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Manganese (Mn) is an essential micronutrient required for
the normal development of many organs, including the brain.
Although its roles as a cofactor in several enzymes and in main-
taining optimal physiology are well-known, the overall biologi-
cal functions of Mn are rather poorly understood. Alterations in
body Mn status are associated with altered neuronal physiology
and cognition in humans, and either overexposure or (more
rarely) insufficiency can cause neurological dysfunction. The
resultant balancing act can be viewed as a hormetic U-shaped
relationship for biological Mn status and optimal brain health,
with changes in the brain leading to physiological effects
throughout the body and vice versa. This review discusses Mn
homeostasis, biomarkers, molecular mechanisms of cellular
transport, and neuropathological changes associated with dis-
ruptions of Mn homeostasis, especially in its excess, and identi-
fies gaps in our understanding of the molecular and biochemical
mechanisms underlying Mn homeostasis and neurotoxicity.

Manganese is essential for numerous vital process including
nerve and brain development and cognitive functioning. For
most people, dietary consumption generally fulfills the requi-
site Mn intake (1). Even though Mn is crucial for maintaining
optimal physiology, several aspects of the biology of the homeo-
static control and toxicity of Mn remain unclear (2, 3). Unan-
swered questions include the subcellular and organelle distri-
bution of Mn and the nature of cellular events that occur when
deviations from Mn homeostasis occur (e.g. with exposure to
chronic low levels of Mn). Mn has been implicated in the
metabolism of proteins, lipids, and carbohydrates and acts as a
cofactor for numerous kinases and other enzymes (4, 5).
Because magnesium (Mg) and Mn share a resemblance in their

physicochemical properties, a vast majority of enzymes can use
Mg in lieu of Mn for their activation (3).

Mn also plays unique roles that cannot be replaced by other
metals, such as in Mn-dependent enzymes, including arginase,
agmatinase, glutamine synthetase, and Mn superoxide dismu-
tase (MnSOD).3 As a result, its presence at optimal levels to
support these functions is required, and the lack of this essential
micronutrient can give rise to cognitive deficits (6). Excess cel-
lular levels of Mn are also detrimental, and this aspect of Mn-
induced disease has gained attention in the field of toxicology.
Mn accumulates in specific regions of the brain to selectively
alter neurophysiology. Elevated brain Mn levels usually occur
only following overexposure, which can result from numerous
sources, including environmental sources, occupational expo-
sures, or dietary exposures to Mn such as from contaminated
drinking water.

The consequences of Mn overexposure occur throughout
the nervous system and can affect both motor function and
higher-order cognitive functions. Motor control is disrupted
via disruption of dopaminergic (DAergic) function (7). This
includes clinical expression of parkinsonism in occupationally
exposed workers (8, 9). Occupational exposure to Mn has been
linked to other unfavorable outcomes, including learning defi-
cits and neurodegeneration (10). The consequences of Mn
overexposure occur throughout the nervous system and affect
motor functions. This review is focused on neurotoxicity and
presents evidence that Mn plays a key role in the maintenance
of brain physiological homeostasis and is a primary target of
this metal (11). Recent identification of genetic disorders of Mn
metabolism combined with studies providing insights into the
mechanisms of Mn neurotoxicity make a comprehensive
review on this topic timely. This review illuminates the unfa-
vorable outcomes Mn exposure causes. There is urgency to
explore and address the potential changes that are occurring at
a molecular level, as these unfavorable outcomes are leading to
increased risk of diseases. This attempt requires an interdisci-
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plinary approach where scientists with expertise in neurosci-
ence, biology, and chemistry to come together to think about
the problem at hand.

Routes of manganese exposure and accumulation in the
brain

Beyond occupational exposures, excessive dietary or drink-
ing water uptake of Mn is another source of overexposure. The
World Health Organization recommends that the daily Mn
consumption for an adult be between 0.7 and 10.9 mg (12).
Although use of Mn dietary supplementation containing
greater than 20 mg of Mn has been reported in cases of osteo-
arthritis and osteoporosis (13, 14), to our knowledge, naturally
occurring Mn deficiency has never been reported in humans.
Ingested Mn has an absorption rate of 3–5% through the gas-
trointestinal tract and is subject to tight homeostatic control in
vivo (15, 16). Systemic homeostatic control of Mn is a balance
between transport across the enterocytes lining the intestinal
wall and removal by the liver (17). Several factors can influence
the oral uptake of Mn, including iron (Fe) status, dietary matrix,
bioavailability, and existing body burden of Mn (18). Following
oral intake, Mn is distributed widely to tissues, and its metabo-
lism may also involve cycling between Mn2� and Mn3�,
although only a small fraction is found in the 3� oxidation state
(19). The oxidation state of Mn exposure is a critical determi-
nant of Mn toxicokinetics, tissue toxicodynamics, and toxicity
(20). Contaminated drinking water is another source of Mn
exposure (21, 22). Metal concentrations in water vary by loca-
tion, with Mn ranging from 0.0001 to 0.1 mg/liter (18).
Although the United States Environmental Protection Agency
does not consider Mn to be a primary drinking water contam-
inant, the standard concentration of allowable Mn is 0.05 mg/
liter (23, 24). There are arguments that the current Mn refer-
ence concentration guidelines need to be re-evaluated to con-
sider Mn as a potential contaminant (25), specifically when
using water for infant formulas that already contain high levels
of Mn (26). Inhalation is the predominant route of exposure
associated with the toxic effects of Mn in adults. Current data
suggest that Mn exposure via drinking water in children/ado-
lescents is as important as inhalation exposure under environ-
mental and occupational settings (27). Excess environmental
exposure may arise from air pollution (28 –31), gasoline
enhanced with methylcyclopentadienyl manganese tricarbonyl
(MMT) (32, 33), and agricultural fungicides (34, 35). Many of
the initial epidemiologic studies of Mn and health outcomes
examined occupational inhalation exposures within industries
such as ferromanganese welding, mining, and refining (36 –40).
Inhaled Mn enters the circulatory system through the nasal
mucosa, bypasses the biliary excretion mechanism, and can
cross the blood-brain barrier via several pathways, including
facilitated diffusion and active transport from the olfactory bulb
to the cerebral cortex (41–44). Mn accumulates in Fe-rich brain
regions of the basal ganglia: caudate, putamen, globus pallidus,
substantia nigra, and subthalamic nuclei of the brain (43, 45,
46). Under normal conditions, estimated concentrations of Mn
in the human brain range from 5.32 to 14.03 ng of Mn/mg of
protein, with 15.96 – 42.09 ng of Mn/mg of protein being the
estimated pathophysiological threshold (47). Based on occupa-

tional studies of Mn exposure, the Occupational Safety and
Health Administration exposure limit for general industry, con-
struction industry, and shipyard employment is 5 mg/m3

(RRID:SCR_018203). However, even with Mn airborne levels
near the Environmental Protection Agency’s reference concen-
tration of 0.05 �g/m3 (23), exposure can result in deficits in
postural balance and neuropsychological and motor functions
(49 –51) and increased risk for physician diagnosis of Parkin-
son’s disease (PD) (52). Deficits in neuromotor function are
similar among adult Mn-exposed workers (53, 54) and older PD
patients (55). Longitudinal and cross-sectional environmental
exposure studies link low-level Mn exposure to deficits in intel-
lectual development (6), neurobehavior (56), neuromotor func-
tion (57), and neuropsychiatric changes with respect to atten-
tion and mood (58).

Using magnetic resonance imaging (MRI), several studies
have shown that significant brain accumulation of Mn in both
humans and other animal models is associated with increased
risk of neurotoxicity. These subjects often show a characteristic
accumulation of manganese in the basal ganglia, particularly
in the globus pallidus (59 –61). Mn accumulation was also
observed in the frontal cortex (Fig. 1) (59). Although recovery
upon cessation is possible (62), this rarely happens in cases of
occupational exposures, which are prolonged and cumulative.
In rodent studies, areas of notable accumulation include the
olfactory bulb, cerebellum, hippocampus and dentate gyrus,
and pituitary gland in addition to the basal ganglia (63, 64).
Other studies in nonhuman primates have shown that inhaled
ultrafine Mn particles translocate and accumulate in the olfac-
tory bulb in addition to the striatum, frontal cortex, and cere-
bellum (43). In addition to using MRI to analyze brain Mn lev-
els, other noninvasive methods of measuring total body Mn
burden based on bone levels are being used based on neutron
activation analysis (65). The next section details the biomarkers
that are currently being used to assess Mn biological status.

Biomarkers of brain and body Mn status

Blood Mn levels are the most used indicator of exposure and
can characterize the difference between exposed and unex-
posed subjects (66). Blood Mn is reflective of recent exposure
rather than total body burden due to the short half-life of Mn in
blood, which is less than 2 h owing to rapid hepatic clearance
(67–69). Hair Mn levels have been widely used to quantify
chronic low levels of exposure, such as those commonly asso-
ciated with deficits in cognition in children (28 –30, 70, 71), but
evidence that the hair Mn levels reflect internal exposure dose
versus external exposure dose is lacking. Mn levels in dentin of
deciduous teeth have also been used to quantify both prenatal
and postnatal accumulation (34, 35). Fingernails and toenails
are noninvasive indicators of internal Mn exposure and hold
the potential to quantify long-term exposure for up to a year
(72, 73). Due to the high rate of Mn elimination through bile to
feces (�95%) and short half-life, urine Mn concentration is not
recommended as an optimal medium for internal Mn exposure
assessment (69, 73, 74). Only limited research is available on
saliva and the hormone prolactin as alternate biomarkers for
Mn exposure (68, 74, 75).
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Biphasic relationship

Mn exhibits negative health effects at both deficient and
excess exposures (6, 76, 77). In 1999, Mergler et al. (78) coined
the term “a continuum of dysfunction” to describe the manifes-
tations of Mn neurotoxicity along three toxicological out-
comes: manganism, a neurological disorder in response to high
exposures of Mn; neuropsychological abnormalities; and idio-
pathic Parkinson’s disease. Vollet et al. (6) describe this dose-
response relationship of Mn focusing on neurocognitive out-
comes (Fig. 2). In recent years, an inverse U-shaped association
has been reported between Mn exposure and adverse neurode-
velopmental effects in infants and children, suggesting adverse
effects of both low and high Mn exposures (Fig. 2). This pattern
is consistent with Mn acting as both an essential nutrient and a
toxicant (6, 28, 79). This biphasic dose response between Mn
exposure and neurotoxic effects is observed in both human and
animal studies (28, 80, 81). Additional studies are needed to
determine the full extent of Mn exposure effects on health
outcomes. Future prospective field-based exposure studies can
provide substantial insights regarding chronic low-level
impacts and eventual progression in terms of disability and dis-
ease (78). Future biochemical research should include exami-
nation of mechanisms of nonlinear relationships and cell/mo-
lecular consequences of exposures across the lifespan,
particularly during critical developmental windows.

Effects of Mn on neurotransmitters

Accumulation of Mn in the brain could potentially alter mul-
tiple neurotransmitter systems and their activity in the brain.
Mn predominantly accumulates in the basal ganglia region of
the brain, including the substantia nigra, striatum, and
pallidum, when in excess (82–85). The basal ganglia have an
intricate network of neurotransmitters that could potentially
be altered and cause deviations in optimal physiology and
behavior.

�-Aminobutyric acid (GABA) is an inhibitory neurotrans-
mitter seen in abundance in globus pallidus and substantia
nigra pars reticulata that receives inputs from the striatum

(caudate nucleus and putamen) (86, 87). Mn exposures, even at
levels that are not cytotoxic to neurons (e.g. 100 �M), cause early
and profound changes in neurite length and integrity, thus
subsequently altering GABA levels (86). These deviations in
GABAergic neurotransmission cause disinhibition of excit-
atory neurotransmitters. Stanwood et al. (86) showed that acute
Mn treatment was neurotoxic in vitro, causing death in tyrosine
hydroxylase (TH)-positive, presumptive dopamine (DA) neu-
rons, along with loss of glutamic acid decarboxylase–positive
neurons in the basal ganglia. Dopaminergic neurons present in
the basal ganglia express TH, which is the rate-limiting enzyme
for the synthesis of dopamine. Their study indicates that Mn
toxicity acts on the neurocircuitry of this brain region to alter
homeostasis and mediate neurodegeneration in the brain (86).
Mn also inhibited GABA transport in the rat forebrain, con-
firming that Mn neurotoxicity perturbs the GABAergic neu-
rotransmission (88).

Glutamate is the primary excitatory neurotransmitter and a
critical signaling molecule. Mn can trigger neurotoxicity by
release of excessive amounts of glutamate in the extracellular

Figure 1. Schematic showing the sagittal section of human brain showing the brain regions where Mn predominantly accumulates (48, 200). Dop-
amine is a key neurotransmitter that is produced in the substantia nigra, and the dopaminergic neurotransmitters project to the basal ganglia region.

Figure 2. Mn exhibits hormetic dose response, which means an inverted
“U-shaped” curve. Deficits in neurocognition are seen at both lower and
higher doses, with maximum function being at the top of the inverted
U-shaped curve. Adapted from Vollet et al. (6). This research was originally
published in Current Environmental Health Reports. Vollet, K., Haynes, E. N.,
and Dietrich, K. N. Manganese exposure and cognition across the lifespan:
contemporary review and argument for biphasic dose-response health
effects. Curr. Environ. Health Rep. 2016; 3:392– 404. © Springer.
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space, potentially leading to activation of glutamate receptors
and subsequent downstream processes (89). Mn exposure leads
to altered synaptic neurotransmission via increased sensitivity
of postsynaptic glutamate receptors and activation of neurons
in the globus pallidus (90 –92). Mn is also a cofactor for gluta-
mine synthetase, and Mn disruption of astrocyte metabolism
also leads to unavailability of the necessary components for
neurotransmitter and GSH metabolism (93).

The effects of Mn on brain cholinergic systems could add to
the understanding of Mn neurotoxicity. Mn binds to the cho-
line transporter and reduces choline uptake. Additionally, Mn
influences regional choline uptake in the hippocampus, the
frontal and parietal cortices, the caudate, and the putamen.
These results suggest that choline uptake across the blood-
brain barrier is likely inhibited by Mn (94). The deficit of cho-
line, a key component needed for the synthesis of the neu-
rotransmitter acetylcholine, could potentially contribute to
deficits in both behavior and physiology. Mn has a greater neu-
rotoxic effect on cholinergic neurons in the developing brain, as
there is decrease in the enzyme choline acetyltransferase spe-
cifically in the midbrain and the cerebellar region (95). In adult
rats, Mn may further contribute to regional specific (e.g. stria-
tum and cerebellum) increases in the acetylcholine-degrading
enzyme acetylcholinesterase (95–97). Further study is needed
to corroborate the neurotoxic effects of Mn on cholinergic neu-
rons and the interactions it has with the other neurotransmitter
systems in the brain.

The current body of literature has predominantly focused on
the effects of Mn neurotoxicity on DA. As discussed earlier in
this work, Mn accumulates in the basal ganglia, a DA-rich
region. This accumulation has been shown to correlate
inversely with DA levels in both neonates (98) and adult rats
(99). Research has predominantly focused on DA subtype 2
receptor (D2R) and the DA transporter (DAT) responsible for
Mn transport into DA neurons (100). Nelson et al. showed that
D2R are involved in Mn toxicity, at the receptor level or at a
point downstream in the signaling cascade that does not involve
adenylyl cyclase (101). MnCl2 exposure can lead to DA deple-
tion and blunt the efficacy of DAergic neurotransmission, lead-
ing to up-regulation of the post-synaptic dopamine receptors
and causing behavioral alterations including hypoactivity, cog-
nitive impairments, and altered sensorimotor function (102).
DA release kinetics in rat striatum are also impacted by sub-
acute exposure to Mn due to accumulation within the striatum,
with decreased basal levels and lower stimulated release
observed up to 3 weeks post-treatment (103).

DAT density is highest in the caudate, putamen, and nucleus
accumbens, and this density increases with age under normal
physiological conditions. Examination of DAT in Mn-intoxi-
cated patients revealed a slight decrease in DAT density (104).
The authors also noted significantly greater DAT in striatum of
patients with Parkinson’s disease compared with those with Mn
intoxication. Nonhuman primate studies have shown that DAT
in striatum is a target for Mn and could potentially indicate an
early event in the damage of DAergic neurons by increased
uptake of DA and/or Mn (105). Low doses of Mn do not kill
DAergic neurons in vitro but can impair TH activity through
activation of protein kinase C� and protein phosphatase 2A

even in the absence of frank toxicity (106). Mn exposure in vivo
increased DA and the DA metabolite 3,4-dihydroxyphenyla-
cetic acid in adult rats (107). Tran et al. (108) showed that die-
tary Mn exposure caused disruption to the DA system that sub-
sequently altered executive function. Developmental exposure
of Mn caused cognitive deficits that implicate DA and brain-
derived neurotrophic factor (109). Mn accumulation in the
DAergic cells of the substantia nigra pars compacta in a rodent
model points to a biological basis for deficits in motor skills seen
in association with manganism (84). Reported effects of Mn
neurotoxicity on DA include decreased DA levels (110 –112),
increased DA levels (113), or no modification (114) in the sub-
stantia nigra or striatum. These differences may be due to the
specific exposure paradigm, including route of exposure, con-
centration, duration, Mn compound, animal model, species
age, and sex of the subjects (115). An alternate mode of cyto-
toxicity is by promoting oxidation of DA and other cat-
echolamines and altering the cellular protective mechanisms
that cause the formation of ROS due to higher Mn dosages
(116). Mn may directly contribute to dopaminergic cell death
by disturbing mitochondrial respiration and antioxidant sys-
tems following accumulation within mitochondria (117). Cel-
lular DA also potentiates the cytotoxicity caused by Mn
through the oxidative stress– dependent NF-�B signaling cas-
cade (118). Related to this, antioxidants like taurine may pro-
vide neuroprotective effects against Mn neurotoxicity (119).

Mn transporters and deviations of Mn homeostasis

Nongenetic influences on Mn toxicity

Mn and Fe share common absorption and transport path-
ways (120). The absorption of Mn is closely linked with absorp-
tion of Fe (121–123). Fe-deficient diets lead to increased
absorption of Mn (124), and conversely, large amounts of die-
tary Fe have been shown to inhibit Mn absorption (125–127).
This observation was confirmed by a study that showed that as
Fe content increased, absorption of Mn decreased (128). Fe
supplementation of 60 mg/day over 4 months was associated
with decreased blood Mn levels and an overall reduction in Mn
nutritional status as shown by decreased Mn superoxide dismu-
tase activity in white blood cells (129). In addition, individual Fe
body concentrations affect Mn bioavailability. Fe deficiency
increases intestinal absorption of Mn, and increased Fe storage
measured by ferritin levels is associated with a decrease in Mn
absorption (122). Men generally have higher Fe stores than
women, in part due to the loss of Fe during menstruation. This
may be why men generally absorb less Mn than women (15).
Further, Fe deficiency has been linked to increased risk of Mn
accumulation in the brain (130).

Genetic modifiers of Mn toxicity

Whereas some mammalian Mn transporters were character-
ized over the last 2 decades, the recent identification of three
hereditary disorders of Mn metabolism is beginning to provide
a clearer understanding of the mechanisms that regulate Mn
homeostasis in mammalian cells and organisms. Loss-of-func-
tion mutations in the Mn efflux transporter SLC30A10 or the
Mn influx transporter SLC39A14 increase Mn levels in the
body to induce neurotoxicity. In contrast, loss-of-function
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mutations in another Mn influx transporter, SLC39A8, induce
Mn deficiency. The function of these transporters and the
underlying disease mechanisms are described below (Fig. 3).

SLC30A10

Results from human patients

A detailed clinical description of a patient who harbored
homozygous loss-of-function mutations in SLC30A10 was first
reported in 2008 (131). The patient was born to consanguine-
ous parents, which was suggestive of an autosomal recessive
disorder. On clinical examination, notable findings were that
the patient exhibited motor abnormalities that influenced gait
and fine movements of hands and dystonia that affected all four
limbs. Blood Mn levels were �10-fold higher than normal. MRI
was indicative of basal ganglia Mn deposition. Additionally,
there was evidence of cirrhosis and increased liver Mn levels on
biopsy. The patient was not environmentally exposed to high
Mn, and plasma copper and zinc (Zn) levels were normal (131).

Subsequent studies reported on additional individuals with
the above-described clinical features (132, 133). MRI provided
evidence for the accumulation of manganese in numerous brain
regions, including the caudate and lentiform nuclei, thalamus,
cortico-spinal tract, and substantia nigra (132). Accumulation
in areas beyond the basal ganglia may reflect the substantial
elevations in body manganese levels in the genetic disease.
Through whole-genome homozygosity mapping and exome
sequencing, homozygous mutations in SLC30A10 were identi-
fied in affected patients. As expected, the disease exhibited
an autosomal recessive form of inheritance (132, 133). Addi-
tional cases of patients harboring homozygous mutations in
SLC30A10 and suffering from Mn toxicity were later identified
(134 –136). Autopsy findings from a patient with homozygous
SLC30A10 mutations revealed marked elevations in Mn levels
in the brain and liver with normal brain Zn and Fe levels (137).
There was loss of neurons in the globus pallidus, which is also a
characteristic feature of Mn toxicity secondary to occupational

overexposure (60, 138); depigmentation without neuronal loss
in the substantia nigra; and hepatomegaly and cirrhosis (139).
Overall, the major implication of the human studies is that loss-
of-function mutations in SLC30A10 alter Mn homeostasis in a
manner that leads to the retention of Mn in the body. Accumu-
lation of Mn in the brain, particularly in the basal ganglia, and
liver likely cause neurotoxicity and hepatic damage, respec-
tively. Notably, whereas the above discussion relates to rare
homozygous mutations in SLC30A10, more recently, widely
prevalent SNPs in SLC30A10 associated with altered blood
manganese and neurological function have been identified
(140, 141), suggesting that changes in SLC30A10 function likely
influence Mn neurotoxicity in the general population as well.

Characterization of SLC30A10 as a Mn efflux transporter from
cell culture assays

Determination of the molecular mechanism of action of
SLC30A10 came from studies in cell culture. SLC30A10 is a
member of the SLC30 family of metal transporters that usually
transport Zn (142). Initial studies also characterized SLC30A10
as a Zn efflux transporter (143). However, doubts were raised by
the fact that human patients had elevated Mn, but not Zn, lev-
els. Evidence generated over the last few years indicates that
SLC30A10 is a specific Mn efflux transporter. In multiple dif-
ferent cell types, WT SLC30A10 localized to the cell surface,
decreased cellular Mn levels, and protected against Mn-in-
duced toxicity (144). Disease-causing SLC30A10 mutants were
retained in the endoplasmic reticulum and did not mediate Mn
efflux (144). In GABAergic primary mouse midbrain neurons,
expression of SLC30A10WT, but not a disease-causing mutant,
protected against Mn-induced neurotoxicity (144). In neuronal
AF5 cells, knockdown of SLC30A10 elevated cellular Mn levels
and increased sensitivity to Mn toxicity (144). Importantly,
overexpression of SLC30A10WT did not impact intracellular
Zn levels or protect against Zn-induced cell death (144, 145).
Mechanisms that confer Mn transport specificity to SLC30A10

Figure 3. Function of SLC30A10, SLC39A14, and SLC39A8. SLC30A10 and SLC39A14 synergistically mediate Mn excretion. SLC39A14 transports Mn from
blood into hepatocytes and enterocytes for subsequent excretion by SLC30A10 into bile and feces. SLC30A10 also mediates Mn efflux from neuronal cells. In
contrast, SLC39A8 reclaims Mn lost in bile. Elevated brain Mn levels and neurotoxicity evident on loss-of-function of SLC30A10 or SLC39A14 is a consequence
of an inhibition of Mn excretion and, for SLC30A10, a block in Mn efflux from neurons. Loss-of-function of SLC39A8, in contrast, produces Mn deficiency.
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are unclear, but analyses of the predicted structure of
SLC30A10 and mutational assays suggest that the metal-bind-
ing site within its transmembrane domain is substantially dif-
ferent from that of related Zn transporters (145, 146). Orienta-
tion of amino acids within the transmembrane domain of
SLC30A10 may favor Mn binding while simultaneously disfa-
voring association of other metals, such as Zn. Notably, muta-
tions in residues required for, or adjacent to those required for,
the Mn transport activity of SLC30A10 have been identified to
induce disease in humans (136, 145). Liposome-based transport
assays and crystallization may provide the information neces-
sary to better-understand the mechanisms that confer specific
Mn transport capability to SLC30A10.

Understanding the function of SLC30A10 at the organism level
using mouse, nematode, and zebrafish models

Full-body Slc30a10 knockout mice were generated and char-
acterized in 2017 (147). Knockout animals had �20 – 60-fold
increases in brain, liver, and blood Mn levels (147). Other essen-
tial metals (Zn, Cu, and Fe) were largely unaffected (147). The
full-body knockouts exhibited a failure-to-thrive phenotype
and died between 7 and 8 weeks of age (147). Histological anal-
yses provided signs of thyroid dysfunction, and hormone assays
demonstrated that the animals suffered from severe hypothy-
roidism (147). Further analyses revealed that the knockouts
accumulated high levels of Mn in the thyroid, which blocked
thyroxine biosynthesis (147, 148). The phenotype was rescued
when animals were fed a low-Mn diet, which decreased tissue
Mn levels (147). Additionally, knockout of the Mn importer
SLC39A14 in the Slc30a10 knockouts (i.e. Slc30a10/Slc39a14
double knockouts; see below for a more detailed description of
these double knockouts) reduced thyroid Mn levels and also
rescued the hypothyroidism phenotype (148). The novel phe-
notype of Slc30a10 knockout mice raises the hypothesis that
thyroid dysfunction may be an understudied aspect of Mn-in-
duced disease that exacerbates the direct neurotoxic effects of
Mn. At least one human patient with homozygous SLC30A10
mutations has now been reported to also have hypothyroidism
(149).

As detailed below, further understanding of the mechanisms
leading to Mn retention upon loss-of-function of SLC30A10
are derived from analyses of tissue-specific Slc30a10 knockout
mice. Mn is excreted by the liver and intestines into bile and
feces, with biliary excretion being the predominant route of Mn
elimination (17, 150–153). In mice and humans, strong expres-
sion of SLC30A10 was detectable in the liver and intestines
(132, 139, 147, 148, 154, 155). Moreover, SLC30A10 localized to
the apical/canalicular aspect of polarized HepG2 cells that
model hepatocytes (148) and CaCo2 cells that model entero-
cytes (154), raising the hypothesis that the transport activity of
SLC30A10 mediates hepatic and intestinal Mn excretion. Con-
sistent with this, tissue-specific Slc30a10 knockout mice lack-
ing SLC30A10 in both the liver and intestines (generated using
an endoderm-specific Cre) exhibited marked increases in blood
and brain Mn levels and had reduced fecal Mn levels (154). The
above data suggest that loss-of-function of SLC30A10 blocks
Mn excretion, which leads to a build-up of Mn within the body,
and the retained Mn accumulates in the brain to induce neuro-

toxicity (Fig. 3). The excretory function of SLC30A10 was vali-
dated in 2019 using radioactive Mn excretion and surgical
approaches (156).

In addition to its role in Mn excretion, SLC30A10 has an
additional neuroprotective function in the brain (Fig. 3) (154).
Robust expression of SLC30A10 was detected in the human and
mouse brain, including neurons of the basal ganglia (132, 139,
147, 148, 154, 155). Mn levels in the basal ganglia of pan-neu-
ronal/glial Slc30a10 knockout mice, lacking SLC30A10 in all
neurons and glia, were comparable with littermate controls
(154). However, exposure to a sub-chronic Mn regimen pro-
duced larger increases in basal ganglia Mn levels of the pan/
neuronal-glial knockouts than littermates. These findings sug-
gest that activity of SLC30A10 in the brain is likely important to
reduce Mn levels and protect against neurotoxicity when body
Mn levels become elevated (Fig. 3). In totality, the data avai-
lable to date suggest that neurotoxicity on loss-of-function of
SLC30A10 is a consequence of an inhibition of hepatic and
intestinal Mn excretion combined with a block in the efflux of
Mn from vulnerable basal ganglia neurons (Fig. 3).

Results in other organisms support findings obtained in
mice. As examples, in Caenorhabditis elegans, SLC30A10WT

protected DAergic neurons against Mn toxicity, rescued a Mn-
induced behavioral defect, and increased viability on exposure
to elevated levels of Mn, whereas a disease-causing mutant
failed to exert these protective effects (144). There was no effect
of SLC30A10WT expression on Zn toxicity in the nematodes
(157). Additionally, depletion of SLC30A10 in zebrafish also
induced Mn toxicity (158).

SLC39A14

Results from human patients

In 2016, homozygous loss-of-function mutations in
SLC39A14 were reported to induce another inherited form of
Mn neurotoxicity (159). SLC39A14 is a member of the SLC39
family of metal transporters (160). Unlike SLC30 proteins,
members of the SLC39 family mediate metal influx; most mem-
bers mediate Zn influx, but SLC39A14 can also mediate influx
of Mn, Fe, and cadmium (Cd). Within the first decade of life,
affected patients exhibited severe neurological dysfunction,
including developmental deficits, dystonia, bulbar defects,
spasticity, scoliosis, and loss of independent ambulatory activ-
ity (159). Parkinsonian features were evident in some (159).
Blood Mn levels of patients were elevated, but importantly, Fe,
Zn, and Cd in blood were within normal limits when tested
(159). MRI indicated that there was accumulation of Mn in the
brain, including in the globus pallidus and striatum (159). An
important distinction from disease induced by SLC30A10
mutations was the lack of deposition of Mn in the liver and,
consequently, lack of liver dysfunction (159). This clinical find-
ing provided the first clue that activity of SLC39A14 may be
necessary to transport Mn from blood into hepatocytes (Fig. 3).
Post-mortem analyses of one patient showed evidence of neu-
ronal degeneration in the globus pallidus (159). Additional
descriptions of patients suffering from Mn toxicity due to
mutations in SLC39A14 were reported in 2018 (161, 162).
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Mechanistic in vivo and in vitro assays

Studies performed prior to discovery of the genetic disease
had already demonstrated that SLC39A14 could mediate influx
of Zn, Mn, Fe, and Cd (160, 163–168). SLC39A14WT and dis-
ease-causing mutants localized to the cell surface, but the Mn
transport capacity of the mutants was lower than for the WT
protein (159). Combined with the fact that levels of Fe, Cd, and
Zn were unaltered in patients, these results suggested that a
defect in Mn influx underlies the observed disease phenotype.

Findings from Slc39a14 knockout mice were first reported in
2010 and 2011 (169, 170), but changes in Mn homeostasis were
identified in 2017 by three independent groups (171–173).
Consistent with observations in human patients, knockout
mice exhibited increased Mn levels in blood and brain, but this
increase was not evident in the liver (171–173). These findings
were also consistent with results in zebrafish depleted in
SLC39A14 in which Mn levels in the brain, but not abdominal
viscera, were elevated (159).

A straightforward hypothesis emerged from the above-
described findings in human patients and model systems lack-
ing SLC30A10 or SLC39A14: SLC39A14 and SLC30A10
likely function cooperatively to mediate Mn excretion, with
SLC39A14 transporting Mn from blood into hepatocytes and
enterocytes and SLC30A10 transporting Mn into bile and feces
(Fig. 3). This hypothesis supported two important predictions.
First, SLC39A14 and SLC30A10 should localize to the basolat-
eral and apical domains of polarized hepatocytes and entero-
cytes, respectively (Fig. 3). Second, liver and intestine Mn levels
of Slc30a10/Slc39a14 double knockouts should not be ele-
vated (148). As mentioned above, in polarized HepG2 cells,
SLC30A10 was detected in the apical/luminal domain (148). In
the same system, SLC39A14 localized to the basolateral aspect
(148). Basolateral localization of SLC39A14 in polarized
HepG2 cells was consistent with earlier observations in rat liver
sections (174). A similar localization of SLC30A10 and
SLC39A14 was also reported in Caco-2 enterocytes (154, 175).
Analyses of Slc30a10/Slc39a14 double-knockout mice pro-
vided direct support for the above hypothesis. In Slc30a10/
Slc39a14 double knockouts, liver Mn levels were not elevated
(148). This effect was specific because, in the same experiment,
liver Mn levels of Slc30a10 single knockouts were substantially
higher than WT, but no change was evident in Slc39a14 single
knockouts (148). Furthermore, blood and brain Mn levels of the
double knockouts were higher than WT controls and both sin-
gle knockouts (148). Results from the double knockouts imply
that activity of SLC39A14 is necessary to transport Mn into
hepatocytes for subsequent excretion by SLC30A10 (Fig. 3).
Whereas intestinal Mn levels were not analyzed in the double
knockouts, the differential localization of SLC30A10 and
SLC39A14 in enterocytes described above, data from tissue-
specific Slc30a10 knockout mice (154, 156), and recent findings
showing that SLC39A14 is required for the transport of Mn
from blood into enterocytes (176), put together, suggest that
SLC30A10 and SLC39A14 likely also act cooperatively to medi-
ate intestinal Mn excretion (Fig. 3). We note an additional
interesting feature of the Slc30a10/Slc39a14 double knockouts.
SLC39A14, but not SLC30A10, was detected in the thyroid

(148). Consequently, thyroid Mn levels of Slc39a14 single
and Slc30a10/Slc39a14 double knockouts were lower than
Slc30a10 single knockouts, and both Slc39a14 single and
Slc30a10/Slc39a14 double knockouts had functioning thyroid
hormone (148). In sum, available data support the model pre-
sented in Fig. 3 and suggest that the neurotoxicity evident in
patients with SLC39A14 mutations is an effect of a defect in Mn
excretion.

SLC39A8

Results from human patients

In 2015, two companion papers reported that mutations in
another member of the SLC39 family, SLC39A8, induce an
inherited disorder of Mn deficiency (177, 178). SLC39A14
mediates influx of several metals: Zn, Mn, Fe, and Cd as well as
cobalt (160, 164, 179). One of the papers reported detailed find-
ings from an infant who had cranial asymmetry, severe infantile
spasms with hypsarrhythmia, and disproportionate dwarfism
(178). Atrophic changes were seen in the brain on computer-
ized tomography and MRI (178). Plasma and urine Mn levels
were below detection, but serum Zn levels and Fe metabolism
parameters were unaffected (178). As part of the clinical analy-
ses, glycosylation of serum transferrin (a common biomarker
used to screen for congenital disorders of glycosylation) was
found to be defective (178). Sequencing revealed that the
patient carried homozygous mutations in SLC39A8. Subse-
quent examination of additional patients with unexplained
defects in transferrin glycosylation led to the identification of a
second infant with homozygous mutations in SLC39A8, severe
neurological deficits, and undetectable Mn levels in whole
blood and urine (178).

The second paper described findings from six children who
belonged to the genetically isolated Hutterite ethnoreligious
group and two other siblings born to consanguineous parents
(177). Clinical features included severe intellectual and devel-
opmental disabilities, atrophy of the cerebellum, cross-eyed
features, and hypotonia with signs being evident as early as
birth (177). Sequencing identified homozygous mutations in
SLC39A8 (177). Of the eight patients, Mn levels in blood or
erythrocytes were decreased in four, at the lower end of the
normal range in three, and not determined in one (177).
Authors of the first paper performed glycosylation assays on
some of the patients described in the second study and discov-
ered that glycosylation of transferrin was defective (178). Over-
all, the clinical studies suggest that mutations in SLC39A8
induce Mn deficiency, which leads to deficits in glycosylation as
several Golgi-localized enzymes involved in the glycosylation
pathway require Mn for activity (180 –182). Defective glycosyl-
ation, in turn, induces neurological disease.

Mechanistic in vivo and in vitro assays

In HeLa cells, SLC39A8WT localized to the cell surface (183).
In contrast, disease-causing mutations trapped the transporter
in the endoplasmic reticulum and blocked its capability to
mediate Mn influx (183). Further mechanistic insights came
from analyses of Slc39a8 knockout mice. Full-body depletion of
Slc39a8, using a tamoxifen-inducible system, decreased tissue
Mn levels and induced glycosylation defects, but did not impact
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Zn or Fe levels (184). Constitutive liver-specific Slc39a8 knock-
outs exhibited reductions in Mn levels not only in the liver but
also in other tissues, such as the brain and intestines, and over-
expression of Slc39a8 in the liver increased Mn levels in the
liver as well as in extrahepatic organs (184). Microscopy assays
revealed that SLC39A8 localized to the apical surface of polar-
ized hepatocytes (184). Together, these results suggest that
SLC39A8 regulates Mn homeostasis by primarily acting in the
liver, where it transports Mn from bile into hepatocytes,
thereby reclaiming Mn that would otherwise be excreted (Fig.
3). When SLC39A8 function is compromised, Mn is lost in bile,
which subsequently induces Mn deficiency and leads to glyco-
sylation deficits that result in neurological dysfunction (Fig. 3)
(177, 178). The means by which blocking glycosylation pro-
duces specific neurological changes observed in patients
with SLC39A8 mutations remain to be elucidated. Overall,
SLC30A10, SLC39A14, and SLC39A8 have emerged as the crit-
ical regulators of Mn homeostasis in mammals. Much of the
on-going work relates to using tissue-/cell-specific knockouts
of these genes in mice to better understand how Mn homeosta-
sis in specific neuronal populations and other peripheral organs
is regulated and how changes in the homeostatic control of Mn
induce neurotoxicity. This line of research, as well as work on
other transporters that mediate transport of Mn into intracel-
lular organelles (e.g. SPCA1 into the Golgi apparatus (185)), is
expected to substantially improve understanding of Mn-in-
duced neurological disease.

Pathogenic conditions linked to alteration in brain Mn
status

Exposure to Mn can have detrimental effects on the brain at
any stage of life, causing neurobehavioral and neuromotor def-
icits and/or neuropsychiatric illness (6, 78). Early life exposure
to Mn has been shown to cause neurotoxic effects of concern in
susceptible subgroups such as children and adolescents as their
brains are undergoing developmental processes involving dif-
ferentiation, apoptosis, and pathway direction. Each of these
processes is vulnerable to deviations from normal physiology
caused by exposure to Mn (186). A South Korean cohort– based
study showed an inverted U-shaped association between blood
Mn concentrations and infant mental development (187). A
Taiwanese study showed a significant inverse association
between Mn and Comprehensive Developmental Inventory for
Infants and Toddlers (CDIIT) scores at 2 years of age (188). Yet
another cohort showed decreased cognitive scores on Bayley
Scales of Infant and Toddler Development, Third Edition
(BSID-III) when they were subjected to pre- and postnatal
exposure (81, 189).

Adolescence is the next critical period where the brain is
undergoing transformative changes. Exposure to Mn during
this time can potentially alter continuing myelination and may
affect intellectual and cognitive abilities, as adolescence is a
crucial time for brain maturation and pruning (190, 191). Addi-
tionally, adolescence is also a time when there are structural
and functional changes happening in the prefrontal cortex
(192–194). A study in children aged 8 –11 years showed that
both lower and higher concentration of Mn altered cognition
and other behavioral measures on a battery of tests (81). A study

in a cohort of children living near a ferromanganese factory in
Ohio showed a nonlinear U-shaped relationship between two
Mn biomarkers, hair and blood, with pediatric intelligence quo-
tient (28).

Adult populations are also vulnerable to inhaled Mn that
enters the brain through the olfactory system (195). This can
happen in both occupational and nonoccupational settings.
Biomarkers, including scalp hair, axillary hair, fingernails, and
saliva, were examined in 89 Brazilian men and women and
showed that elevated levels of Mn were associated with lower
visual scores in visual working memory (196). Another Brazil-
ian study of 82 mothers and children showed that high Mn
concentration in hair was associated with poor cognitive per-
formance, particularly in the verbal domain (197). Studies that
investigated biomarkers in people exposed to Mn in an occupa-
tional setting also showed deficits in cognition, specifically in
working memory, compared with the control subjects (198). A
cohort of Mn-exposed workers and their control counterparts
were subjected to the Montreal Cognitive Assessment (MoCA)
test, where the control group showed better cognition than the
Mn-exposed group. This study also investigated the effects of
Mn exposure on plasma brain-derived neurotrophic factor,
which was lower in the Mn-exposed group (199). Increased Mn
exposure in these human studies was investigated further with
imaging studies to better identify the brain regions where Mn
accumulated. These studies consistently identified the globus
pallidus, frontal cortex, and striatum as brain regions that
showed higher accumulation of Mn in exposed populations (59,
200, 201).

Neurobiology and neuronal metabolic pathways linked
to Mn status

As an essential metal, it follows that deficient or excessive
levels of Mn could result in biological dysfunction and disease.
For example, enzymes that require Mn for their function may
be expected to become dysfunctional in cases of insufficiency or
overexposure. Key enzymes such as arginase and agmatinase,
which are a part of the urea cycle in the brain, require Mn as a
cofactor, providing a direct link between Mn status and enzy-
matic function (18). An Mn-deficient diet in rats caused
decreased insulin production mimicking a diabetic-like state,
and pancreatic insulin following glucose stimulus was also
affected (202–205). A Mn-deficient diet also led to decreased
circulating IGF-1 and insulin (206). Mn and physiologically rel-
evant levels of IGF synergistically regulate IGF/insulin activity
in the cell lines tested (207). Taken together, these studies point
to a connection between Mn and the regulation of IGF-1/insu-
lin level. The reader is referred to recent reviews that discuss
changes in the neuronal urea cycle, insulin signaling, and the
cellular process of autophagy that are linked to Mn health and
dysfunction associated with changes in brain Mn levels in depth
(105, 132, 208–213).

Mn neurotoxicity and parkinsonism

PD is a progressive motor disorder characterized by selective
neurodegeneration of DAergic neurons in the substantia nigra
(214). Under conditions of Mn neurotoxicity, Mn has been
shown to accumulate in the subcortical structures of the basal
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ganglia, particularly the substantia nigra pars compacta, palli-
dum, and striatum (60, 215–217). As these brain regions are
particularly sensitive to oxidative injury, a supported mecha-
nism for Mn neurotoxicity, it is thought that this combination
explains the relative involvement of these brain structures in
Mn neurotoxicity (117, 217–220). The accumulation of Mn in
basal ganglia occurs across multiple routes of exposure and
genetic bases for elevated systemic Mn levels, including chronic
oral exposure from contaminated water (218), inhalation of Mn
particulates from ferromanganese plants (28), patients receiv-
ing parenteral nutrition (221, 222), or direct intravenous deliv-
ery (i.e. ephedrone users), as well as genetic alterations in the
Mn efflux transporters as described earlier in this review (219,
223–226). In recently identified cases, manganese toxicity was
caused by ephedrone abuse, which leads to manifestation of
parkinsonian symptoms due to accumulation of Mn (227, 228).
To further understand the underlying mechanism by which
ephedrone leads to parkinsonian symptoms, imaging studies
were performed in humans and nonhuman primates. These
studies consistently show a lack of degeneration of dopamine
neurons (224, 227, 228). Even though there is minimal degen-
eration of the neurons, ephedrone acts as a stimulant and
induces the release of monoamines, thus causing a deviation
from the normal physiology (229).

Excess brain Mn accumulation causes manganism (60, 216,
217, 230). Given that there are some similarities between the
symptoms of manganism and idiopathic PD (231), although key
differences exist as well (217, 232), research has predominantly
focused on dysfunction and degeneration of dopaminergic neu-
rons of the substantia nigra, although arguments for the
involvement of other brain regions are also substantiated (138,
217, 233–235). A 1-week systemic Mn exposure trial in mice
showed sex-dependent changes in dendritic spine density for
medium spiny neurons (a subtype of GABAergic inhibitory
neurons) of the striatum 3 weeks after exposure (Fig. 4). This
may be evidence of damage either to these neurons directly or
to the cortical glutamatergic or nigral dopaminergic presynap-
tic neurons that synapse onto the medium spiny neurons (83).
In favor of a role for the presynaptic nigral dopaminergic neu-
rons, Mn exposure is associated with a decrease in striatal dop-
amine and dopamine metabolite levels, although other neu-
rotransmitters are also affected (82). It is noteworthy that
deficits that are seen in motor function are associated with a
marked decrease of in vivo DA release (103, 212, 236). Whereas
these data do not report significant deficits in levels of TH or
other structural markers of DA terminals, it is possible that
chronic exposures and/or repeated deficits of in vivo DA release
have long-term detrimental effects on DA structural markers.
However, these data also suggest key differences between idio-
pathic PD and the neurotoxic effects of Mn. Further investiga-
tions with long-term exposure studies are needed to definitively
determine the role of changes to DA systems in chronic Mn
neurotoxicity.

There is strong evidence of a decrease of in vivo DA release
for both acute and chronic Mn exposure and limited evidence
showing lack of degeneration of D1R and D2R in various mod-
els. Furthermore, studying the long-term effect on DA neuron
viability with chronic Mn overexposure to understand the neu-

rotoxic effects of Mn is vital. Long-term consequences of
decreasing DA release on the neurons of the substantia nigra
remain to be addressed. There are limited studies suggesting
that changes in D2R occur with increasing Mn exposure (237).

In further support of a link between Mn biology and PD,
exposure to Mn has been suggested as a PD environmental risk
factor (238 –240). Further, a dose dependence between Mn-
containing welding fumes and advancement of parkinsonism-
like features has been observed (40). Indeed, parkinsonism is
clinically distinguishable only by age of onset (46 versus 63
years, respectively) in welders versus nonwelders, and there is
an increased prevalence of PD among welders compared with
an age-matched population (9, 233, 241). A study done in Tai-
wanese ferromanganese factory workers showed that there was
Mn accumulation in the globus pallidus and substantia nigra
par reticulata, caudate nucleus, and putamen with minimal
effects on the sub-thalamic nucleus and substantia nigra pars
compacta. One of the points to keep in mind regarding the
studies that point to the lack of degeneration of the neuronal
terminals is that the imaging studies were done immediately
after exposure. A better understanding of long-term and
delayed effects of Mn neurotoxicity is still needed to provide
clarity on the mechanisms at play (40, 232, 234). Last, transport-
ers such as DMT-1 (divalent metal transporter-1) have been
implicated in parkinsonian-like neurodegeneration in animal
models (242). More investigation is needed to understand how
transporters like DMT-1 could also give rise to parkinsonian
symptoms due to Mn neurotoxicity as DMT-1 is involved in
transport of Mn (243).

Potential role for Mn dyshomeostasis in Alzheimer’s
disease (AD) and other degenerative disorders

The relationship between Mn toxicology and AD needs to be
further explored. Importantly for AD, Mn is required as a co-

Figure 4. Mn exposure alters synaptic spine density in striatal MSNs. Left,
representative mouse MSN dendritic segment impregnated by the rapid
Golgi method, reproduced here with permission (83). Dendritic branching is
clearly visualized as well as dendritic spines. Image obtained in 2010 by Jen-
nifer Madison, Ph.D. in the Aaron Bowman laboratory at Vanderbilt University.
Right, total spine density was the only measure of neuron morphology to
have a significant gender difference 3 weeks post-exposure. Mn-exposed
(Mn) male mice had a higher total spine density than Mn-exposed female
mice, whereas Mn exposure decreased spine density in female mice. More
studies need to be done to establish the spine density levels between sexes
under control conditions to consistently better-establish the differences
caused by exposure to contaminants. Data are plotted as mean � S.E. (error
bars); *, p � 0.05, post hoc t test. Data were originally published in Ref. 83. This
research was originally published in Neurotoxicology. Madison, J. L.,
Wegrzynowicz, M., Aschner, M., and Bowman, A. B. Gender and manganese
exposure interactions on mouse striatal neuron morphology. Neurotoxicol-
ogy. 2011; 32:896 –906.
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factor in enzymatic reactions including neurotransmitter
metabolism (glutamine synthetase) and antioxidant status
(MnSOD) (18). Glutamine synthetase is required for recycling
of glutamate to glutamine within the astrocyte and as such plays
a key role in glutamate clearance from the synapse, whereas
MnSOD protects oxidative status in the mitochondria.
Whereas Mn deficiency could thus impair glutamine synthe-
tase enzymatic function, Mn exposure in cultured astrocytes
was associated with increased intra- and extracellular gluta-
mate, impairment of gap junctions, and cell death (244). As
such, Mn sufficiency is key to brain health and protection from
excitotoxicity and oxidative stress, particularly in neurodegen-
erative disorders (245). Nevertheless, evidence suggests that
both deficiency and excess Mn can contribute to the develop-
ment of AD, although more work is necessary to clarify poten-
tially contradictory findings in the literature.

In a study of �2,000 Chinese elders, serum Mn levels were
lower in AD and mild cognitive impairment (MCI) cases than in
healthy controls (246). Epidemiological data from human AD
and MCI studies are more equivocal and dependent on meth-
ods and sample type but support the role for altered Mn accu-
mulation in AD brains (247, 248). In earlier studies, decreased
Mn in AD and MCI were closely related to changes in other
transition metals, including Fe and aluminum (249), and were
dependent on sample type (e.g. serum but not erythrocytes
(250)), which may also explain the lack of clarity in the litera-
ture. MnSOD RNA expression was decreased in lymphocytes in
AD patients (251). In contrast, MnSOD expression was deter-
mined to be 3–11-fold greater in the hippocampus of AD
patients than controls (252). In post-mortem AD tissue,
MnSOD was localized to astrocytes associated with �-amyloid
plaques in cortex and hippocampus, suggesting a response to a
pathological stressor (253). In the Tg19959 mouse model of
AD, decreased expression of MnSOD exacerbated �-amyloid
pathology, whereas increased expression led to a 33% decrease
in �-amyloid plaque burden and was associated with improve-
ment in spatial memory (254, 255). MnSOD, a key antioxidant
enzyme, is one target of tyrosine nitration causing degradation
of the enzyme. Activity but not overall expression decreased in
5-month-old APP and PSEN1 knock-in mice due to increased
nitration in transgenic mice, which worsened with age and
�-amyloid accumulation (256) and contributed to decreased
mitochondrial respiration. Even though studies have demon-
strated that altered Mn exposure or handling may directly
impact neuropathology through altered enzymatic function,
there is no evidence that this happens at this age.

Exposure to Mn and other potential neurotoxicants through
particulate matter in air pollution has been studied in post-
mortem tissues from young adults in Mexico City (257) com-
pared with controls in low-pollution cities. Although neither
lung Mn levels nor lung nor cortical Fe levels increased signif-
icantly, an �50% increase in frontal cortex Mn was observed by
MS in the pollution-exposed population. Mn was significantly
correlated with IL-1� gene expression, suggesting inflamma-
tory response changes. Neuropathological changes were noted
in young adults from the Mexico City cohort that were not
evident in control brains, including diffuse amyloid plaques
(51%) and hyperphosphorylated tau (40%), suggesting a direct

impact on development of AD even in young adults (258). The
role of chronic exposure to modest levels of Mn in the develop-
ment of AD pathology was assessed directly in cynomologous
macaques (236, 259). Mn sulfate (3.3–5.0 mg/kg) given intrave-
nously for 40 weeks increased Mn levels in the frontal cortex
nearly 50% with no concomitant change in Fe levels. Strikingly,
expression of �-amyloid–like protein 1 mRNA (APLP1, a mem-
ber of the amyloid precursor protein family) was strongly up-
regulated in the frontal cortex in Mn-treated animals, and this
was confirmed with immunohistochemistry (236). Mn-treated
animals also showed evidence of diffuse �-amyloid plaques that
were not evident in control animals, as well as degenerating and
apoptotic cells. A similar duration of Mn treatments also led to
a modest decrease in cognitive function, including impaired
spatial working memory and fine motor skills, and increased
compulsive-like behaviors (259). Together, these results sug-
gest a direct role for Mn in activating a cellular stress response
and in driving AD neuropathology. Most AD cases cannot be
attributed to a single gene or mutation. AD age of onset and
speed of decline of both cognitive and pathological markers of
disease is therefore far more susceptible to environmental
influences, likely including changes in brain Mn status. An
important role for dysfunction in Mn homeostasis is suggested
by Mn exposure studies in rodents and nonhuman primates
and correlational studies in human populations, as elucidated
in this review. Both Mn deficiency and toxicity are implicated in
AD-related changes through inflammatory response, oxidative
stress, and degenerative pathways as well as direct effects on
neuropathological markers. Nevertheless, the role(s) of altered
Mn needs to be clarified in AD, particularly regarding genetic
variation and Mn exposure levels within different human pop-
ulations or communities.

Summary

Although essential for cellular metabolic signaling, expo-
sures to high Mn levels cause neurotoxicity. This review of the
available data suggests that Mn toxicity is multifaceted, yet
genetic modulation of its transport (uptake and efflux) plays a
major role in governing both health and disease. Numerous
studies have pointed to a link between Mn homeostasis and Fe,
and the ensuing oxidative stress secondary to impaired mito-
chondrial function and energy failure is a proven mediator of
Mn-induced neurotoxicity. Despite growing awareness of the
association between Mn exposure and adverse neurological
outcomes, studies have yet to fully elucidate the underlying
molecular mechanisms involved in its neurotoxicity. Mn also
has an important role as an enzymatic cofactor, especially in
insulin and insulin growth factor signaling pathways, along the
continuum of biological Mn deficiency through neurotoxic Mn
overexposure. Multiple kinases and phosphatases are known
Mn-dependent (or Mn-preferring) enzymes, and as such,
future experimental studies should identify their role in the
etiology of neurodegenerative diseases vis-à-vis alterations in
Mn brain levels. Whereas studies carried out in the last few
decades have been highly instrumental in adding novel infor-
mation on molecular aspects involved in Mn-induced neuro-
toxicity, further research on the role of Mn in health and disease
as well as effective treatment strategies to reverse its neurolog-
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ical consequences are warranted. Additionally, it is important
to draw attention to the fact that there are also differences in
how individual research studies (sometimes with conflicting
findings) have utilized either different animal species or formu-
lations of Mn to treat/expose the subjects. The inconsistencies
in reported observations could also be due to difference in the
duration of exposure. Whereas standardizing protocols may
eliminate the variation in results, it is nonetheless still impor-
tant to learn the effects of Mn caused by different exposure
durations and compositions. It would also be pertinent to
model studies based on mixtures of other toxicants with Mn
that human populations are exposed to in the environment,
reflecting real-life scenarios of exposure. Importantly, these
future studies should also consider age and sex, in addition to
genetic factors, in modulating Mn-induced neurotoxicity.
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