose uptake, glycolysis, and lactate pro-
duction accompanied by a reciprocal decrease in respiration
under aerobic conditions [36]. Multiple proteomics and
metabolomics analyses have shown that compared with nor-
mal kidney tissue, the TCA cycle was downregulated between
succinate and malate and upregulated between citrate and α-
ketoglutarate in ccRCC tissues [40–44]. In addition, a com-
bined proteomics and metabolomics study showed increased
levels of metabolites in the glutamine and glutathione/oxi-
dized glutathione pathways, including glutamine, glutamate,
glutathione, and oxidized glutathione [41].

SLC22A6 was an organic anion/dicarboxylate exchanger.
The outwardly directed gradient of α-ketoglutarate (α-KG)
provides the driving force for the uptake of organic anions
against the opposing force of the membrane potential [45].
Endogenous substrates of SLC22A6 include medium-chain
fatty acids, α-ketoglutarate, citrulline [46], 5′-cyclic adenosine
monophosphate (cAMP) and cyclic granulocyte-monocyte
progenitor (cGMP) [47], prostaglandins E2 and F2, urate, and
acid neurotransmitter metabolites [48]. SLC22A7 mediates cel-
lular efflux of glutamate which may be transstimulated by
uptake of some organic anions [49]. In addition to glutamate,
SLC22A7 transports the following endogenous compounds
into cells: glutarate [50], urate [51], purine and pyrimidine
nucleobases, nucleosides and nucleotides, prostaglandin E2,
prostaglandin F2, estrone-3-sulfate, allopurinol, and α-ketoglu-
tarate [48, 52]. The endogenous compounds nicotinate, lactate,
urate, succinate, and glutathione were identified as substrates
of human SLC22A13. Transstimulation of urate uptake by
succinate, lactate, and glutathione suggested that human
SLC22A13 operates as an anion/anion exchanger [53].

Our study found that SLC22A6, SLC22A7, and SLC22A13
exhibited abnormal changes in various tumors. In ccRCC, the
mRNA and protein expression levels of SLC22A6, SLC22A7,
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Figure 6: The genetic alteration analysis and the correlation of the SLC family genes in ccRCC (cBioPortal).
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Figure 7: The correlation between different SLC family genes and the PPI network and module analysis. (a) The correlation between different
SLC family genes in ccRCC. The size of the circle and the depth of the color represent the strength of the correlation. That is, the larger the
circle, the darker the color, and the greater the correlation between genes. (b) The SLC family genes were used to construct the PPI network by
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and SLC22A13 were significantly reduced compared to those
in normal tissues. Further studies found that the expression
levels of SLC22A6 and SLC22A13 were associated with the
clinical stage, OS, and DFS. High SLC22A6, SLC22A7, and
SLC22A13 expression predicts improved OS and DFS. Other
genes in the SLC22 family, such as SLC22A1, SLC22A2, and

SLC22A14, have not changed differentially in ccRCC. Low
expression of SLC22A6 led to accumulation of α-KG in cells.
α-KG was shown recently to activate 5′ adenosine
monophosphate-activated protein kinase (AMPK) to promote
anoikis resistance of tumor cells by enhancing its interac-
tion with calcium/calmodulin-dependent protein kinase
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Figure 8: Functions of the SLC family genes and genes that interact with the SLC family genes were predicted with functional enrichment
analysis and KEGG pathway analysis (Metascape). BP: biological processes; CC: cellular components; MF: molecular functions.
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kinase 2 (CamKK2) [54]. In addition, glutamate dehydroge-
nase 1- (GDH1-) produced α-KG directly binds to and acti-
vates I-kappaB kinase beta (IKKβ) and NF-κB signaling,
which promotes glucose uptake and tumor cell survival by
upregulating glucose transporter 1 (GLUT-1) [55]. Low
expression of SLC22A7 led to accumulation of glutamate.
The upregulation of the glutamine and glutathione/oxidized
glutathione pathways correlates with high grade, high stage,
and metastasis of ccRCC [40, 41]. The released glutamine
can act as a growth factor and a signal mediator in non-
neuronal cancer tissues [56]. Low expression of SLC22A7

led to accumulation of lactate and glutathione. In ccRCC,
the increase in GLUT-1 expression correlates with a
decrease in the numbers of infiltrating CD8+ T cells [57],
suggesting an additional mechanism by which ccRCC might
suppress the immune system. This decrease in CD8+ T
cells might be the result of increased lactate levels owing
to GLUT-1 induction as lactate has been reported to inhibit
T-cell activity [58].

In additional, SLC25A4, SLC34A1, and SLC44A4
exhibited abnormal changes in various tumors. In ccRCC,
the mRNA expression levels of SLC25A4, SLC34A1, and
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Figure 9: The GSE53753 dataset was used to reverify the differential expression level of the SLC family in ccRCC. (a) The heat map showed
the expression of the SLC family in normal and cancer tissues. (b) The boxplot showed the expression of the SLC family in normal and cancer
tissues. P < 0:01 meant the difference was statistically significant.
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SLC44A4 were significantly reduced. Further studies found
that the expression levels of SLC25A4, SLC34A1, and
SLC44A4 were associated with the clinical stage, OS, and
DFS in ccRCC patients. High SLC25A4, SLC34A1, and
SLC44A4 expression predicts improved OS and DFS. In
ccRCC, the protein expression levels of SLC34A1 were signif-
icantly reduced, but the protein expression levels of SLC25A4
and SLC44A4 were not significantly different.

Inorganic phosphate (Pi) is associated with energy
metabolism and acts as an integral part of signaling pathways
by way of phosphorylation and dephosphorylation reactions
of transcription factors and other intermediates of cellular
signaling events [59, 60]. There was a consensus that tumor
cells required relatively more phosphate because of their
rapid rates of growth [61, 62]. In skin cancer, Pi was an essen-

tial nutrient for cell proliferation and for the promotion of
tumorigenesis via the activation of the neuroblastoma RAS
viral oncogene homolog (NRas) [63]. Transcellular transport
of phosphate is initiated by several apically localized sodium-
dependent Pi cotransporters (Na/Pi-cotransporters) that
belong to the SLC20 (SLC20A1 and SLC20A2) and SLC34
(SLC34A1, SLC34A2, and SLC34A3) families [64]. All of
the members are sodium-driven phosphate cotransporters
that promote cell reabsorption of Pi [10]. In ccRCC, the
mRNA and protein expression levels of SLC34A1 were sig-
nificantly reduced. Theoretically, the decrease of SLC34A1
inhibited reabsorption of Pi, which led to the decrease of Pi
in cells. In fact, the level of Pi in tumor cells was increased.
In ccRCC, there was no differential expression of some trans-
cellular transports responsible for Pi reabsorption in the
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Figure 10: The overall survival of the ccRCC patients was reevaluated by the ICGC. P < 0:01meant the difference was statistically significant.
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GEPIA, such as SLC20A1 and SLC20A2, which rescued the
reduced Pi reabsorption caused by SLC34A1. Therefore, we
speculated that the functions of SLC34A1 are beyond Pi
transmission. For example, although SLC20A1 was responsi-
ble for Pi transport, it was also responsible for activation by
NF-κB, an important protumoral pathway that might be
induced by various cytokines [65].

In summary, we systematically analyzed the expression
patterns and prognostic values of the SLC family in ccRCC
and provided an improved understanding of the heterogene-
ity and complexity of the molecular biological properties of
ccRCC. The results suggest that the downregulation of
SLC22A6, SLC22A7, SLC22A13, SLC25A4, SLC34A1, and
SLC44A4 in ccRCC may play an important role in the devel-
opment of ccRCC. The low expression of SLC22A6,
SLC22A13, SLC25A4, SLC34A1, and SLC44A4 can also be
used as a molecular marker for identifying high-risk sub-
groups of ccRCC patients. The high expression of SLC22A6,
SLC22A7, SLC22A13, SLC25A4, SLC34A1, and SLC44A4
can be used as a potential prognostic indicator for improving
survival and prognosis in ccRCC patients.

5. Conclusions

Our study found that the expression levels of SLC22A6,
SLC22A7, SLC22A13, SLC25A4, SLC34A1, and SLC44A4were
significantly lower in ccRCC tissues. They were significantly
associated with clinical stage, OS, andDFS. Theymay be poten-
tial targets for the clinical diagnosis, prognosis, and treatment
of ccRCC patients. However, findings should be validated with
the clinical sample and functional experiment in the future.
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