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Abstract

a-Synucleinopathies are neurodegenerative diseases that are characterized pathologically by a-
synuclein inclusions in neurons and glia. The pathologic contribution of glial a-synuclein in these
diseases is not well understood. Glial a-synuclein may be of particular importance in multiple
system atrophy (MSA), which is defined pathologically by glial cytoplasmic a-synuclein
inclusions. We have previously described Drosgphila models of neuronal a-synucleinopathy,
which recapitulate key features of the human disorders. We have now expanded our model to
express human a-synuclein in glia. We demonstrate that expression of a-synuclein in glia alone
results in a-synuclein aggregation, death of dopaminergic neurons, impaired locomotor function,
and autonomic dysfunction. Furthermore, co-expression of a-synuclein in both neurons and glia
worsens these phenotypes as compared to expression of a-synuclein in neurons alone. We identify
unique transcriptomic signatures induced by glial as opposed to neuronal a-synuclein. These
results suggest that glial a-synuclein may contribute to the burden of pathology in the a-
synucleinopathies through a cell type-specific transcriptional program. This new Drosgphila model
system enables further mechanistic studies dissecting the contribution of glial and neuronal a-
synuclein in vivo, potentially shedding light on mechanisms of disease that are especially relevant
in MSA but also the a-synucleinopathies more broadly.
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1| INTRODUCTION

The a-synucleinopathies are a family of neurodegenerative diseases characterized by
pathologic accumulation of misfolded a.-synuclein (Fujiwara et al., 2002; Uversky, 2008;

Vilar et al., 2008). Postmortem studies demonstrate that a.-synuclein inclusions can be found
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in neurons and glia, to varying extents, in all of the a.-synucleinopathies (Brick, Wenning,
Stefanova, & Fellner, 2015). Specifically, in Parkinson’s disease (PD) and dementia with
Lewy bodies (DLB), inclusions are predominantly identified in neurons in the form of Lewy
bodies and Lewy neurites (Baba et al., 1998; Beyer & Ariza, 2007) but also to a lesser extent
in astrocytes (Braak, Sastre, & Del Tredici, 2007; Song et al., 2009; Wakabayashi, Hayashi,
Yoshimoto, Kudo, & Takahashi, 2000), whereas in multiple system atrophy (MSA)
inclusions are found in oligodendrocytes in the form of glial cytoplasmic inclusions, but also
in neurons and astrocytes (Cykowski et al., 2015; Gai, Power, Blumbergs, & Blessing, 1998;
Papp & Lantos, 1994). Despite these consistent pathologic observations, whether glial a-
synuclein serves as a pathologic driving force or is merely a bystander in the development or
progression of these diseases remains unclear.

Drosophila offers many advantages as a model system and has been used successfully to
model multiple diseases with prominent or exclusive glial pathology, including gliomas
(Kim et al., 2014; Read et al., 2013; Witte, Jeibmann, Klambt, & Paulus, 2009), glial
tauopathies (Colodner & Feany, 2010), Alexander disease (Wang, Colodner, & Feany, 2011),
and complex | deficiency (Hegde, Vogel, & Feany, 2014). Similar to mammalian glia,
Drosophila glia include multiple specialized cell types (Kremer, Jung, Batelli, Rubin, &
Gaul, 2017) and are essential for neuronal development (Booth, Kinrade, & Hidalgo, 2000;
Sepp, Schulte, & Auld, 2001) and maintenance (Xiong & Montell, 1995). In the adult
nervous system, they serve many of the same specialized functions as mammalian glia,
including phagocytic clearance of cellular debris (Doherty, Logan, Tasdemir, & Freeman,
2009; MacDonald et al., 2006), participation in innate immunity (Kounatidis &
Chtarbanova, 2018), blood-brain barrier formation (DeSalvo et al., 2014), glutamate
recycling (Farca Luna, Perier, & Seugnet, 2017; Rival et al., 2004), protection of axons in
white matter (Logan et al., 2012), and protection of neurons from reactive oxygen species
through lipid droplet formation (L. Liu, MacKenzie, Putluri, Maleti¢ -Savati¢, & Bellen,
2017; L. Liu et al., 2015).

The Feany laboratory has previously published Drosophila models of neuronal a-
synucleinopathy (Feany & Bender, 2000; Ordonez, Lee, & Feany, 2018). These flies
recapitulate many features of human a-synucleinopathies, including progressive locomotor
impairment, neurodegeneration (including death of dopaminergic neurons), and
accumulation of a-synuclein inclusions. Here we expand on this model to investigate the
pathologic contribution of glial a-synuclein. We make use of two bipartite expression
systems, the UAS-GAL4 system (Brand & Perrimon, 1993) and the Q system (C. J. Potter,
Tasic, Russler, Liang, & Luo, 2010) to independently express human a-synuclein in glia or
neurons using the pan-glial driver repo-GAL4 or the pan-neuronal driver Syb-QF2,
respectively. We determine that glial a-synuclein forms inclusions, impairs locomotion,
causes autonomic dysfunction, and induces death of dopaminergic neurons. Additionally,
flies expressing a-synuclein in both neurons and glia develop more a.-synuclein inclusions
in neurons than those expressing a-synuclein in neurons alone. Finally, we identify unique
transcriptional programs induced by glial and neuronal a.-synuclein, suggesting that the
cellular context of a-synuclein matters for gene expression. Importantly, many of the
differentially expressed genes we identify in Drosophila have orthologs that have been
recognized as causally important in mammalian models of MSA or in patients, supporting

Glia. Author manuscript; available in PMC 2020 May 11.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Olsen and Feany Page 3

the applicability of this model for uncovering human disease mechanisms. Our work
represents a novel model system for studying glial a-synucleinopathy and uncovering glial-
based therapeutic targets.

2| METHODS
2.1| Drosophila

All fly crosses and aging were performed at 25°C. All experiments include flies in which
wild type human a-synuclein is expressed in either neurons or glia using the pan-neuronal
driver synaptobrevin (Syb) or the pan-glial driver reversed polarity (repo), respectively.
Control flies include the drivers but lack transgenic human a-synuclein. The exact
genotypes for all experiments are as follows: (a) Control = Syb-QF2, repo-GAL4/+, (b) Glia
= Syb-QF2, repo-GAL4/UAS-a-synuclein, (c) Neurons = Syb-QF2, repo-GAL4, QUAS-a-
synuclein/+, and (d) Both = Syb-QF2, repo-GAL4, QUAS-a-synuclein/UAS-a-synuclein.
All experiments were performed at 10 days post-eclosion unless otherwise noted in the
figure legends.

2.2 | Immunohistochemistry and immunofluorescence

Flies were fixed in formalin and embedded in paraffin. Either 2 or 4 um serial frontal
sections were prepared through the entire fly brain. Slides were processed through xylene,
ethanols, and into water. For neuron counts, slides were stained with hematoxylin. For
immunohistochemistry, microwave antigen retrieval with 10 mM sodium citrate, pH 6.0, was
performed. Slides were blocked in 2% milk in PBS with 0.3% Triton X-100 for 1 hr then
incubated with appropriate primary antibody in 2% milk in PBS with 0.3% Triton X-100 at
room temperature overnight. Primary antibodies used include repo (1:5, mouse,
Developmental Studies Hybridoma Bank, lowa City, 1A), elav (1:5, mouse, Developmental
Studies Hybridoma Bank), tyrosine hydroxylase (1:200 to 1:500, mouse, Immunostar,
Hudson, WI), a-synuclein hSA-2 (1:1000, rabbit, provided as a kind gift from Dr. Michael
Schlossmacher, Boston, MA), and a.-synuclein (1:1,000 to 1:10,000, rat, provided as a kind
gift from Biolegend, San Diego, CA). a-Synuclein hSA-2 recognizes both monomeric and
oligomeric a-synuclein by immunoblotting as well as a-synuclein aggregates by
immunostaining. The a-Synuclein antibody from Biolegend was raised against aggregated
a-synuclein and recognizes aggregates and total a-synuclein by immunostaining. For
immunohistochemistry, slides were incubated in biotin-conjugated secondary antibodies in
2% milk in PBS with 0.3% Triton X-100 for 1 hr (1:200, Southern Biotech, Birmingham,
AL) followed by avidin-biotin—peroxidase complex (Vectastain Elite) in PBS for 1 hr.
Histochemical detection was performed with diaminobenzidine (ImmPACT DAB, Vector,
Torrance, CA). For immunofluorescence, slides were incubated with fluorophore-conjugated
secondary antibodies in 2% milk in PBS with 0.3% Triton X-100 for 1 hr (1:200, Alexa 488
or Alexa 555, Invitrogen, Waltham, MA) then mounted with DAPI-containing Fluoromount
medium (Southern Biotech). Immunofluorescence microscopy was performed on an
Olympus FV1000 confocal microscope through the Harvard Neurobiology Imaging Facility
or on a Zeiss LSM 800 confocal microscope. Images were processed using Fiji.
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2.3| Western blotting

Fly heads were homogenized in 2x Laemmli buffer, boiled for 10 min, and centrifuged.
SDS-PAGE was performed (Lonza, Basel, Switzerland) followed by transfer to
nitrocellulose membrane (Bio-Rad, Hercules, CA) and microwave antigen retrieval in PBS.
Membranes were blocked in 2% milk in PBS with 0.05% Tween-20 for 1 hr, then
immunoblotted with appropriate primary antibody in 2% milk in PBS with 0.05% Tween-20
overnight at 4°C. Primary antibodies used include a.-synuclein H3C (1:10,000 to 1:100,000,
mouse, Developmental Studies Hybridoma Bank), GAPDH (mouse, 1:25,000 to 1:100,000,
Invitrogen), GFP N86/8 (mouse, 1:100, Neuromab, Davis, CA). Membranes were incubated
with appropriate horseradish peroxidase-conjugated secondary antibodies (1:50,000) in 2%
milk in PBS with 0.05% Tween-20 for 3 hr. Signal was developed with enhanced
chemiluminescence (Thermo Scientific, Waltham, CA). Anti-GAPDH was used to
demonstrate equivalent protein loading.

2.4| Locomotion assay

Adult flies were aged in vials containing 9-14 flies per vial. At days 1, 4, 7, 10, 13, 16, and
21 of life, flies were transferred to a clean vial (without food) and given 1 min to acclimate
to the new vial. The vial was then gently tapped three times to trigger the startle-induced
locomotion response, then placed on its side for 15 s. The percentage of flies still in motion
was then recorded. Differences between genotypes at specific time-points were measured
and statistical significance assessed by two-way ANOVA. The global difference between
genotypes was assessed by using linear regression to fit a linear curve to the data and to
determine whether the slopes were statistically different (Prism GraphPad, San Diego, CA).

2.5] Constipation assay

Standard cornmeal-agar Drosophila medium was melted by microwaving briefly and then
mixed with blue food coloring (AmeriColor, Placentia, CA) at a ratio of approximately 1:10
volumes to create uniformly dark blue food. The same batch of food was used for
experimental and control groups. Adult flies were aged to 10 days, then transferred to vials
with blue food for 24 hr. Flies were then transferred back to standard food, and the percent
of blue excrement to total excrement was measured on an hourly basis for 8 hr. Statistical
significance was determined by one-way ANOVA of the area under the curve for each
genotype. Additionally, flies were photographed at 0, 2, and 4-hr timepoints to demonstrate
delayed gut transit of the blue food.

2.6| Statistics

All statistical analysis aside from that used for RNAseq data analysis was performed using
GraphPad Prism version 7.0a. In cases of multiple comparisons, Tukey’s multiple
comparisons test was used to determine statistical significance.

2.7| RNA-Seq

Adult flies were aged to 10 days. Four biological replicates per genotype, each consisting of
six fly heads (three male, three female), were used. Fly heads were homogenized in Qiazol
(Qiagen, Germantown, MD) and phase separated with chloroform. The aqueous phase was
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mixed with 100% ethanol at 1:1 ratio then purified on RNeasy columns (Qiagen) per the
manufacturer’s protocol. Stranded libraries for next-generation sequencing were prepared in
the Harvard Biopolymers core facility by depleting total RNA of ribosomal RNA using the
Directional RNA-Seq Wafergen system (Wafergen, Fremont, CA). All RNA samples were
run on Agilent 2100 TapeStation D1000 High Sensitivity ScreenTape to assess concentration
and size distribution prior to library creation and again after library creation. Libraries were
also subjected to qPCR analysis for quality control. Libraries were then paired-end
sequenced on an Illumina NextSeq 500 instrument.

2.8| RNA-Seq data analysis

Computational analysis was performed on the Harvard Medical School O2 High-
Performance Research Computing Cluster. The four raw sequence (.fastq) files generated by
the NextSeq were concatenated for each library, then analyzed with FastQC (Babraham
Bioinformatics, Cambridgeshire, UK). Count matrices were generated in R Studio Version
1.1.423 using the Bioconductor (Huber et al., 2015) package called bchioRNAseq, an open
source python framework that aggregates other best-practice pipelines for RNA-Seq analysis
developed by the Harvard Chan Bioinformatics Core in the Harvard Chan School of Public
Health (Steinbaugh et al., 2018). Within the bchioRNAseq package, STAR (Dobin et al.,
2013) was used to align the sequence reads to the Drosophila melanogaster Release 6
reference genome (BDGP6), and Salmon (Patro, Duggal, Love, Irizarry, & Kingsford, 2017)
and featureCounts (Liao, Smyth, & Shi, 2014) were used to generate counts associated with
known genes. Gene annotations were obtained from Ensembl. Quality of the RNA-Seq data
was assessed with MultiQC (Ewels, Magnusson, Lundin, & Kaller, 2016). This quality
control includes total reads, mapping rate, genes detected, gene saturation, counts per gene,
gene count distributions, principal component analysis (Jolliffe, 2002), and sample
similarity. Plots were generated by ggplot2 (Wickham, 2016) and heatmaps were generated
by pheatmap (Kolde, 2015). Principle component analysis demonstrated the strongest
clustering by genotype (accounting for 43% of the variance). Based on the clustering
analysis, one sample each from the Control, Glia, and Neuron conditions was excluded from
further analysis, leaving a minimum of three remaining biological replicates per genotype.
Transcript quantification files produced by Salmon were imported into the DESeq2 package
(Love, Huber, & Anders, 2014) and pair-wise differential expression across conditions was
analyzed using a generalized linear model implemented in DESeq2. A pseudo-count of 1
was added to all genes with an expression count of 0. Expression counts for all mapped
genes are included in Data File S3. Differentially expressed genes had a fold-change
between conditions of =2 and FDR <0.05. Gene ontology analysis (release August 9, 2018)
(Ashburner et al., 2000; Mi et al., 2017; The Gene Ontology Consortium, 2017) and
PANTHER classification (version 13.1; Mi, Muruganujan, & Thomas, 2013; Thomas et al.,
2003) was performed to identify enriched terms among differentially expressed genes and
annotate genes. Mammalian orthologs for Drosophila genes were determined using the
Drosophila RNAi Screening Center (DRSC) Integrative Ortholog Prediction Tool (DIOPT)
version 7.1 (Hu et al., 2011).
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2.9| gRT-PCR

Selected genes identified as differentially expressed in the RNA-Seq analysis were validated
by gRT-PCR. Primers for these genes were chosen from the DRSC FlyPrimerBank (Hu et
al., 2013). Twenty brains per genotype were dissected in PBS and pooled. Total RNA was
prepared with Qiazol (Qiagen) per the manufacturer’s instructions then treated with DNase
for 15 min. cDNA was prepared using a High Capacity cDNA Reverse Transcription Kit
(Applied Biosystems, Foster City, CA), then amplified with SYBR green on a StepOne Plus
machine (Applied Biosystems). Relative expression was determined using the AACt method,
with normalization to RPL32used as a housekeeping gene.

2.10| Single cell transcriptome atlas

Selected genes identified as differentially expressed in the RNA-Seq analysis were mapped
to a recently published Drosgphila single-cell transcription atlas (Davie et al., 2018) using a
publicly available tool: scope.aertslab.org. Marker lists for glial subpopulations were
downloaded from this tool and used to annotate gene lists.

2.11| Data availability

Raw and final RNA-Seq data is available through Gene Expression Omnibus (GEO),
accession number GSE128120. All other data that support the findings of this study are
available from the corresponding author upon reasonable request (Olsen et al., 2019).

3| RESULTS

3.1| Independent expression of a-synuclein in neurons and glia

We have recently published a Drosophila model of neuronal a.-synucleinopathy in which
wild-type human a-synuclein is expressed under the control of a pan-neuronal driver, Syb-
QF2, using the Q binary expression system (C. J. Potter et al., 2010; Riabinina et al., 2015).
These flies have widespread neurodegeneration, a-synuclein aggregation, death of
dopaminergic neurons, and impaired motor function (Ordonez et al., 2018). To examine the
effects of glial a-synuclein expression, we employed the similar GAL4 binary expression
system (Brand & Perrimon, 1993) to drive expression of wild type human a-synuclein under
the pan-glial driver, repo-GAL4 (Sepp et al., 2001). These systems are independent of one
another, allowing us to express human a-synuclein in neurons (elav positive cells), glia
(repo positive cells), or both cell types (Figure Sla,c,d). Of note, when examined at the
whole brain protein level by immunoblotting, expression of a-synuclein is not appreciably
higher when expressed in neurons and glia as opposed to neurons alone (Figure S1b), which
may reflect strong expression driven by Syb-QFZ2.

3.2 | Glial a-synuclein impairs locomotion

Motor symptoms are the defining clinical feature of parkinsonism, and motor dysfunction
has been previously demonstrated in Drosophila models of Parkinson’s disease in the form
of impaired climbing (Feany & Bender, 2000; Ordonez et al., 2018), walking (Chen,
Wilburn, Hao, & Tully, 2014; Pokrzywa et al., 2017), and proboscis extension (Cording et
al., 2017). Using our model of glial a-synucleinopathy, we compared locomotor behavior in
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control flies to flies expressing a-synuclein in glia, neurons, or both cell types. Specifically,
we developed a novel walking-based locomotion assay. Briefly, flies are transferred to clean,
empty vials, allowed to acclimate for 1 min, and then gently tapped three times to evoke the
startle-induced locomaotion response (Liao, Morin, & Ahmad, 2014; Ma, Stork, Bergles, &
Freeman, 2016; Riemensperger et al., 2013; Yamamoto et al., 2008). The percentage of flies
still walking after a 15-s delay is recorded, and differences between control and neuronal a-
synuclein flies are highly reproducible over time (Figure S2a) and correlate with our
previously published climbing assay (Figure S2b).

Using this locomotion assay, we performed a 21-day time course and determined that glial
a-synuclein alone causes a locomotor deficit, and it also exacerbates the effect of neuronal
a-synuclein (Figure 1). To ensure that this effect is specific to glial a-synuclein and not
simply due to overexpression of an exogenous protein in glia, we repeated this experiment at
Day 10, expressing green fluorescent protein (GFP) rather than a-synuclein in glia. GFP
expression had no effect on locomotion (Figure S3). We then went further, expressing the
R79H mutant of glial fibrillary acidic protein (GFAP), which causes the human
astrogliopathy Alexander disease. We have previously shown that R79H GFAP expression in
Drosophila glia causes noncell-autonomous toxicity to glutamatergic and other neurons in an
Alexander disease model (L. Wang et al., 2011), but at the 10-day timepoint examined glial
R79H GFAP expression did not enhance neuronal a-synuclein toxicity as measured by the
locomotion assay (Figure S3), demonstrating specificity of glial a-synuclein in exacerbating
the neuronal a-synuclein phenotype.

3.3 | Glial a-synuclein causes constipation

Autonomic nervous system dysfunction is common in all of the a-synucleinopathies, and
constipation, in particular, may predate the onset of motor symptoms by many years
(Adams-Carr et al., 2016). Nonmotor symptoms, including constipation, are a significant
clinical problem, being more highly correlated with impaired patient quality of life than are
motor symptoms (Estrada-Bellmann, Camara-Lemarroy, Calderon-Hernandez, Rocha-
Anaya, & Villareal-Velazquez, 2016; Miiller, Assmus, Herlofson, Larsen, & Tysnes, 2013;
Prakash, Nadkarni, Lye, Yong, & Tan, 2016). The innervation of the gut in Drosophila is
similar to that in mammals in that it is complex, involving efferent and afferent neurons,
with contribution from both the central and peripheral nervous system (Cognigni, Bailey, &
Miguel-Aliaga, 2011). We assessed whether glial a-synuclein contributes to constipation in
Drosophila. In these experiments, 10-day-old files were housed in vials with blue food for
24 hr, then transferred to vials with regular food. Photographs of individual representative
flies were taken at time 0, 2, and 4 hr (Figure 2a) demonstrating delayed gut transit for a-
synuclein expressing flies compared to control, and markedly delayed gut transit for flies
expressing a-synuclein in both neurons and glia. Additionally, the ratio of blue excrement to
total excrement was measured per hour up to 8 hr (Figure 2b), also demonstrating the same
phenomenon at a population level. That is, glial a-synuclein alone induces constipation to a
similar extent as neuronal a-synuclein, and it exacerbates that induced by neuronal a-
synuclein.
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Glial a-synuclein causes death of total and dopaminergic neurons, but not glial cells

Neuronal death in varying cortical and subcortical regions occurs to differing extents in all
of the a-synucleinopathies, and death of dopaminergic neurons in the substantia nigra pars
compacta is a defining pathologic feature of Parkinson’s disease. We therefore sought to
determine whether glial a-synuclein contributes to neuronal death generally and specifically
to death of dopaminergic neurons. We first examined vacuolization, which is seen in patients
with dementia with Lewy bodies (Sherzai et al., 2013) and is a common consequence of
neurodegeneration in Drosophila (Kretzschmar, 2009; Sunderhaus & Kretzschmar, 2016;
Wittmann et al., 2001). Glial a-synuclein caused infrequent, large vacuoles, whereas
neuronal a-synuclein led to more numerous smaller vacuoles (Figure 3a). Glial a-synuclein
alone induced neuron loss (quantified in Figure 3c) and exacerbated the loss of neurons
when added to neuronal a-synuclein. More strikingly, glial a-synuclein alone caused loss of
dopaminergic neurons and dopaminergic neurons were markedly reduced when both glial
and neuronal were present (Figure 3b,d). Interestingly, the degree of loss of dopaminergic
neurons due to glial a-synuclein was out of proportion to the total neuron loss (compare
degree of change between Glia and Control or Both and Neuron in Figure 3c,d), consistent
with differential vulnerability of dopaminergic neurons to glial a-synuclein. In contrast,
quantitative examination of repo-stained sections did not reveal a clear difference in the
number of glial cells between conditions (Figure S4), suggesting that there is no marked loss
of this population but rather that glial dysfunction is responsible for the pathogenic effects of
glial a-synuclein.

a-Synuclein aggregates in both neurons and glia

a-Synucleinopathies are, by definition, diseases of pathologic a-synuclein aggregation,
which occurs to varying extents in neurons and glia depending on the specific disease. We
identified a-synuclein aggregates in both neurons and glia in the conditions in which it was
expressed in those cell types. Figure 4a demonstrates a-synuclein aggregates in neurons
(identified by the marker elav), and Figure 4b demonstrates a-synuclein aggregates in glia
(identified by the marker repo). Total a.-synuclein aggregates were quantified from low
power sections of cortex surrounding the optic lobe (Figure 4c). Interestingly, a-synuclein
inclusions in dopaminergic neurons were increased when a-synuclein was present in both
neurons and glia as opposed to in neurons alone (Figure 4d), suggesting that the presence of
glial a-synuclein is able to perpetuate further a-synuclein aggregation in dopaminergic
neurons in a noncell-autonomous manner. Such noncell-autonomous effects have been seen
previously in a mouse model of MSA, in which overexpression of human a-synuclein in
oligodendrocytes was shown to induce aggregation of endogenous mouse a.-synuclein in
neurons (Yazawa et al., 2005).

a-Synuclein induced transcriptional changes depend on cellular context

Having demonstrated that glial a-synuclein enhances both the clinical phenotype and
pathologic hallmarks of the a-synucleinopathies, we next sought to identify whether it
altered gene expression. We expressed human wild type a-synuclein in glia, neurons, or
both cell types and performed RNA-Seq on whole heads. Differentially expressed genes
were identified by pair-wise comparisons of each a-synuclein condition compared to
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negative control, hereafter referred to as Glia: Control, Neuron:Control, or Both:Control.
Interestingly, the effects of a-synuclein on transcription were markedly different depending
on whether the protein was expressed in glia or neurons. Glial a-synuclein resulted in 158
differentially expressed genes compared to control flies lacking a-synuclein (Figure 5a,
Data File S1). Nearly all the differentially expressed genes were upregulated (144/157,
92%). In contrast, neuronal a-synuclein resulted in 128 differentially expressed genes
compared to control flies, and nearly all of these were downregulated (125/128, 98%; Figure
5A, Data File S1). Furthermore, there is very little overlap between the differentially
expressed genes induced by glial versus neuronal a-synuclein (Figure 5b), suggesting that
the cellular context of a-synuclein expression matters significantly for gene expression.
When a-synuclein was expressed in both neurons and glia, 359 transcripts were
differentially expressed (Figure 5a, Data File S1). The majority of these were downregulated
(350/358 = 98%) and they include the vast majority of transcripts that were downregulated
with neuronal a-synuclein alone, as well as many additional transcripts (Figure 5c). Of the
overlapping transcripts that were downregulated with neuronal a-synuclein alone as well as
when a-synuclein was present in both neurons and glia, they were downregulated to a
greater degree with both glial and neuronal a-synuclein (Figure 5d).

We performed gene ontology analysis for all conditions (see Data File S2 for full gene
ontology results). With glial a-synuclein, enriched biological process terms included
proteolysis and cell surface receptor signaling (Figure 6a). The proteolysis term is enriched
due to expression of many extracellular proteases as well as two caspases (Table 1, Figure
6b). Many of these proteases were not previously known to be expressed in the brain, and
their upregulation may reflect a glial response to injury (Purice et al., 2017) or alternatively
might represent the senescence-associated secretory phenotype, which may contribute to
neurodegeneration (Bussian et al., 2018). The cell surface receptor signaling term is
enriched partly due to expression of several tetraspanins (Table 2, Figure 6b), which are of
particular interest given that their human orthologs (CD9, CD81, and TSPAN2) are markers
of oligodendrocytes or oligodendrocyte precursors (Terada et al., 2002). We confirmed
expression of a subset of both the proteases and cell signaling receptor transcripts by gRT-
PCR (Figure S5a). Since differentially expressed transcripts could be either neuronal or glial
in origin, and we are particularly interested in glial changes, we used a newly created single-
cell Drosophila brain transcriptome atlas (Davie et al., 2018) to annotate transcripts that
were identified in that study as markers of various glial subpopulations (Table 3). In the
Glia:Control comparison, we identified 10 upregulated glial markers. We further investigated
one of these, Ance, which is also one of the proteolysis-related genes (Figure 6b) and is of
particular interest as it is the Drosophila ortholog of angiotensin-converting enzyme (ACE),
and ACE inhibitors have been explored as possible therapeutics in Parkinson’s disease
(Reardon, Mendelsohn, Chai, & Horne, 2000; Sonsalla et al., 2013). Ance expression is
enriched in (but not limited to) subperineurial glia, as shown in silico using the single cell
transcriptome atlas (Figure S5b). Additionally, we used Ance-GALA4 to drive GFP
expression to assess further the pattern of Arnce expression. These flies demonstrated GFP
expression in the head (Figure S5c), and we confirmed a glial expression pattern by
immunohistochemistry (Figure S5d).
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In contrast to glial a-synuclein, neuronal a-synuclein led to downregulation of many
transcripts (Figures 5a and 7a). Gene ontology on these transcripts revealed many terms
regulated to mating and hormones (Figure 7a), which is explained due to downregulation of
several members of four families of genes: Accessory gland protein (Acp), seminal fluid
protein (Sfp), serpin (Spn), and odorant binding protein (Obp) families (Data File S1).
Although the Acp and Sfp protein families are named for their expression in the male
accessory gland and seminal fluid, respectively, they along with the Spn superfamily are
composed mostly of protease inhibitors, raising the possibility of their being repurposed in
the brain for protein homeostasis. Indeed, after the mating-related terms, the next enriched
term by gene ontology analysis was negative regulation of endopeptidase activity (Figure
7a). We validated expression of several of these genes in the brain either by gRT-PCR
(Figure 7b) or in silico analysis using the single cell transcriptome atlas (Figure 7c), where
importantly, there were no sex-specific differences in their expression (Figure 7c¢). The
fourth family contributing to the enrichment of mating-related terms is the Obp family. Obp
proteins transport odorants to olfactory receptors. This is of some interest given the known
olfactory deficits in the a-synucleinopathies, with PD pathology thought to start early in the
olfactory bulbs (Del Tredici & Braak, 2016). Following mating-related terms and negative
regulation of endopeptidase activity, the third biological process that was over-represented
involved genes regulated to lipid metabolism (Table 4, Figure 7d). This finding is consistent
with prior studies by our group (Scherzer, Jensen, Gullans, & Feany, 2003) and others (Don
et al., 2014; Schafferer et al., 2016) that also identified changes in lipid metabolism related
genes due to a-synuclein.

As mentioned above, in the Both:Control comparison, the list of differentially expressed
genes contains nearly all of the genes found Control in the Neuron:Control comparison
(Figure 5c), and similarly, gene ontology analysis reveals several enriched terms that are
mating-related (Data File S2). Beyond these shared genes and terms, however, there are an
additional 242 differentially expressed genes in the Both:Control comparison that are not
seen in the Neuron:Control comparison (Figure 5c). Additionally, gene ontology analysis in
the Both:Control group reveals numerous additional enriched terms related to fatty acid
metabolism (Data File S2). Among the fatty acid metabolism-related genes, there are 6 fatty
acyl-CoA reductases, 5 fatty acid elongases, 9 genes known to localize to the peroxisome,
and several additional enzymes with oxidoreductase activity (Table 5). Of note, there are two
orthologs of stearoyl CoA desaturase (SCD), recently implicated as a therapeutic target for
PD (Fanning et al., 2018; Vincent et al., 2018). The majority (though not all) of these fatty
acid metabolism genes are downregulated, and they are also downregulated in the
Neuron:Control comparison (Figure 8a), although only 10/29 reached statistical significance
in that condition. In addition to the many terms related to fatty acid metabolism, gene
ontology analysis also revealed other enriched terms, including myofibril assembly, muscle
a-actinin binding, and sperm flagellum. The component transcripts responsible for these
terms being enriched are cytoskeletal genes (Figure 8b, Table 6), which is of interest given
our work (Ordonez et al., 2018) as well as the work of others (Chung et al., 2017; Esposito,
Dohm, Kermer, Bahr, & Wouters, 2007; Khurana et al., 2017; Sousa et al., 2009) implicating
dysfunction of the actin cytoskeleton in a-synuclein neurotoxicity. Similar to the fatty acid
metabolism-related genes, the cytoskeletal genes were also downregulated in
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Neuron:Control (Figure 8b), though none reached statistical significance in that condition.
Collectively, these data suggest that glial a-synuclein both potentiates the transcriptional
effects of neuronal a-synuclein and also induces unique transcriptional changes.

3.7| Relevance of the Drosophila model for mammalian a-synucleinopathy models and
human disease

Drosophila serves as a powerful model organism for investigating human neurodegeneration
in large part due to the high conservation of disease-related genes (McGurk, Berson, &
Bonini, 2015; Rubin et al., 2000). To explore the relevance of our differentially expressed
genes, we identified their rat, mouse, and human orthologs and cross-referenced this list with
additional publicly available lists of differentially expressed genes identified in
transcriptomic studies of MSA animal models (Kaji et al., 2018; Schafferer et al., 2016) or
human post-mortem MSA brains (Langerveld, Mihalko, DeLong, Walburn, & Ide, 2007;
Mills, Ward, Kim, Halliday, & Janitz, 2016). We also compared the ortholog list to genes
that have been identified as candidate risk genes for any human a-synucleinopathy by
examining genome-wide association or whole exome sequencing studies from MSA (X. Gu
et al., 2018; Sailer et al., 2016), PD (Chang et al., 2017; Guo et al., 2018; Jansen et al., 2017,
Li et al., 2018; Quadri et al., 2015; Robak et al., 2017; Sandor et al., 2017; Schormair et al.,
2018; Shulskaya et al., 2018; Siitonen et al., 2017; Yloénen et al., 2017), or DLB (Guerreiro
et al., 2018; Keogh et al., 2016; Peuralinna et al., 2015). In total, we found 30 transcripts
with a mammalian ortholog that had also been identified in one or more of these studies
(Table 7). This list includes orthologs that fell into nine pathways that have been implicated
in pathogenesis of human a-synucleinopathies (Figure 9 and Discussion), suggesting that
our model can be used to study relevant aspects of human disease pathophysiology.

4| DISCUSSION

Here we describe a novel Drosophila model of glial a-synucleinopathy. We demonstrate that
glial a-synuclein forms inclusions, increases aggregation of a-synuclein within
dopaminergic neurons, impairs locomotion, causes constipation, and triggers
neurodegeneration of both dopaminergic and nondopaminergic neurons. Furthermore, we
demonstrate that a.-synuclein can induce unique transcriptional programs depending on the
cell type in which it is expressed. One striking finding from our RNA-Seq results was how
different the transcriptional signatures are between the three conditions, including not only
the specific genes that were differentially expressed but also the fact that glial a-synuclein
alone led to upregulation of many genes, whereas many genes were downregulated in the
other conditions. In fact, only three transcripts were upregulated in the Neuron:Control
condition and two of these are known glial markers (Table 3). We have previously reported
that nuclear a-synuclein inhibits histone acetylation (Kontopoulos, Parvin, & Feany, 2006),
and this inhibition would be expected to decrease transcription. Others have reported direct
interactions between a-synuclein and histones (Goers et al., 2003) or DNA (Siddiqui et al.,
2012), as well as wide-ranging transcriptional deregulation (Pinho et al., 2019). a-
Synuclein-induced transcriptional changes to remain a ripe area for future study, particularly
as single cell RNA-Seq becomes more accessible.
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Among the differentially expressed genes that we identified across all conditions, we found
30 transcripts that have been reported either as having altered expression in mammalian
models of MSA or human patients with MSA or reported as being genetic risk factors for
MSA or PD (Table 7). These transcripts are involved in pathways known to be essential for
a-synucleinopathy pathogenesis, including mitochondrial function, lysosomal function,
myelin synthesis, cytoskeletal function, fatty acid metabolism, apoptosis, and adenosine
metabolism (Figure 9). There are six genes meeting the highest level of evidence for a causal
role in human disease, having been identified in human GWAS or by WES: C75D,
ELOVL 7, NPC1, SMPD1, PTPRH, and PDLIMZ (Figure 9). Additionally, there is direct
mechanistic evidence in animal models to support a causative role for several genes in a-
synucleinopathy pathogenesis. Genes with animal model evidence are bolded in Table 7 and
include CAT, HSPAS, CTSD, Itgbl1, Casp3, Lpl, and PTPRH. Furthermore, while there is
not yet direct evidence for ELOVL 7in a-synucleinopathy pathogenesis, loss of function
mutants in yeast orthologs of £LOV/L 7have been shown to exacerbate a-synuclein toxicity
(Lee et al., 2011). Beyond these 30 transcripts, we identified an additional novel 298
differentially expressed genes with human orthologs in the Glia:Control or Both:Control
conditions, leaving many candidates for future studies.

In addition to being one of very few published transcriptomic studies of glial a.-synuclein
expression, our model reproduces important a-synuclein induced phenotypes. Autonomic
dysfunction is a core clinical feature underlying all of the a-synucleinopathies and includes
bladder dysfunction, constipation, cardiovascular abnormalities, sexual dysfunction,
sialorrhea, dry eyes, excessive sweating, and altered thermoregulation. These symptoms are
a greater contributor to loss of quality of life than are the motor symptoms in PD (Estrada-
Bellmann et al., 2016; Martinez-Martin, Rodriguez-Blazquez, Kurtis, Chaudhuri,, & NMSS
Validation Group, 2011; Mller et al., 2013; Prakash et al., 2016; Tibar et al., 2018), yet
have been challenging to investigate in model organisms. Although common to all of the a.-
synucleinopathies, autonomic dysfunction is particularly important in MSA (Fanciulli &
Wenning, 2015), where it is required to make the diagnosis (Gilman et al., 2008). Only one
mouse model of MSA has been reported to have autonomic features (Boudes et al., 2013),
and our Drosophila model represents a valuable new model further investigating autonomic
dysfunction in vivo.

Another interesting pathologic finding in our model is that dopaminergic neurons were lost
at a disproportionate rate to total neurons when glial a-synuclein was present, either alone or
in conjunction with neuronal a-synuclein. There are several hypotheses as to why
dopaminergic neurons are uniquely susceptible to injury in the a-synucleinopathies
(Surmeier, Obeso, & Halliday, 2017), including their long, thin, unmyelinated axons with
extensive arborization (Matsuda et al., 2009), reliance on calcium homeostasis and
susceptibility to oxidative stress (Duda, Potschke, & Liss, 2016; Tabata et al., 2018), and the
inherent toxicity of dopamine (Burbulla et al., 2017; Mor et al., 2017). Additionally,
dopaminergic neurons are highly reliant on support from astrocytes (Datta, Ganapathy,
Razdan, & Bhonde, 2018; Du, Yu, Chen, Chen, & Yan, 2018; Kuter, Olech, Gtowacka, &
Paleczna, 2019). However, neither the intrinsic characteristics of dopaminergic neurons nor
the general phenomenon of astrocyte dysfunction fully explains why dopaminergic neurons
degenerate specifically in a-synucleinopathies, as these features are also present in other
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neurodegenerative diseases that do not specifically affect dopaminergic neurons. This raises
the possibility of noncell-autonomous toxic effects that are due specifically to glial a-
synuclein, as has recently been shown with astrocyte LRRK2 G2019S (di Domenico et al.,
2019). In accordance with this, we demonstrate that glial a-synuclein increases aggregation
of a-synuclein in dopaminergic neurons. This finding could be explained by a noncell-
autonomous effect of glial a-synuclein on neuronal proteostasis or alternatively, by direct
spread of a-synuclein from glia to dopaminergic neurons. We have not observed spread of
a-synuclein from glia to neurons when it is expressed in glia alone (data not shown).
However, we cannot exclude the possibility of spread in the condition in which a-synuclein
is expressed in both neurons and glia, as it is possible that neurons must first express a-
synuclein themselves in order to be receptive to spread from glia.

In contrast to the marked loss of dopaminergic neurons, glial numbers were not significantly
changed between conditions (Figure S4). Prior mammalian studies of glial a.-synuclein
expression have reported varied results in terms of whether glial a-synuclein expression
induces glial cell death. For example, a-synuclein expression in astrocyte cell lines induces
apoptosis (M. Liu et al., 2018; N. Stefanova, Klimaschewski, Poewe, Wenning, & Reindl,
2001), whereas a transgenic astrocytic A53T a-synuclein expressing mouse model
demonstrated not loss of astrocytes but rather impaired astrocyte function including
decreased glutamate transporter expression and blood—brain barrier disruption, leading to
marked neurodegeneration (X.-L. Gu et al., 2010). Likewise, of the three transgenic mouse
models of oligodendrocyte a-synuclein expression, only one demonstrates loss of
oligodendrocytes (Yazawa et al., 2005). The others display mitochondrial abnormalities in
oligodendrocytes without frank oligodendrocyte loss (Shults et al., 2005), or absence of
oligodendrocyte loss (Kahle et al., 2002) unless the mice are additionally treated with the
mitochondrial toxin 3-nitroprinoic acid (Nadia Stefanova et al., 2005). These varied effects
of glial a-synuclein expression on glial cell death may stem from different expression levels
and reflect the complexity of modeling glial a-synucleinopathy (Bleasel, Halliday, & Kim,
2016).

In summary, our work represents the first report of independent manipulation of gene
expression in neurons and glia by combining the Q and GAL4 bipartite expression systems.
This is a robust and flexible model that can be used to mechanistically analyze the genetic
contributions of neurons and glia to neurodegenerative diseases in vivo at scale. Here we
have used these genetic tools to create the first Drosophila model of glial a-synucleinopathy,
demonstrating in the process that glial a-synuclein induces neurodegeneration and that cell
context is critical for a-synuclein induced transcriptional changes. We further demonstrate
that this system can be used to identify processes of known relevance to human diseases,
including MSA. Beyond investigating the effects of glial a-synuclein, combining the Q and
GALA4 expression systems represents a powerful method for dissecting glial and neuronal
interactions in vivo in neurodegenerative diseases broadly.
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FIGURE 1.

Glial a-synuclein impairs locomotion. Flies were subjected to a gentle tapping stimulus
followed by a 15-s delay. The percentage of flies still in motion (% locomotion) following
the delay was recorded and averaged over six technical replicates. Symbols above the “Glia”
and “Both” curves represent statistically significant difference compared to the “Control”
and “Neurons” curves, respectively, at a given time point. Slope of the line was determined
by linear regression analysis and was also globally statistically significantly different
between the four conditions. *p < .05, **p < .01, ***p < .005. 7= minimum of 60 flies per
genotype per time point (six biological replicates of 10 flies each)
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Glial a-synuclein causes constipation. Flies were aged to 10 days of life, transferred to blue
colored food for 24 hr, then returned to regular food. (a) Photographs were taken at 0, 2, and
4 hr after return to regular food. (b) The % of blue to total fecal matter was counted on an
hourly basis for 8 hr after return to regular food (left). Area under the curve is statistically
significantly different between conditions as measured by one-way ANOVA (right). **p
<.01, ****p<.001. n = minimum six biological replicates of 10 flies each
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FIGURE 3.

Control

Glia

Glial a-synuclein causes neurodegeneration. (a) Optic lobe sections stained with
hematoxylin demonstrating vacuolization, an indicator of neurodegeneration. Glial a-
synuclein caused infrequent large vacuoles (arrowhead) whereas neuronal a-synuclein
caused frequent small vacuoles (arrows). Scale bar = 100 um. (b) Representative anterior
medulla sections stained with DAPI (blue) and tyrosine hydroxylase antibody (red, mouse,
1:200, Immunostar) to indicate dopaminergic neurons. Scale bar =5 pm. (c) Quantification
of total neurons from hematoxylin stained slides of anterior medulla (not shown), 7=6
replicates per genotype. (d) Quantification of dopaminergic neurons from anterior medulla,
n=6 replicates per genotype. *p < .05, **p< .01, ***p < .005, ****p < .,001, determined

with one-way ANOVA

Glia. Author manuscript; available in PMC 2020 May 11.

Neurons

Both




1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Olsen and Feany

(a)

elav/a-syn

(b)

repo/a-syn

_—
(2)
N

n
S
1

3

Inclusions per 60 sq um
b i e

o
T

Page 28

Control Neurons

Control Neurons

Fkkk

— Neurons

©
i

ek

ki

Inclusions per cell
i e

o<

Control Glia Neurons Both Neurons Both

FIGURE 4.
a-Synuclein aggregates in neurons and glia. (a) Immunofluoresence for DAPI (blue), elav

(red, mouse 1:5, DSHB), and a-synuclein (green, rabbit 1:1000) by confocal microscopy (3
um scale). Arrows indicate a-synuclein inclusions in neurons. (b) Immunofluoresence for
DAPI (blue), repo (red, mouse 1:5, DSHB), and a.-synuclein (green, rabbit 1:1000) by
confocal microscopy (3 um scale). Arrows indicate a-synuclein inclusions in glia. (c)
Quantification of total aggregates from optic lobe cortex, 7= 5-six flies per genotype. (d)
Representative immunofluorescence for tyrosine hydroxylase (red, mouse, 1:200,
Immunostar), a-synuclein (green, rat, 1:10,000, Biolegend), and DAPI. Scale bar =5 pm.
Inclusions are quantified in the right panel
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FIGURE 5.
Transcriptional changes induced by a-synuclein depend on its cellular context. Bulk RNA-

Seq from whole brains was performed on 10-day old flies. (a) Volcano plots demonstrating
transcript expression changes. Colored dots (and numbers) represent statistically significant
(Padjust < -05 after correction for multiple comparisons) differentially expressed transcripts
with =|1| log2fold change. (b) Venn diagram demonstrating little overlap between
differentially expressed genes induced by glial and neuronal a-synuclein. (c) Venn diagram
demonstrating significant similarity in differentially expressed genes with both glial and
neuronal a-synuclein compared to neuronal a-synuclein alone. (d) When both glial and
neuronal a-synuclein are present a common set of transcripts are further downregulated as
compared to neuronal a-synuclein alone
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FIGURE 6.

Transcriptional changes induced by glial a-synuclein include upregulation of proteolysis
and cell surface receptor signaling. Bulk RNA-Seq from whole brains was performed on 10-
day old flies. (a) Gene ontology analysis for upregulated transcripts demonstrates
enrichment of the terms “proteolysis” and “cell surface receptor signaling”. (b) Hierarchical
clustering of proteolysis and cell surface receptor signaling related transcripts
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FIGURE 7.
Confirmation of transcriptional changes induced by neuronal a-synuclein. (a) Gene

ontology analysis. *Other reproduction-related terms beyond “post-mating behavior” were
also enriched (Data file S2). (b) gRT-PCR for male and lipid-related genes. Values in Neuron
and Both are normalized to Control. 7= 2-3 biological replicates. (c) Visualization of
selected Acp and Sfp gene expression in single cell transcriptome atlas. The dot plot
represents expression. For both Sfp77f and Acp53cl4b, there is a high and low expressing
population, indicated by dots that are the same color but different intensity. (d) Hierarchical
clustering of lipid related genes. All genes were significantly differentially expressed with
adjusted p-value < .05
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FIGURE 8.
Fatty acid metabolism and cytoskeletal genes downregulated by glial and neuronal a.-

synuclein. (a) Hierarchical clustering of fatty acid metabolism and peroxisome related genes.
(b) Hierarchical clustering of cytoskeletal related genes. The top six that cluster together are
those that contribute to the GO terms “myofibril assembly” and “muscle alpha-actinin
binding,” whereas the lower four contribute to the GO term “sperm flagellum assembly”
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Drosophila RNAseq identifies conserved targets and essential pathways in a-
synucleinopathy pathogenesis. Mammalian orthologs of Drosophila genes were identified
using DRSC Integrative Ortholog Prediction Tool. Orthologs have a ranked score from 1 to
14 indicating the degree of conservation (with 14 being the best). Orthologs that have been
previously reported in MSA transcriptomic studies or in human a-synucleinopathy genome
wide association studies (GWAS) or whole exome sequencing (WES) studies are shown.
The type of evidence is indicated by the color of the circle. Human genetics, human a-
synucleinopathy GWAS or WES; Human expr, expression is changed in human MSA
patients; Model org expr, expression is changed in a mouse model of MSA,; Cell culture
expr, expression is changed in a rat oligodendrocyte model of MSA. Orthologs fall into nine
pathways of known relevance to human a-synucleinopathies
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TABLE 1

Proteolysis related genes upregulated in Glia:Control

Gene
Jon44E
Jon99Fii
CG11911
pcl
CG16749
CG15255
lambdaTry
CG18493
CG42335
CG18585
Damm
CG9672
etaTry
CG5246
CG9673
CG4653
CG3734
Decay
Spheroide
CG33127
CG11034

Ance

PANTHER protein class
Unclassified

Unclassified

Serine protease

Aspartic protease

Serine protease
Metalloprotease

Serine protease

Serine protease
Metalloprotease
Metalloprotease

Cysteine protease (caspase)
Serine protease

Serine protease
Unclassified

Serine protease

Serine protease

Serine protease

Cysteine protease (caspase)
Serine protease

Serine protease

Serine protease

Metalloprotease

Best human ortholog

C1S, PROC

PROC

PRSS36, PRSS53

REN, CTSE, CTSD, NAPSA
KLK3

MEP1B, MEP1A

PRSS53, PRSS36

PRSS16

TRHDE, LVRN, ANPEP
CPB1

CASP3, CASP7, CASP6
PRSS56, F10, F9, F7, PROZ, PROC
PRSS36, PRSS53

KLK14, OVCHL1, PRSS3, CFD, OVCH2
TPSD1

PRSS36, PRSS53

PRSS16

CASP3

PRSS36, PRSS53, PRSS38
None

DPP4

ACE
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Cell surface receptor signal

TABLE 2

ing related genes upregulated in Glia:Control

Gene Best human ortholog

Npclb NPC1
Tspd2Ec  TSPAN2, CD81, CD9
CG5550  FCN3, FCN1

Tsp2a UPK1B, CD37, TSPANS, TSPAN4, UPK1A, CD82, TSPAN18, TSPAN19, TSPAN1, TSPAN9Y, CD53

Tspd2Eq  CD63
Tsp42Er  TSPANZ2, CD81, CD9
Tsp29Fa  CD63

CG11034 DPP4

Galphaf GNAL

Tsp29Fb  CD63

Tsp42Ed  CD63

, TSPAN19, CD63
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TABLE 4

Lipid metabolism related genes reduced in Neuron:Control

Gene PANTHER protein class Best human ortholog

SP

NONE

CG18258 Esterase, lipase, storage protein  LIPG, LIPL, LIPC

CG17097 LIPK, LIPJ, LIPF, LIPN, LIPA, LIPM
eloF Acyltransferase ELOVL1

CG11598 Lipase, serine protease LIPK, LIPJ, LIPF, LIPN, LIPA, LIPM
Fad2 SCD, SCD5

CG18301 LIPM

CG31659 APOD

Elo68alpha  Acyltransferase ELOVL4

CG14034 LPL

CG9458 Acyltransferase ELOVL7

CG15531 SCD
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TABLE 6

Cytoskeletal genes reduced in Both:Control

Gene GO notes Best human ortholog

Mst87F None

Mst98Ch None

Tektin-A Nonmotor microtubule binding protein TEKT4

CG3085  Nonmotor microtubule binding protein TEKT2

Zasp52 Actin family cytoskeletal protein LDB3

Zasp66 Alpha-actinin binding PDLIM1, PDLIM3

Unc-89 Tropomyosin binding, calcium-dependent kinase ~ SPEG

Prm Paramyosin MYH1

bt Myosin binding TTN

MIp84B  Actin family cytoskeletal protein CSRP3
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